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1. Introduction  

This document is the main part of deliverable F3.1.1, which is the outcome of task 3.1. Its purpose is to define 

the part of the VERDE language that deals with the description of execution platform. The rationale for the 

definition of the VERDE language is to rely on existing modeling languages and define of subset of them. 

More specifically, UML was selected as the modeling language to choose; the VERDE language is an 

identification of a subset of UML profiles. The VERDE language is defined to address the modeling aspects 

that are required to describe the execution platforms that are involved in the project: Lightweight CCM, SCA, 

SystemC and AUTOSAR. 

An additional document, describing the data model used for the space domain in the scope of the VERDE 

project, is also provided as part of the F3.1.1 delivery. 

1.1 Rationale  

The purpose of task 3.1 is to provide the definition of a common modelling language that can address all the 

concepts implemented in the targeted platform technologies (Lightweight CCM, SCA, SystemC and 

AUTOSAR). 

Work in task 3.1 consists in analysing the selected component frameworks, considering their component 

model, execution model, composition strategies, deployment and configuration aspects, and verification 

models. This implies the analysis of the existing capabilities and the definition of rules that bring usage 

constraints regarding execution or communication semantics in a real time environment. The outcome of this 

analysis is a set of comparison criteria that are used to identify what concepts must be addressed by the 

Verde modelling language. A common model of computation and communication is defined and constitutes 

the basis to transform VERDE models characterized with NFP onto actual execution components in the other 

tasks of WP3.  

The elaboration of the VERDE modelling language considers and evaluates the results of other collaborative 

projects (like ANR-Flex-eWare or Artemis-Chess), and aims at mostly relying on existing standards such as 

plain UML, SysML and MARTE. The expected outcome of task 3.1 is to define a modelling language that is a 

subset of already implemented modelling UML profiles, to ease its adoption.  

Figure 1 gives an overview of the goal of this task. 

 

Figure 1: Overview of the standards involved in VERDE 
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1.2 Relation to other Work Packages and Tasks  

The VERDE modelling language defined in task 3.1 is meant to be a part of the complete VERDE language 

that addresses application component and execution platform descriptions. That is, it defines the elements of 

the VERDE language that cover the component model and the component deployment information. It is the 

input for tasks T3.2, T3.3, T3.4 and T3.5 that deal with the transformation from the VERDE language to the 

existing platforms (LwCCM, SCA, SystemC and AUTOSAR). 

This deliverable is related with deliverables of other work packages, especially work packages 4 and 5 that 

deal with other modeling aspects in project VERDE. The consistency between all these deliverables ensures 

that verification through analysis and the testing performed are consistent with the concrete execution 

platforms. 

Figure 2 depicts the links to other work packages and tasks in the VERDE project.  

 

Figure 2: Project integration 

1.3 Document Structure 

The document is structured in two main parts: the first part describes the targeted technologies (section 2) 

and the languages selected as a basis for the VERDE language (section 3). The second part defines the 

VERDE language itself (section 4).  

1.4 Annex for the Space Domain Data Model Definition 

The Space Domain Data Model as used by ASTRIUM GmbH is based on the European Standard ECSS-

ETM-10-23. This standard is the common denominator for the European Space Agency (ESA) and the space 

industry for any project developing a space system. This leads to a rather specific data model, which is due to 

the fact, that it is related to a clearly defined system purpose and system operating environment. As it is very 

specific to the space domain and the Astrium activities, this model is released in a separate document. 

In order to account for this specialization, the meta-model for space domain is enclosed in a separate annex. 

Please note that Verde will most probably lead to further extensions to this data model, especially in the area 

of verification to support model derivation or case derivation. This is more than welcome and can be 

introduced back to the relevant ECSS-ETM-10-23 steering committee which ASTRIUM GmbH leads. 
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2. Standards involved in VERDE  

In this section, we describe the existing technologies that were taken into account for our work. Each 

technology will be described. 

 

2.1 Comparison criteria 

In order to identify which concepts should be addressed by the Verde modeling language, we compared the 

different targeted technologies. The goal is to isolate comparison criteria for which the Verde language shall 

provide modeling patterns. The technologies under investigation are LwCCM, SCA, SystemC and AUTOSAR. 

After studying the different technologies, we identified a set of concepts they address in various ways. We 

thus were able to define comparison criteria to guide us through the evaluation of the different technologies 

and thus to ease the comparison and identification of the key notions to cover in the VERDE modeling 

language. These criteria are divided into two parts, namely component model and deployment information. 

The component model section covers the elements that can be used to describe a software component and 

is further subdivided into the following parts:  

 data types; 

 interfaces; 

 component types; 

 component implementations; 

 ports; 

 component instances; 

 interaction patterns.  

The deployment information part covers modeling information related to component deployment:  

 definition of execution resources; 

 resource allocation; 

 non-functional properties; 

 relationship between runtime and components. 

The following sections describe the meaning of the different criteria for each technology. 

2.2 LwCCM: general concepts  

LwCCM defines a component model and a way to describe component deployment. The following concepts 

are defined: 

 Component type 

 Communication port, with two possibilities: event port and operation-based port. 

 Interface and Data type. 

The deployment aspects cover the following elements: 

 Component implementation; 

 Component instance; 

 Execution resources; 

 Non-functional properties. 
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LwCCM implies a clear separation between the functional code encapsulated within components and the 

underlying middleware and runtime. As a consequence, the functional code has no visibility on the 

deployment, and thus is controlled by the runtime. Interaction with external elements is performed through 

communication ports: no direct communication with runtime services is possible. 

 

2.3 LwCCM implementation in MyCCM  

MyCCM is a component framework developed in Thales. It is an implementation of the LwCCM with some 

adaptations. The purpose of MyCCM is to provide a component framework which tailored for the particular 

needs of Thales operational divisions. Therefore, MyCCM is actually a collection of frameworks rather than a 

single product. 

In the scope of the VERDE project, we use two versions of MyCCM: one for the space domain, another for 

software radio. The MyCCM for software radio is actually used as a basis to implement the SCA standard. In 

this section, we focus on the MyCCM dedicated to space domain, which targets an adaptation of LwCCM. 

MyCCM uses the LwCCM component model with some extensions, and does not strictly rely on the OMG 

D&C standard for deployment description. As depicted in Figure 3, five aspects can be identified in a MyCCM 

model: the data types and the component models correspond to the LwCCM component model itself. 

Activities and deployment topology correspond to the description of execution resources. Finally, the 

deployment information creates a relationship between the component model and the execution resources. 

 

 

Figure 3: MyCCM model 

 

2.3.1 Data types 
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Figure 4: Data types 

MyCCM supports IDL data types, as well as some specific extensions. The simple data types are integers, 
Booleans and float numbers (see Figure 4); there are different sizes of integers and floats. Complex data 
types are arrays, enumerations, structures and unions (Figure 5).  

 

Figure 5: Complex data types 

In addition, MyCCM supports constrained integers, which are integer with arbitrary value ranges associated 
with a unit, and constrained arrays, which are arrays that can be indexed with an enumeration instead of 
integers (Figure 6). 
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Figure 6: LwCCM Constrained data type 

2.3.2 Interfaces 

MyCCM supports IDL interfaces, which are sets of operations. Operations have parameters, which have 
types (Figure 7).  

 

Figure 7:LwCCM  Interfaces 

 

 

 

2.3.3 Component types 

Component types have ports, which are interaction points (see Figure 8).  

 

Figure 8: LwCCM component ports 
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2.3.4 Interaction patterns 

There are several kinds of ports: event ports and interface ports. Interface ports are associated with one 
interface, which is either provided (facet) or required (receptacle). In addition to standard LwCCM ports, 
MyCCM supports the notion of extended port, which can have several interfaces as displayed in Figure 9. 

 

Figure 9: LwCCM extended ports 

 

2.3.5 Execution resources 

As LwCCM deals with software architecture, execution resources are operating system threads. MyCCM 
supports three kinds of threads: periodic, sporadic and "one-shot". One-shot threads are to be executed only 
once (Figure 10). 
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Figure 10: LwCCM execution resources, thread 

Activities are associated with processes, which correspond to operating system programs. The hostname of a 
process is the identification of the computer on which the process will be deployed (Figure 11). 

 

Figure 11: LwCCM execution resources, process 

2.3.6 Component implementation and instances 

Component types define component signatures, and do not represent actual source code. Source code is 

stored within component implementations. Component implementations are themselves deployed on 

execution resources (Figure 12). 
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Figure 12: LwCCM component implementation 

 

Component instances are deployments of component. The corresponding concept for ports is port 

configuration. A port configuration is associated with a component instance, and possibly with activities. 

Indeed, activities control component ports, not the component themselves (Figure 13). 

 

Figure 13: LwCCM component instances 
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2.3.7 Component connections 

Ports of component instances must be connected one with another in order to create a complete architecture. 

Two kinds of connections are supported by MyCCM: direct connections (Figure 14) and connections through 

a connector (Figure 15). 

Direct connections are used for interaction patterns that correspond to standard port kinds (events or 

interfaces), while connectors are used to implement more complex interaction patterns (i.e. consensus, 

deferred communications, etc.).  

 

Figure 14: LwCCM direct connection 

 

 

Figure 15: LwCCM connection through a connector 

2.3.8 Summary 

Component model 

Component types, component implementations and component instances correspond to the standard 

LwCCM approach. Specifically, component types correspond exactly correspond to the standard IDL3 

definition of LwCCM. 

Data types are the standard IDL data types with some restrictions and some extensions. Only fixed-size data 

types are allowed; thus, strings, any types are forbidden. Complex data types such as sequences, unions and 

structures are allowed. As the targeted language is Ada, data types are extended to manage some 

specificities of Ada: union elements are associated with numbers, integers (short, long, etc.) can be 

associated with ranges of values. 
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The two kinds of ports (facets and event sinks) can be driven by threads to have asynchronous 

communications. This has an impact on interface specifications: operations must be declared as synchronous 

(standard IDL semantics) or asynchronous (which implies specific processing by the framework and a 

different code mapping). 

 

Deployment information 

MyCCM for space explicitly defines the execution resources as system threads, with priority, nature (periodic 

or sporadic), period if needed and memory stack size. This information is non-functional properties that must 

be attached to thread declarations. 

Threads control the execution of component ports. They can used be associated with either input event ports 

(event sinks) or operations of provided interface ports (facets). Threads are to be associated with processes, 

i.e. memory partitions. Memory partitions are to be associated with computation nodes, i.e. processors. The 

space domain use case is very specific, as the targeted platform only has two computation nodes: the 

satellite and the ground station on Earth. Therefore, there is no need for non-functional properties to specify 

network addresses.  

 

2.4 LwCCM implementation in eC3M 

eC3M (see also www.ec3m.net) is a component based modeling / middleware approach that is inspired by 

CCM. The component model is based on the Flex-eWare component model (FCM), i.e. a UML [6] model 

applying the profiles FCM (see section 3.3) and MARTE. The latter is the OMG standard for embedded and 

real-time systems. As a deviation from standard CCM, IDL based descriptions are replaced by model 

elements: UML components (classes) owning a set of ports and optionally inheriting from others. The XML 

deployment descriptors of CCM are replaced by a set of UML instance specifications which allow for the 

configuration of attributes and the allocation to nodes. 

The transition from the model towards executable code is done by a sequence of model transformations. 

These transformations include 

The “connector” pattern is the replacement of a connection by a component that is responsible for the 

realization of the interaction. Thus, a connection becomes a first class model element which posses a type 

and an implementation. Since the interaction component needs to be adapted to the context (e.g. the port 

types), is must be instantiation from a template within a model library. 

The “container” pattern, is the enclosing of a component executor by a container which may provide an 

additional set of services, either by intercepting port communication (enabling thus for instance services such 

as tracing or mutual exclusion) or providing additional services (used for instance for reflective data). 

The distribution of model elements towards a model that represents the elements required on a certain 

deployment node. 

Finally, a model to code transformation uses the standard code generation facilities of Papyrus, in particular 

for C++. An Eclipse CDT project is generated and configured for each node. 

An overview of the approach is shown in the Figure 16. 

 

http://www.ec3m.net/
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Standard Model to 
code (C++) generator
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+ MARTE

Model 

Libraries
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Model to text: Acceleo
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Template instantiation:
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Code / node

Modeling environment

Eclipse CDT (gcc)

 

 

 

Figure 16: The eC3M toolchain 

 

2.5 SCA 

Here we will explain SCA and especially provide details for the different comparison criteria. This will be 

connected with deliverable F3.3.1. 

 

Figure 17 SCA metamodel Packages overview 

 

2.5.1 Component types 

In SCA model a component (Resource) contains a set of ports (inheriting from Port, LifeCycle, Testable, 

PortSupplier). All this classes are designed for activation and configuration and connection. SCA Resources 

cannot be nested. They are controlled by the AssemblyFactory. 
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Figure 18 component types metamodel 

 

2.5.2 Ports 

Like any component model, they are either required or provided interfaces. "getPort" method has to be 

implemented to provide specific interaction patterns, that permits to obtain required and provided port. 

 

2.5.3 Interfaces 

This feature permits to realize declaration of operations (C-like functions). 

 

2.5.4 Component implementations 

It allows hosting code provided by user (stored in a so-called artifact). It could contain tasks, and 

synchronization mechanisms. 

 

2.5.5 Component instances 

They are a way to use the same component implementation with different values thanks to factory. 

 

2.5.6 Interaction patterns 

In SCA two ways of communications are proposed: synchronous operation calls and events (for 

asynchronous call). The Resources could communicate through CORBA. 

 

2.5.7 Data type 

The set of types corresponds to OMG IDL, with some limitations: integer with defined size, float, fixed point 

values, structures, enumerations, sequence. 
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Figure 19  Datatypes metamodel 

 

2.5.8 Deployment allocation 

SCA mainly provides deployment facilities. SCA Core Framework provides some means to manage the 

assembly of components, application life cycle, and devices. 
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Figure 20 SCA deployment Metamodel 

 

2.5.9 Execution resources 

This feature is not directly present in SCA. The execution semantic has to be provided by the component 

designer. Supposedly POSIX (CORBA is optional). 
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Figure 21 SCA Hardware Metamodel 

 

2.5.10 Non-functional properties 

Tasks behavior, synchronization, and relation to operating system are not directly defined in the SCA. 

Runtime has to be provided by the user, and the XML configuration file has to be designed. 

 

2.5.11 Relationship between runtime and components 

No specific runtime is associated and defined in the specification. The user has to define its own runtime. 

 

2.6 SystemC  

This section will provide information and details for the SystemC component model with regard to the 

comparison criteria defined in section 2.1. Besides of the component model itself, this will also embrace 

composition strategies, deployment, and execution semantics. 

SystemC is a C++ library which integrates concepts of concurrency, parallelism, modularity, and separation 

between communication and computation into the standard C++ programming language [3][4]. The following 

sections will abstract away the absolute main C++ concepts and focus on the component characteristics of 

SystemC. 

2.6.1 Component Types 

SystemC designs are basically composed by an interconnection of several components. This basic 

component structure is a module, in SystemC syntax called sc_module. A module can be hierarchical which 

means that it can contain other modules. A special kind of module, which is used to represent communication 
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behavior, is called sc_channel (see also section 2.6.6). Channels usually implement methods for 

communication purposes which are defined in interfaces (please refer to section 2.6.3). As SystemC is a C++ 

library, modules are C++ classes which inherit from the overall superclass sc_object (see Figure 22). 

Therefore, they can contain member variables, attributes, and member functions. 

 

Figure 22: SystemC Module Hierarchy 

Furthermore, modules are considered as the basic component entity in the component model of SystemC.  

Therefore they own ports for communication with other modules and SystemC processes (see Figure 23 for 

SystemC processes please refer to section 2.6.4) which are registered to the SystemC simulation kernel. 

 

Figure 23: SystemC Module may contain ports, exports and processes 

2.6.2 Ports 

To underline the characteristics of a component model, a SystemC module can contain multiple ports 

(sc_port) which are a means for communicating with other modules. Ports refer to a SystemC interface which 

means that the functions which are defined in that interface can be called by the port (see Figure 24). The 

implementation of those interface functions is done in a sc_channel. 
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Figure 24: SystemC Ports enable communication between components utilizing interfaces 

In SystemC, there exists also the concept of providing interface functions to another module through a 

sc_export element. This is in contrast to a port where the interface functions are called actively. The 

sc_export construct is mainly used in hierarchical designs where a module or a channel respectively provides 

some functions to its hierarchical module in which it is contained (see Figure 25). 

 

Figure 25: Providing Interface Functions in SystemC 

Other SystemC elements for communication purposes are attributes (sc_attribute). They provide a direct 

access to variables which in fact are public C++ class members. In practice attributes are usually not used 

because they somehow contradict the object-oriented manner of C++ programming language by public 

access functions (getter/setter functions) and the modularity of components by port communication. 

 

2.6.3 Interfaces 

In general, interfaces in SystemC are native C++ interfaces which inherit from class sc_interface. They define 

the signature of functions without providing an implementation. As shown in Figure 26, SystemC ports refer to 

those interfaces indicating that the appropriate port is able to call the interface methods. The function 

implementations of interfaces are contained in a sc_channel. 
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Figure 26: SystemC Interfaces provide the signature of functions for ports and exports 

2.6.4 Component Implementations 

The behavior of a SystemC module is defined by its processes. As depicted in Figure 27, SystemC processes 

are distinguished between sc_method and sc_thread. 

Methods in SystemC are functions which cannot be interrupted and therefore consume no time (in the sense 

of simulated time). They are triggered by any event in their sensitivity list, e.g. receiving data at an input port 

or a simple event notification. This sensitivity list is statically defined for each method. 

As opposed to methods, threads can be interrupted by calling a wait-operation. They are usually queued in 

the queue of active threads within the simulation kernel when the simulation of the design starts. Therefore, 

they usually contain at least one endless loop which is blocked at some point until a specific event occurs 

(dynamic sensitivity). During their execution they have to consume time either by calling a wait-operation with 

a certain time value (e.g. sc_wait(10,SC_MS)) or an execution inside of a clocked design. This means for 

example that a thread is activated each time a clock has its rising edge. 

 

Figure 27: The behavior of SystemC Components is implemented in processes 

By means of threads the concurrent behavior of SystemC is realized. Each time a thread is interrupted by a 

blocking call to the wait-operation the thread queue in the simulation kernel is arranged in execution order 
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and the next thread is activated. This jump to the next (runnable) thread might include a jump on the 

simulated time line. 

2.6.5 Component Instances  

Comparable to all C++ classes SystemC modules are instantiated by using the new-operator of the C++ 

programming language. Calling this new-operator executes the appropriate constructor method which 

allocates memory space for the newly created class instance. It is also possible to have several constructors 

in parallel which differ in their signature, e.g. different number of parameters or different types of parameters. 

Developers have to take care that instance memory space is released when the instance is deleted. 

Otherwise a memory leak might occur in the design. 

 

2.6.6 Interaction Patterns 

In SystemC, interaction between modules and their behavior respectively happens by means of 

communications via signals or channels (see Figure 28). Communications over signals are assignments of 

values to signal ports (sc_in, sc_out, sc_inout) using read- and write-methods. Signal ports indicate the 

communication direction. The super class of SystemC signals is called sc_prim_channel which embraces 

also mutual exclusion concepts (sc_mutex and sc_semaphore) and a basic first-come-first-serve buffered 

communication concept (sc_fifo). Transferred data types are passed as a template parameter in the channel 

specification. 

 

Figure 28: SystemC Interactions 

Hierarchical channels may also contain a non-trivial behavior, e.g. thread execution. For a detailed 

description of System execution resources please refer to section 2.6.4. Channels implement a 

communication interface which means that they usually contain functions to send data to a channel, to 

elaborate and forward the data regarding a specific communication protocol, and to receive data from a 

channel. 
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However, it is not possible to explicitly model interaction patterns in SystemC. Instead, the behavior of an 

interaction (e.g. blocking or non-blocking communication patterns) is implicitly implemented in the 

communication functions inside a sc_channel and especially depending on the context of the function call 

inside the SystemC process. For example, a call to a send-function doesn’t specify if the channel is actively 

waiting on an acknowledge event of the receiver side of the communication. 

For synchronization purposes SystemC has the notion of events. Executed processes can be interrupted by 

waiting for a specific event or notify a processes which is actually waiting for an event. As an event 

notification is only discovered if a process is currently waiting for it, they are queued in an event queue. 

2.6.7 Data Types 

All C/C++ data types which are defined in the ANSI standard can be used within SystemC designs. 

Additionally, the SystemC standard defines data types which are more hardware-related (see Figure 29). 

SystemC allows the specification of the bitwidth of most standard C/C++ data types e.g. a 16 bit unsigned 

integer would result in a variable definition of sc_uint<16>. Furthermore, SystemC defines logic- and bit 

vector data types which are usually used to build complex entities in bit representation. Examples of those 

complex bit entities are frames of a specific communication protocol which are sent over the network as a bit 

stream and can logically be separated into frame fields e.g. destination address, user data, checksum. 

 

Figure 29: SystemC extends C/C++ with hardware-specific Data Types like Logic or Bit Vectors 

SystemC enables modeling on various levels of abstraction. For a higher abstraction level, communication 

data is usually modeled as a whole transaction abstracting away multiple communications of simple data 

types. The transactions encapsulate these multiple data types into a complex data type which is implemented 

in a C struct or C++ class. In order to speed up the communication time, even pointers on complex data types 

can be transmitted. This is possible because the simulation is executed within the same address space, so 

pointers to data structures are valid across all entities of a SystemC simulation. 

2.6.8 Deployment Allocation 

There is no direct deployment allocation because SystemC does not differentiate between hardware and 

software execution. There is rather a separation of concerns (e.g. communication and computation) and a 

difference in levels of abstraction. Modeling hardware components imposes the use of signal communication 

and clock sensitivity, or appropriate techniques to abstract away low-level signaling. Composition of SystemC 

modules by binding ports to channels or ports to exports (see Figure 30) is done right after module 

instantiation and before the simulation start. 
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Software implemented in C++ can natively be executed inside a SystemC process. Both timing information 

reflecting the execution of this software on hardware and synchronization can be added using the techniques 

described in section 2.6.6. There is a common view on hardware and software in SystemC which means that 

it is used to model a whole system and simulate its behavior. 

 

Figure 30: SystemC Composition is done by binding channels (e.g. signals) to (ex)ports 

2.6.9 Execution Resources 

There is a notion of system threads in SystemC which has already been described in section 2.6.4. 

Additionally, it is possible to create processes dynamically (during runtime of the simulation). This is done via 

a call to sc_spawn-function which needs to know the name of the function which is supposed to be spawned 

and optional parameters. Note that a sc_spawn-function must necessarily be called inside a sc_thread. Then, 

the spawned process is queued in the queue of runnable threads within the simulation kernel. 

 

2.6.10 Non-functional Properties 

Non-functional properties are not an integrated part of SystemC. There exists the notion of time inside a 

SystemC execution reflecting the elaboration of SystemC processes from a simulation kernel point of view. 

 

2.6.11 Relationship between runtime and components 

As the SystemC simulation kernel controls the execution of all registered threads there is a direct 

communication between the components (behavior) and the runtime.  

 

2.7 AUTOSAR 

AUTOSAR (AUTomotive Open System ARchitecture) describes a methodology for automotive software 

development. AUTOSAR [1] distinguishes between 3 software layers on the highest level of abstraction 

running on top of the ECU (Electronic Control Unit) hardware (see Figure 31). These layers are: the 

application layer, the runtime environment and the basic software. The key feature of AUTOSAR is the clear 

separation between application software and infrastructure (Basic Software). This leads to a platform 

independent software component development and enables the support of re-usability. Following, the chosen 

subset of the AUTOSAR software component template will be presented based on the comparison criteria 

presented in section 2.1. Hereby the main focus is on the application software layer[2]. 
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Figure 31: AUTOSAR software layers 

 

2.7.1 Data types 

 

Figure 32: AUTOSAR Data types 

AUTOSAR provides a set of predefined primitive and complex data types. There are two levels of abstraction: 

application and implementation level. At the application level common interface definition languages typically 

specify their data types by combining predefined primitive data types to form various user define types or 

structures, whereas at the implementation level the mapping of data types and data structures to bits and 

bytes is of primary concern. Primitive data types comprise types like integer signed and unsigned in 8, 16 and 

32 bit version and float in 32 and 64 bit version. Additionally types like Boolean, Char and Strings also exist. 
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Composite data types can be for instance Array types, which are always associated with exactly one data 

type for all its elements or Record types, which contain an ordered set of record elements. 

 

2.7.2 Interfaces  

 

Figure 33: AUTOSAR Interfaces 

 

An AUTOSAR interface defines the information exchanged between software components and/or basic 

software (BSW) modules. The description is independent of a specific programming language, ECU or 

network technology. AUTOSAR Interfaces are used in defining ports (see section 2.7.3) of SWC and/or BSW 

modules. Through these ports SWC and/or BSW can communicate with each other by sending, receiving 

data or invoking services. Furthermore AUTOSAR distinguishes three kind of interfaces Client/Server (C/S), 

where clients can execute operations on the server, Sender/Receiver (S/R) where primitive or composite data 

types are exchanged with several relations between senders and receivers (e.g.: 1:m and n:1) and 

Calibration through which calibration data can be requested.  

 

 

https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/Client/Server
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/Sender/Receiver
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2.7.3 Ports 

 

Figure 34: AUTOSAR Ports 

AUTOSAR ports are the interaction points of software components. Hereby there are two types of ports, 

which are always bounded to an AUTOSAR interface: PPorts (provide ports) and RPorts (require ports). 

Additionally, ports are categorized in three different areas namely application software ports, calibration ports 

and service ports. Application software ports are used for the communication in the application layer through 

sender/receiver port or client/server port. Calibration ports are used to exchange calibration parameters via 

calibration provider or require port. Service ports are used by service modules of basic software to provide 

functions to other software components (sender/receiver port, client/server port). 

 

2.7.4 Component types 

An AUTOSAR software component (SWC) is a structural element that uses ports to communicate with the 

environment. Communication is done via ports (PPort, RPort). Furthermore, AUTOSAR distinguishes three 

kind of SWC namely atomic SWC, composition and sensor/actuator SWC. An atomic SWC encapsulates 

parts of the functionality of the application. They are called atomic because they cannot be distributed over 

several ECUs. Compositions are composed of several atomic SWCs. They are structural and used for 

abstraction purposes, therefore they are only used at the modelling level. Sensor/Actuator SWC are special 

software components which encapsulate the dependencies of application specific sensors and actuators.  

 

https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/Sensor/Actuator
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Figure 35: AUTOSAR Component types 

 

2.7.5 Component implementation 

The implementation of an AUTOSAR Software Component is independent from the underlying infrastructure. 

This means for example the type of ECU on which the AUTOSAR Software Component is mapped or the 

location of the other AUTOSAR Software Components with which the software component interacts. The 

behaviour of a SWC can be implemented by means of the so-called Runnables. A runnable is a code 

sequence in an Atomic SWC. It can be triggered either by a timing- or a data-related event. Furthermore 

runnables can implement server-operations, send or receive data through ports or even communicate with 

each other via the so-called “Interrunnable-Variables”. Basically there are two categories of runnables 

category 1 (Cat1) and category 2 (Cat2) (see Figure 36). Runnables of the category 1 can be subdivided into 

two further classes. They differentiate themselves by their runtime duration: Cat1A (short), Cat1B (finite) and 

Cat2 (infinite). 

 

Figure 36: AUTOSAR Runnables 

2.7.6 Interaction pattern (Virtual Functional Bus) 

The central concept of AUTOSAR is the Virtual Functional Bus (VFB). The VFB abstracts the communication 

layer by encapsulating the underlying architecture (e.g.: CAN, FlexRay) of the Electronic Control Unit (ECU). 
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The concrete implementation of the VFB on an ECU is the runtime environment (RTE). At the modeling level, 

connections between the ports of the SWCs are modeled by means of the so-called connectors.  

 

AUTOSAR provides two kind of communication pattern: Client-Server and Sender-Receiver. Moreover only 

ports with compatible interfaces can be connected with each other. During the Client-Server communication 

pattern, the server provides a service(s) that can be used by many clients (n:1).  

 

On the other hand the Sender-Receiver communication pattern supports the multicast scenario (1:n) which is 

very efficient since the bandwidth on the senders side does not grow with the number of receivers. 

Additionally the multiple senders and one receiver scenario is also supported. Not only is the multiplicity of 

the communication relation coded at the VFB level but also the behavior of data transmission. Moreover 

Sender-Receiver communication can be either explicit or implicit: 

 

 Explicit: data is sent or received explicitly by means of an API call. On the receivers side there is a 

buffer in form of a queue. Whereby the queue size influences the communication. For queue size = 1, 

the data semantic is “Last is Best” is applied. This is suitable for systems where only the last value is 

relevant, whereas for queue size > 1 the “FIFO” semantic is applied.  

 Implicit: Data transmission or reception is not triggered directly by a communication call but is 

implicitly executed by the Runtime Environment. Data is forwarded after the sender´s runnable has 

executed and provided to the receiver before it starts its execution  

 

 

Figure 37: Interaction pattern, Connectors 

2.7.7 Deployment allocation 

Deployment is also a very important aspect in AUTOSAR. The AUTOSAR architecture distinguishes on the 

highest abstraction level between three layers as depicted in Figure 31: Application, Runtime Environment 

(RTE) and Basic Software (BSW) which run on a microcontroller. The Basic Software is further divided in the 

layers: Services, ECU Abstraction, Microcontroller Abstraction and Complex Drivers. The Basic Software 

Layers are further divided into functional groups. Examples of Services are system, memory and 

communication Services.  

 

https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/Client/Server
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/Sender/Receiver
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/DataSemantic
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As afore mentioned, the application layer comprises two kind of SWC namely application software 

components and Sensor/Actuator components (hardware dependent). The Basic Software abstracts from the 

ECU-hardware and the Runtime Environment enables communication between software components and/or 

basic software. 

 

2.7.8 Execution resources 

Basic Software runs on top of ECU-hardware and is subdivided into further layers which are: Services layer 

(e.g. OS, Memory, Diagnosis and comm. functions), ECU abstraction layer, Microcontroller abstraction layer 

and Complex device drivers.  

 

2.7.9 Non-functional properties (Timing) 

AUTOSAR also does provide means to model Non-functional properties like timing. Timing related 

constraints can be formulated at the different level of abstraction: VFB-, ECU- and SWC-level by means of 

Timing event and Timing Event chains. There are two different interpretation alternatives while dealing with 

timing constraints. It can be either a restriction for the timing behavior of the system (e.g. minimum or 

maximum latency bound for a certain event sequence) or a guarantee for the timing behavior of the system 

(e.g. timing event is guaranteed to occur periodically with a certain maximum variation). A time event is an 

abstract representation of a specific system behavior, which can be observed at runtime. A 

Time event chain describes the causal order for a set of functionality dependent timing event. Each event has 

a well defined stimulus and response, which describe its start and end point and can be hierarchically 

decomposed into an arbitrary number of sub-chains (event chain segment)  

2.8 Summary 

This chapter listed component models and deployment information of the different execution platforms used 

within VERDE, and this eventually leads to the definition of the VERDE modeling language. The abstraction 

towards the VERDE modeling language is a powerful approach. For example, within an initial system model it 

is not necessary to decide, whether a certain component is later on implemented in software (e.g. as an 

AUTOSAR component) or in hardware (modeled in SystemC). The approach based on the VERDE modelling 

language facilitates the development of complex and scalable systems, where deployment decisions can be 

done as late as possible, with cost criteria in mind. Based on the commonalities of the different execution 

platforms, if considered from a sufficiently abstract point of view, it can already now be seen that it is possible 

to define a common modelling approach across the specific execution platforms, which supports efficient 

code generation towards the execution platforms.  

On the other hand, the VERDE language is not supposed to be a proprietary language; it is a subset of UML 

profiles, and hence can be understood and used by all project partners. In particular it is straight forward to 

recognize the link between a component in any of the execution platforms and a component in the VERDE 

language; the same is true for composition strategies. This chapter was the major groundwork for the 

definition of the VERDE language. The next chapter will investigate the potential UML profiles to be 

considered for the definition of the VERDE language.  

 

3. Existing UML profiles 

In this section, we will describe the different modeling languages that we will choose, in the scope of the 

comparison criteria. 

 

https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/wiki/Sensor/Actuator
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3.1 MARTE 

MARTE [5] is a profile for the UML2 [6] language dedicated to the definition of real-time embedded systems. 

MARTE consists of a set of sub-profiles dedicated for different aspects, globally divided into foundations, 

design, analysis and annexes. The foundation part defines general concepts such as non-functional 

properties and time. The modeling part contains concepts that are useful for modeling, e.g. the component 

model (GCM) already mentioned and high level application modeling (HLAM) concepts dealing for instance 

with time properties of service invocations. The modeling part also contains for instance the possibility to 

characterize the properties of hardware resource, e.g. bandwidth/jitter of busses. In the context of 

components, it is a useful to annotate target platforms (deployment) with these properties in order to enable 

timing analysis. The annex of MARTE standardizes common non-functional characteristics, for instance 

durations, frequencies or arrival patterns. 

An interesting feature of the MARTE approach is that its generic component model (GCM) is a basis to model 

components for existing technologies, such as CCM and other component-based approaches, since the UML 

base model (structured classes with ports and internal composition) is shared by almost all component 

models. Some of the interaction types supported by GCM are linked with a specific way to treat invocations, 

as defined in the MARTE section high-level application modeling (HLAM). In the sequel, we give a short 

introduction to GCM and (a part of) HLAM. 

 

3.1.1 GCM 

The UML component model comprises the possibility that components have ports through which they can 

interact. UML ports are typed by a classifier. A port exposes a set of provided interfaces and a set of required 

interfaces. UML supports composite structures (hierarchal components): a component can own structural 

properties (also denoted as ``parts'') which are typed by another component1. It is possible to connect the 

ports of properties by means of a UML connector. 

MARTE GCM extends the UML component model by adding two specializations of ports: client/server ports 

and flow ports. The former corresponds to “normal” method invocations. It can expose one or more provided 

or required interfaces as in standard UML. 

In a client/server interaction, there is typically a single connection attached to a client port, since the 

semantics of a port which is connected with more than one provided interface is not defined (at least in case 

of return parameters2). Server ports have no restrictions on the number of connections. 

A flowport enables a data-flow oriented communication, i.e. a communication in which a sender may publish 

a certain value and a set of consumers receive it. The type of this value may either be  given directly as the 

port type. If data needs to be send and received through the same port or multiple data types are involved, 

the port is typed with a so-called flow-specification. The latter is a specific UML interface which contains only 

properties. Each of these has an additional parameter denoting the direction of the data flow (in, out or inout). 

We will examine a flow-specification in the context of an example presented below. Unlike a message port, a 

producing flow-port may be connected with multiple ports that consume the data. Data consumption is done 

either via polling or pushing, i.e. triggering the execution of a behavior. 

A third interaction kind is the emission and reception of signals. This possibility is not done by means of a 

different kind of port. Instead, an interface may contain a reception (referencing a signal) in addition to 

                                                      

 

1 To be precise: UML is more generic, properties have a Type which is a generic superclass for many meta -model 

elements including Interface, Class and Component 

2
 In the CCM model, these ports are called multiplex receptacles. But the calling implementation has to select 

a single reference from the set of connections and make a single call 
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operations. If the signal is in a provided interface, it corresponds to signal reception; if it is in a required 

interface, it corresponds to signal emission (note that the UML term Reception is misleading, since it applies 

only to the consumer role). 

It is possible to type both flow-ports and message ports with an interface containing a signal. Since the 

semantics is identical in both cases, we assume in the context of this paper that only flow-ports are typed with 

a signal. 

 

3.1.2 HLAM 

The high level application modeling (HLAM) chapter of MARTE allows the specification of temporal properties 

of calls. This comprises in particular the modeling of active objects (active components), i.e. of entities that 

provide their own thread of control. Invocations of these objects make use of an additional specification that 

defines real-time characteristics (RtFeature), such as a ready-time and deadline. The RtFeature also contains 

an arrival pattern that allows for specifying periodic invocations. Component or classes may be stereotyped 

with two stereotypes that specify a different concurrency behavior: protected passive («PpUnit») and 

reactive/real-time («RtUnit») objects. Both own real-time services, i.e. specializations of services which have 

addition real-time properties. 

Protected passive units are executed by the calling thread and have to specify a concurrency policy. There 

are three concurrency policies: the first authorizes concurrent access, the second only sequential access 

assuming that the caller will respect the access policy. The last policy, named «blocked», blocks concurrent 

requests on the level of the passive unit. Only this policy requires specific execution support. 

Reactive or real-time («RtUnit») components are executed by their own thread (Schedulable resource). 

Different policies control thread pool behavior and scheduling policies for these objects. In particular the 

ConcurrencyKind attribute of a RtService is evaluated to enable one writer, n-reader synchronization 

protocols. 

 An RtFeature may be applied to a port (among other elements), it is thus possible to specify the temporal 

behavior of a GCM port. The subset of real-time features that are useful (in the sense that they are respected 

by code generation) depend on the port kind. For instance, a miss-rate is useful for a data reception, but not 

for an invocation. 

3.1.3 Non functional properties (NFPs) 

The modeling of non-functional properties is an important part of MARTE. This Information may be used for 

code-generation as well as validation and verification purposes, for instance for performance prediction and 

resource usage evaluation.  

The NFP sub-profile is based on the QoS Profile. It offers possibilities to model (physical) values by means of 

a magnitude and a unit. This allows modelling for instance energy, data size and duration. 

There are four main stereotypes: Nfp, Nfptype, NfpConstraint and Unit. It is important to note that specific 

units are not part of the profile itself but defined in a model-library containing nfpTypes such as time-units 

(ms, us), power, frequency and duration. The available units are therefore extensible in order to 

accommodate the needs of a specific domain.  

The Value Specification Language (VSL) allows the specification of NFP types. It is basically a grammar 

enabling a textual specification of values for NFP types (the underlying meta-model is based on UML 

DataTypes and ValueSpecifications). For instance durations are specified by a tuple of magnitude and unit, 

as in (4, ms) (a value of type NFP_Duration which is part of the MARTE model library). These expressions 

are composable, as in case of the ArrivalPattern type which is also defined in the standard MARTE model-

library: 

Periodic (period=(2.0,ms), jitter=(30,us)) specifies periodic events with a period of 2 ms and a jitter of 30 us. 
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The use of non-functional properties is a basic mechanism within MARTE which is combinable with other 

UML based modeling approaches. For instance, it is well possible to annotate a model using NFPs values 

while using a different component model. 

Since MARTE is a UML2 profile, it inherits its ability to describe dynamic behavior using for example 

statecharts. This means that MARTE provides an interesting approach to describing both the architecture of 

the application and (part of) its dynamic behavior in a single modeling tool. 

 

3.2 SysML 

This paragraph introduces the SysML Block concept and ports which can be seen as the component concept 

in the language. 

 

3.2.1 SysML Block 

A Block is a modular unit that describes the structure of a system or element. It may include both structural 

and behavioral features, such as properties and operations, which represent the state of the system and 

behavior that the system may exhibit. Some of these properties may hold parts of a system, which can also 

be described by blocks. A block may include a structure of connectors between its properties to indicate how 

its parts or other properties relate to one another. 

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities 

available for UML classes, such as more specialized forms of associations, have been excluded from SysML 

blocks to simplify the language. 

 

Figure 38: Block Definition Diagram 

 

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as 

associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties 

and operations, and relationships such as a system hierarchy or a system classification tree. The Internal 

Block Diagram in SysML captures the internal structure of a block in terms of properties and connectors 

between properties. A block can include properties to specify its values, parts, and references to other blocks. 

Ports are a special class of property used to specify allowable types of interactions between blocks. 
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3.2.2 SysML ports 

In SysML there are 3 kinds of ports: Standard, Flow and ItemFlow Ports. 

Standard Ports 

A standard port specifies the service the owning block provides (offers) to its environment as well as the 

services that the owning block expects (requires) of its environment. The specification of the services is 

achieved by typing the standard port by the provided and/or required interfaces. In general standard ports are 

used in the context of service-oriented components and/or architectures, either when specifying software 

components or applying a service-based approach to system specification. Standard ports typically contain 

operations that specify bidirectional flow of data, so they are typically used in the context of peer-to-peer 

synchronous request/reply communications. A special case of a service is signal reception, which signifies a 

one-way communication of signal instances, where the handling of the request is asynchronous. 

 

A block can call operations and\or send signals through its behavioral ports that have required interfaces. A 

block must implement all the operations specified in its behavioral ports provided interfaces. Also, a block 

must react to all the signals specified in its behavioral ports provided interfaces. Non-behavioral ports 

delegate operations and signals to/from their internal parts over internal connectors between the non-

behavioral ports and the internal parts.  

 

Flow Ports 

A flow port specifies the input and output items that may flow between a block and its environment. Flow 

ports are interaction points through which data, material, or energy can enter or leave the owning block. The 

specification of what can flow is achieved by typing the flow port with a specification of things that flow. This 

can include typing an atomic flow port with a single type representing the items that flow in or out, or typing a 

non-atomic flow port with a flow specification which lists multiple items that flow. A block representing an 

automatic transmission in a car could have an atomic flow port that specifies “Torque” as an input and 

another atomic flow port that specifies “Torque” as an output. A more complex flow port could specify a set of 

signals and/or properties that flow in and out of the flow port. In general, flow ports are intended to be used 

for asynchronous, broadcast, or send-and-forget interactions.  

 

Items Flows 

Item flows represent the things that flow between blocks and/or parts and across associations or connectors. 

Whereas flow ports specify what “can” flow in or out of a block, item flows specify what “does” flow between 

blocks and/or parts in a particular usage context. This important distinction enables blocks to be 

interconnected in different ways depending on its usage context.  
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3.3 FCM 

The Flex-eWare Component Model (FCM) is a common meta-model derived from Fractal and CCM that has 

been defined in the scope of the ANR project Flex-eWare (www.flex-eware.org). It is a generic model that is 

extensible via model libraries, in particular it is possible to specify new ports, connectors (types & 

implementations) and container services in a library. The extensible elements include: 

 Port: ports are characterized by a kind which defines whether the port is used as a data producer in a 

dataflow interaction of a client in a client/server interaction. From a programming language viewport, 

a port is represented by the interfaces it provides (for external use) or requires (internal use) from 

others. These are automatically derived from the port kind and type. Extensible port kinds have been 

standardized in the context of the DDS for CCM specification. 

 Containers: As CCM, FCM supports enclosing a component by a container. A set of container 

services manipulate interactions or provide additional services.  

 Connectors: FCM does not provide a fixed set of interaction patterns; rather, it provides a means to 

specify new connection point types (aka connectors) that define a specific communication pattern. 

The realization of the communication pattern is left to the connector implementation. A connector 

type captures a communication pattern while a connector implementation is a specific realization of a 

communication pattern. 

 

With these extension mechanisms, it is for instance possible to express MARTE GCM within FCM by means 

of a dedicated MARTE library, as proposed in [7] and implemented by eC3M. 

FCM models are typically enriched with non-functional properties specified by means of MARTE’s value-

specification-language (typically specifying the values of standard MARTE NFP types). 

A UML profile that corresponds to the concepts of the FCM meta-model has been defined. We consider this 

profile in the scope of the VERDE project. 

 

4. VERDE model  

In this section, we define the VERDE Modeling Language (VERDE ML). This language must address all the 

concerns that were identified and explained in section 2. In order to avoid redefining yet another modeling 

language, we choose to rely on existing UML standards and profiles described in section 3. In particular, we 

rely as much as possible on MARTE; the other profiles are used for aspects that are not covered by MARTE. 

Our goal is to define the VERDE modeling language as close as possible to the MARTE profile. 

The VERDE ML defines a set of modeling patterns that match the different aspects of the different 

technologies involved in VERDE (LwCCM, SCA, SystemC and AUTOSAR). These modeling patterns are to 

be used together with other patterns corresponding to other concerns (e.g. analysis, testing). 

The following modeling patterns are to be used as support for the VERDE methodology described in 

document F2.2.2. They provide modeling solutions to address the modeling requirements identified in section 

http://www.flex-eware.org/
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5. The patterns either use UML class diagrams and composite structure diagrams and/or their SysML 

equivalents.   

4.1 Data Types 

Data types used for the VERDE language are the MARTE data types, plus some additional definitions. In this 

section, we describe the types that are required with respect to the comparison criteria of section 2.1. 

However, all MARTE data types, including those that are not mentioned in this section, are part of the 

VERDE ML. 

4.1.1 Basic Data Types 

Basic data types are predefined and shipped in a model library, so that they can be referenced by models. 

The Verde ML mostly relies on the types defined in the MARTE library. 

Integer 

The integer type is defined in the MARTE library, in MARTE_Library::MARTE_PrimitiveTypes::Integer. 

This type does not specify data size. 

Float 

The float type is defined in the MARTE library, in MARTE_Library::MARTE_PrimitiveTypes::Real. This 

type does not specify data size. 

Boolean 

The Boolean type is defined in the MARTE library, in MARTE_Library::MARTE_PrimitiveTypes::Boolean. 

Clock tick 

The clock tick type is used to model discrete time, especially in hardware architectures. For this type, the 

VERDE ML uses MARTE_Library::BasicNFP_Types::NFP_Duration. The attribute unit represents the 

measurement unit. (e.g. MARTE unit “tick”).   

Logic state 

Logic states are used for hardware systems, and consist of four values: high (1), low (0), undefined (X) and 

high impedance (Z). The MARTE library does not provide such kind of type. Therefore, it is defined in the 

VERDE library by an enumeration: VERDE_Library::PrimitiveTypes::LogicState. 

4.1.2 Parameterized Data Types 

Integer Range 

Integer range must be defined using a UML DataType and by applying stereotype BoundedSubtype from the 
MARTE profile. The tag definition baseType of stereotype BoundedSubtype must reference the MARTE 
integer. The tag definitions minValue, maxValue, isMinOpen, isMaxOpen define the range. 

 

Figure 39: Integer datatype of 8 bit length 
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Float Range 

Float range must be defined using a UML DataType and by applying stereotype BoundedSubtype from the 
MARTE profile. The tag definition baseType of stereotype BoundedSubtype must reference the MARTE real. 
The fields minValue, maxValue, isMinOpen, isMaxOpen define the range. 

 

4.1.3 Complex Data Types 

Alias 

Alias types in Verde ML are data types that inherit another data type without adding any information. Thus, 
they are defined using a UML DataType and an inheritance link to the data type to be aliased. No additional 
information is allowed. 

 

Figure 40: An alias of a predefined datatype 

 

Enumeration 

Enumerations in the Verde ML are plain UML enumerations.  

 

Figure 41: CPU states as enumeration literals 

Data Structure 

Data structures are modeled using UML DataType with the MARTE stereotype TupleType, from 

MARTE::MARTE_Annexes::VSL::DataTypes. The field tupleAttrib of TupleType is the list of the elements 

included in the structure. The elements are UML properties with simple data types and should be properties 

of the UML Datatype. 

 

Figure 42: ARM 32-bit status registers 
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Union 

Unions are modeled using UML DataType with the MARTE stereotype ChoiceType from 
MARTE::MARTE_Annexes::VSL::DataTypes. The field choiceAttrib of ChoiceType is the list of the elements 
the union. These elements are UML properties, that is, subelements of the union DataType that represent the 
union members. 

Array 

Arrays are modeled using UML DataType with the MARTE stereotype CollectionType from 
MARTE::MARTE_Annexes::VSL::DataTypes. The value of field collectionAttrib of CollectionType is a UML 
property (that is, a subelement of the DataType) correspond to the data type stored in the array, with an arity 
that indicates the size of the array. 

 

 

4.2 Component Model 

The VERDE component model defines components and ports (with the interfaces to be associated with these 

ports, if needed). It thus covers the definition of the architectural aspect of the software application. All these 

definitions correspond to declarations, and thus are made in class diagrams. These declarations are to be 

instanticated in the deployment (section 4.4). 

4.2.1 Interfaces 

Verde ML entirely relies on UML for the definition of interfaces. One should use a UML interface with UML 

operations. In class diagrams a realization and usage relationship denote the dependency to UML 

components as shown in Figure 43.  

 

Figure 43: Interface modeling using UML class diagram 

 

4.2.2 Component types 

A component type represents the definition of the component as seen from outside the component. It 

therefore covers the definition of the functional interactions that the component is supposed to provide or 

require, that is, the declaration of interaction ports (see below in section 4.2.4). 

Component types are UML components identified using the standard UML stereotype Specification applied 

on UML components. No additional information is required. Only component types should have ports. 
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4.2.3 Component Implementations 

A component implementation represents the internal structure of a component: how the functional 

interactions defined by the component type are actually implemented. It typically contains algorithms or state 

machines. The specification of the component behaviour encapsulated in a component implementation is not 

in the scope of the structural part of the Verde ML, and therefore not described in this deliverable. Information 

about that can be found in deliverables of work packages 4 and 5, but Verde does not force users into using 

a specific way of modelling component behaviours. 

Component implementations are UML components identified using the standard UML stereotype Implement. 

No additional information is required. The relationship between a component implementation and the 

corresponding component type is inheritance.  

Using inheritance between component implementation and component type allows the preservation of ports, 

which are defined at the component type level. No port should be defined in component implementations. 

It is also allowed to stereotype a UML component with both stereotypes Specification and Implement. This 

allows a simplification of the architecture model if there is only one implementation for a given component 

type. 

 

Figure 44: Example of componentdeclarations 

4.2.4 Ports 

Ports represent interaction points that are associated with components. The behaviours implemented in a 

component only communicate with the component outside through ports. 

Ports in Verde ML are UML ports (see the UML standard, section on composite structures) on which MARTE 

stereotypes are applied. Here we describe the two communication mechanisms that are used for Verde: 

operation calls and message passing. MARTE provides other stereotypes, that could be used as well to 

model other communication mechanisms. 

Operation calls 

Operation calls are modelled using an interface (see section 4.2.1) that is used between a server and a client. 

The client component type has a port that requires the interface; the server component type has a port that 

provides the same interface.  

Communications based on service calls are modelled by ports with stereotype ClientServerPort from MARTE. 

A MARTE client server port can provide and/or require several interfaces. In order to specify interfaces that 

are provided and required, some attributes of the stereotype should be filled in as shown partly in Figure 45. 
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The attribute /specificationKind must identify the interface-based usage of the port. The attribute kind 

indicates whether the port provides and/or requires interfaces. The attributes reqInterface and provInterface 

list the interfaces that are required or provided. Their semantic should be consistent with the value of field 

kind.  

As the interfaces are specified using properties of the MARTE stereotype, no type should be associated with 

the port itself. 

 

 

Figure 45: MARTE port that provides an interface in a component instance 

Messages  

Message passing corresponds to a data type sent by a producer and received by one or several consumers. 

The producer component type has a port that sends the data; the consumer component types have ports that 

receive the data. The notion of data covers many things, like signals, events (signal and actual data), etc. 

Communications based on message passing are modelled by ports with stereotype FlowPort from MARTE. 

The direction tag definition of FlowPort must be defined accordingly. The type of data transmitted through the 

port is to be specified by a UML signal or a UML dataType associated with the UML port. A UML signal 

should be preferably used to model message passing, as a signal carries data as well as the notion of 

emission or reception. A UML DataType should be used to model data sent without notification to the 

receivers. 

 

4.2.5 Specific Interaction Patterns 

The modeling of specific interaction patterns (e.g. synchronous/asynchronous calls of CORBA, AUTOSAR-

COM communication, but also simple fifos) should rely on the concept of connectors.  

One solution for the VERDE ML is to rely on FCM connectors. A FCM connector is a specific kind of 

component identified by FCM ConnectorType and ConnectorImpl and thus not to be confused with UML 

connectors. A FCM connector shares all properties of FCM components, i.e. connectors have ports and there 

is a separation between type and implementation. 

Another solution is to pre-define connectors and port kinds in a specific UML profile. In this situation, the 

VERDE ML is then combined with this additional UML profile. 
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4.3 Execution Platform Topology 

An execution topology model covers the hardware execution platform as well as software execution 

resources and their mapping. Verde ML relies mainly on the MARTE Detailed Resource Model (DRM) to 

describe all these elements.  

4.3.1 Computation Nodes 

Computation nodes, i.e., the hardware platform, are modelled using SysML blocks or plain UML classes 

refined by MARTE stereotypes. For this, the VERDE ML relies on MARTE’s Hardware Resource Model 

(HRM) and supports the definition of different abstraction levels. 

SysML blocks stereotyped by HwComputingResource correspond to abstract active processing resources. In 

addition, more precise MARTE stereotypes like HwMemory, HwStoragemanager, 

HwCommunicationResource, HwTimingResource and HwDevice are used to describe the complete platform 

model as shown in Figure 46. 

 

 

Figure 46: Computation node declaration 

 

At a more detailed level one may use more precise MARTE stereotypes to refine these abstract hardware 

resources (e.g. HwProcessor, HwASIC, or HwPLD for specializing HwComputingResources). But this specific 

information is not required regarding the component modeling. 

 

4.3.2 Execution Resources and Mutual Exclusion Resources  

In the Verde modelling approach execution resources should be explicitly modelled, so that scheduling 

analysis is possible. It is of course possible not to model them, if the targeted execution platform does not 

have this notion: for example, a middleware-based platform that would manage execution resources by itself. 

Software execution resources (i.e. operating system threads) are modelled using UML components with 

stereotype SwSchedulableResource from the MARTE Software Resource Model (SRM) as shown Erreur ! 

Source du renvoi introuvable.. Two attributes must be filled in: type and schedParams. Attribute type 

indicates the periodicity of the schedulable resource (periodic, aperiodic, etc.); it is described in section 

14.1.5.19 of the MARTE standard. Attribute schedParams is a list of supported scheduling configurations 

(fixed priority, earliest deadline first, etc.); see section 10.3.2.14 of the MARTE standard.  

Software executions resources must be executed within a virtual address space (i.e. in a process context). 

Virtual address spaces are modelled by UML components with stereotype MemoryPartition.  

Mutual exclusion resources can be used to synchronize mutual access to shared data. Such resources are 

modeled by UML components with stereotype SwMutualExclusionResource. The attribute mechanism 

specifies the kind of resource (e.g. semaphore or mutex). The attribute isIntraMemoryPartitionInteraction 

determines if the resource is accessible from different memory partitions or not. 
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Figure 47: Execution resource modeled using Composite Structure Diagram 

 

4.3.3 Allocation of Software Execution Resources 

The allocations of software execution resources are modeled using UML abstractions with stereotype 

allocate. For example in Erreur ! Source du renvoi introuvable., schedulable resources are bound to 

memory partitions using this construction. The same thing applies for the allocation of memory partitions to 

processing resources of the hardware nodes as in Figure 48. UML abstractions must be used in composite 

structure diagrams, thus connecting UML properties that represent instances of execution resources, 

computation nodes, etc. 
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Figure 48: Resource allocation on hardware execution platform, allocation of components on execution 
resources, and component port connections 

 

4.4 Component Deployment 

4.4.1 Architecture Breakdown  

An architectural breakdown of a system consists in decomposing system elements into sub-elements. This 

can apply to either functional elements (i.e. components) and/or hardware execution topology elements (i.e. 

computation nodes). Several situations can be considered, depending on what we want to describe.  

In the case of the definition of the system that nest several elements (subsystems, hardware topology 

elements, etc.), one should use SysML blocks modelled with SysML Block Definition and Internal Block 

Diagrams. For further refinement/description of the hardware topology elements (for example, the internal 

structure of a computation node as shown in Figure 46), one simply has to add the stereotypes from MARTE 

described in 4.3.1.  

In the case of a functional component that is actually decomposed into several subcomponents, one has to 

use a component implementation derived from a component type. An example is shown in Figure 44.  In this 

situation, composite structure diagrams will be used. Note that a component type itself cannot contain 

subcomponents, as it only defines the component boundary, i.e., the functional interface. 

4.4.2 Top-level global system 

System architecture is defined as a global system which is decomposed into different systems with different 

functionalities, thus creating a tree structure. As a consequence, a system architecture model is an 

architecture breakdown of a top-level system. Tools will process this top-level system, which is thus typically 

a SysML block, a plain UML component or possibly a UML class. In the case of a UML component, the 

component should not be stereotyped like a component type or a component implementation, as it is not to 

be considered as a functional component. These constructions must be placed outside any UML package; 

that is, they must be direct subelements of the UML model root. The rationale for this is to ease the 
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processing by tools. If the designer wants to have his root component declared within a UML package, he just 

has to create additional top-level components that simply contain the actual root component. 

There can be several top-level systems in a UML model, representing alternative deployment plans.   

4.4.3 Component instance 

Component instances like C1 and C2 in Figure 48 are modelled by UML properties that are associated with a 

component implementation. This is done in composite structure diagrams. 

Please note that only a property of the specific system composite corresponds directly to an instance, since 

the system class is instantiated exactly once. If the property belongs to another composite, it only represents 

a set of potential instances, since the composite might be instantiated not at all or several times within the 

system. E.g. consider a component representing points and a composite that defines the bounding box of 

objects by means of two points, i.e. two properties “a” and “b” typed as points. A system might very well 

contain a set of bounding box components and “a” and “b” do not correspond to a specific instance. Yet, in 

many cases, composite classes exist exactly once within the system and the simplification above holds. If not 

(and if it is required to distinguish the instances, e.g. since they require different configuration and/or 

allocation) it is an option to represent instances by “real” UML instances, i.e. UML instance specifications. 

These may be generated from the hierarchical structure defined by the composites and the contained 

properties. 

4.4.4 Component Allocation  

The allocation of components relies on UML abstractions with stereotype allocate from MARTE. Several ways 

of allocating components can be considered: 

 allocating operations of component ports on execution resources, in case of client server ports, 

 allocating component ports on execution resources, 

 allocating component instances on execution resources by MARTE  allocation (see Figure 48), 

 allocating component instances directly to memory spaces. 

Execution resources as described in paragraph 0 are schedulable resources, i.e., operation system 

threads/tasks. 

In all situations, one has to create a UML abstraction and set the UML property that represents the instance 

of the execution resource as the target of the abstraction. 

In the case of an operation, several elements must be set as the sources of the abstraction: the component 

port, the operation (defined in a UML interface) and the UML property that corresponds to the component 

instance (or an instance specification, see explications in section 4.4.3). It is mandatory to include the 

component instance in the sources of the abstraction, as UML ports are associated with component 

declarations, not with component instances. Forgetting to specify the component instance would then lead to 

allocate the port of all component instances to the specified execution resource. This situation only applies for 

client server ports that provide at least one interface. 

In the case of a port, one has to set the UML port and the UML property as sources of the abstraction. For a 

client server port, this will mean that all of the operations provided by the port will be controlled by the 

execution resource. For a flow port, this will mean that the reception of messages in this port is controlled by 

the execution resource. 

In the case of a whole component allocated to an execution resource, one simply has to set the UML property 

of the component as the source of the abstraction. This is the most convenient situation from an editor point 

of view, as it is straightforward: one only needs to draw an abstraction arrow from the UML property of the 

component instance to the UML property of the execution resource instance. In this situation, all ports of the 

components will be controlled by the execution resource, i.e., users are not allowed to allocate component 

instances to more than one execution resource.  
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The allocation of a component instance directly to a memory partition is to be used if a given component 

instance is passive (i.e. not driven by any thread), or if the definition of execution resources is performed in a 

separate process. This allocation type should be also applied for mutual exclusion resources.  

4.4.5 Port Connections 

Ports of components are connected using UML connectors. This is done in composite structure diagrams. 

4.4.6 Connector Deployment 

If a dedicated model of the hardware (without managing middelware) is used in the model, UML connectors 

in the functional software component model (in the following called “logical connector”) have to be deployed 

on UML connectors in the hardware model (in the following called “physical connector”). This is done in a 

UML class digram. Since a logical connector usually connects software components which are deployed on 

different hardware components and which are not directly connected in the hardware model, a logical 

connector is usually refined by multiple physical connectors. Therefore, a dependency relation is used 

between first physical connector (starting from the hardware component on which the software component is 

deployed) and logical connector. For the following physical connectors on the path from the source 

component to the target component (on which the target software component of the logiocal connector is 

deployed) in the hardware model, dependency branches are used to refer to same dependency. This 

modleing methodology is displayed in Figure 49. 

 

Figure 49: Connector Deployment in Class Diagram 

Note that the order of dependency branches reflects the connector path in the hardware model between 

source and target hardware component. 

5. Requirements coverage 

5.1 WP3 relevant requirements 

Blocker   

Number Description Status 

#50 VERDE shall support (closed) parameterizable (sub)systems (black-

boxes) with clear interfaces (e.g. TLM-2.0) 

Closed 

#89 Handling of multiple cycle time Closed 

#90 Handling of hybrid combinations of models and code Closed 

#128 Component scheduling strategies Closed 

#196 VERDE shall allow component and code reuse (inheritance, multiple 

instances, parameterization, etc.) 

Closed 
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#410 VERDE shall support partitioning (hardware / software and digital / 

analog) 

Closed 

Critical   

#45 Component reuse - enable inheritance, multiple instances, 

parametrization 

Closed 

#46 Component refinement - real code shall be considered the final step of 

component refinement 

Closed 

#75 Clear definition of interfaces Closed 

#82 Debugging on Target Closed 

#91 VERDE shall provide a clear definition of execution semantics Assigned 

#123 Clear execution semantics  closed Closed 

#143 VERDE shall offer component / task - how to give an active behaviour 

to a component 

Closed 

#249 VERDE shall be based on component model architecture Closed 

#250 VERDE components shall be able to provide/use interfaces Closed 

#251 VERDE components shall be able to emit/consume events Closed 

#252 VERDE components shall be able to contain attributes if necessary Closed 

#253 VERDE interfaces shall be able to provide prototypes of provided/used 

functions if necessary 

Closed 

#254 VERDE interfaces shall be able to provide attributes if necessary Closed 

#255 VERDE shall be able to specify visibility of interfaces attributes Closed 

#256 VERDE events shall contain attributes if necessary Closed 

#257 VERDE shall be able to describe implementations of components (i.e. : 

language, functionality level, simulated or full implementation) 

Assigned 

#258 VERDE shall be able to design deployment model of component 

implementations instances 

Closed 

#259 VERDE shall be able to specify links between components 

implementations instances 

Closed 

#265 VERDE shall provide enhanced data types (i.e. : range, precision, size) Assigned 

#267 VERDE shall be able to specify real time aspect of components Closed 

#421 VERDE shall support the AUTOSAR methodology and software Closed 
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architecture. 

Major   

#20 VERDE shall offer No prerequisites in the golden code (Which means 

application code, not container code from component modeling) design 

language 

Closed 

#51 VERDE shall support hierarchical parameters Closed 

#70 Static and dynamic parameters Assigned 

#146 Capability of definition of generic components Assigned 

#214 Integration of / in external instruction set simulators Reopened 

#374 VERDE shall be able to describe implementations of components (i.e. : 

language, functionality level, simulated or full implementation) 

Closed 

#425 VERDE shall be able to describe implementations of components (i.e. : 

language, functionality level, simulated or full implementation) 

Closed 

#439 Linking and tracing between diagrams, models and execution Assigned 

#463 VERDE shall offer NFP properties validation at early stage (on host) -- 

WP3 aspects 

Assigned 

Minor   

 None.  

 

5.2 Coverage 

The VERDE modeling language presented in the deliverable covers 28 of the 36 requirements addressed to 

this task. In the stage especially structural requirements are covered by the common component model 

defined in this document: 

#50 VERDE shall support (closed) parametrizable (sub)systems (black-boxes) with clear 

interfaces (e.g. TLM-2.0) and 

#196 VERDE shall allow component and code reuse (inheritance, multiple instances, 

parameterization, etc.)  

However, more dynamic requirements are still subject of investigation and will be addressed throughout the 

remaining part of the project: 

#70 Static and dynamic parameters,  

#214 Integration of / in external instruction set simulators  

Moreover the following requirements will also be addressed after receiving feedback from the different use 

cases of the work package 1: 

#91 VERDE shall provide a clear definition of execution semantics  

https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/50
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/196
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/70
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/214
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/91
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#257 VERDE shall be able to describe implementations of components (i.e.: language, functionality 

level, simulated or full implementation)  

#265 VERDE shall provide enhanced data types (i.e.: range, precision, size)  

#146 Capability of definition of generic components  

#439 Linking and tracing between diagrams, models and execution platform  

#463 VERDE shall offer NFP properties validation at early stage (on host) -- WP3 aspects.  

  

https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/257
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/257
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/257
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/265
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/146
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/439
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/463
https://extsvnsrv.fokus.fraunhofer.de/cc/motion/verde/ticket/463
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6. Conclusion 

This document has presented a comparison of the different targeted platform technologies in the VERDE 

project, based on a set of criteria. These criteria are the relevant concepts that are found in each technology. 

The existing modeling languages, based on UML, have been compared against these criteria in order to 

define what elements to use in each UML profile. 

Finally, the VERDE language for the execution platform has been defined by designing modeling patterns for 

each comparison criterion. This set of modeling patterns forms the VERDE modeling language. 
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