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1. Abstract 
This deliverable describes a continuous system improvement cycle including methods to support to 

improve operational systems during their operational lifecycle. This improved cycle uses the data 

collection work from Machinaide WP3. This deliverable presents outlines of architectures and 

methods supporting the system improvement cycle; these include methods for product lifecycle 

management, visualisation of system data, detection of (expected) anomalous or suboptimal 

behaviour, diagnosis of anomalies, and formal verification of (updated) system specifications. A 

detailed description of the architectures and methods will be included in Machinaide deliverable D5.2. 

2. Change log 
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v0.1, 19/05/2021 Initial draft 
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v1.0, 30/06/2021 Delivery to ITEA 
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4. Introduction 
Machinaide WP5 is dedicated to the investigation of data usage across different lifecycle phases. 

Major focus is put on the exploitation of data originating from later lifecycle phases by applications 

defined during earlier lifecycle phases like used for planning, engineering, coding and configuring. This 

will help eliminating weaknesses and develop updates and upgrades of machine functions. 

Information will be transferred via digital twins of machines. Digital twins can be defined as “digital 

replicas that are accurate enough that is can be the basis for decisions given a specific purpose” 

(Machinaide, 2021). The focus of WP5 is on data analysis and data mining, machine improvement 

design and optimisation, verification and release of machines, machine configuration improvements, 

and updates to digital twins and machines across their entire lifecycle.  

Machinaide WP5 addresses several topics: the discovery of possible machine optimisations from 

operational data, the design of the discovered optimisations, the verification and validation of these 

optimisations, and the management of the corresponding machine updates across the entire machine 

lifecycle. 

4.1. System improvement cycle 
This deliverable describes methods to improve a system’s performance during its lifecycle. Figure 4.1 

outlines the continuous improvement cycle of systems inspired by the well-known DevOps cycle. The 

cycle can be divided into two main phases with a total of seven steps. The first phase, shown top right 

in Figure 4.1, involves the monitoring and analysis of an operational system; the second phase, shown 

bottom left in Figure 4.1, involves the development and deployment of system improvements. 

The cycle starts from an operational system1. Operational system data, e.g. sensor and actuator data 

and system controller state information, is being collected from the operational system. This can be 

done using the data collection infrastructures described in Machinaide D3.1 (Machinaide, 2021). The 

collected data is visualised in dashboards that allow human operators to gain insight into the 

behaviour of the system. Moreover, techniques such as artificial intelligence and formal modelling are 

applied to analyse specifications and data of the operational system in order to extend the overview 

of the state of the operational system. If the gained insights indicate that improvements are needed 

to optimise the operational system, then a system update needs to be specified and realised. After 

the improvements have been verified and deployed, the cycle is closed. 

The system improvement cycle shown in Figure 4.1 is built around data/information. Two types of 

data can be distinguished. On the one hand, the data involves systems specification, such as CAD 

drawings, control specifications, etc. On the other hand, the data involves data collected from the 

operational system, such sensor and actuator data, but also controller logs.  

 
1 In case of greenfield development, we may also assume that the continuous improvement starts from the 
system specification step. 
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Figure 4.1 Continuous system improvement cycle 

4.2. Outline 
Most of the steps of the continuous improvement cycle shown in Figure 4.1 are addressed in this 

deliverable. Chapters 5, 6, 7, and 8 describe elements of the cycle for the Dutch use cases (Machinaide, 

2021). Chapter 5 describe the collection of data, which is an element of the monitoring step in Figure 

4.1. Chapter 6 describes a methodology for product lifecycle management, i.e. this involves the entire 

cycle shown in Figure 4.1. Chapter 7 describes an outline of anomaly detection and identification 

methods; this is part of the analysis step in Figure 4.1. The formal verification method presented in 

Chapter 8 corresponds to the verification and validation step in Figure 4.1. 

Chapters 9, 10 and 11 describe lifecycle-support methodologies for the Finnish use cases (Machinaide, 

2021). Requirements for the crane use case and the grinding machine use case are presented in 

Sections 9.1 and 9.2, respectively. Section 10 addresses the monitoring step in Figure 4.1 and Section 

11 the analysis step. The former describes a method to manage digital twin data during the entire 

system lifecycle. The latter uses this information for detection of anomalies, prediction of issues and 

identification of system improvements. 

Work on the Turkish use cases (Machinaide, 2021) is presented in Chapter 12. It considers a 

methodology for system improvements for the ERMETAL use case (Machinaide, 2021) with a special 

focus on predictive maintenance. The architecture addresses all steps in the operation phase of the 

continuous improvement cycle of Figure 4.1. 

1. Operation

2. Monitoring

• Data collection (WP3)

3. Analysis

• Anomaly detection

• Root cause analysis

• Visualisation/dashboarding

4. Specification

• Low code specification

5. Realisation

• (PLC) Code generation

6. Verification & 
Validation

• Model checking

7. Deployment

Data
• Actuator
• Sensor
• Spec

Operation

Update
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5. Data collection 
To support the continuous improvement cycle introduced in Figure 4.1, two types of data are used for 

analysing machine improvement design and optimisation, verification and release of machines across 

their entire lifecycle: 

• Operational system data collected from control systems and sensors in the field 

• Model data from the (low-code) system design 

Figure 5.1 depicts the types of data that need to be collected for the Dutch use cases. Operational 

data is shown in green, model data in yellow. The collections of both types of data are addressed in 

Sections 5.1 and 5.2, respectively. 

 

Figure 5.1 Data collection for the Dutch use cases 

5.1. Operational data collection 
Operational system data is collected from sensors in the field and operational data is mined by the 

control system (e.g. PLC). When only sensor data is used, in many cases it is very difficult to make a 

correct correlation with the system behaviour, and therefore no correct analysis. Therefore also data 

from the control system is collected and added to a time-series database. Using the low-code design 

application, operational data is logged during execution. These data include the status of: 

• States 

• Inputs 

• Outputs 

• Observers 

• Commands 

• Messages 

In order to obtain error-free and high-quality data from the control system, the data collection must 

be automated, structured, performant and consistent. Using the low-code modelling platform the 

data creation will be automated and will be given structure. Making the collected data performant 

and consistent, means that from every PLC cycle (1..10 ms) all the data updated in that cycle, have to 

be stored. Therefore also data management is necessary in the PLC control system. In order to readout 

this data fast enough by a server application, data streaming processing techniques are necessary for 

the data transport (see Figure 5.2). 
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Figure 5.2 Operational data collection architecture (single PLC control system) 

To be able to stream the data of multiple PLC control systems, the server application will have an own 

streaming connector for each PLC control system that handles the data transport and storage in 

parallel (see Figure 5.3). 

 

Figure 5.3 Operational data collection architecture (multiple PLC control systems) 

5.2. Model data collection 
From the low-code design application the complete model specification (e.g. static decomposition of 

all components, their relation, the interfaces, observed properties and dynamic state-machine 

behaviour) will be exchanged (model-to-model transformation) to the other platforms for product life 

cycle management, anomaly detection and identification and formal verification (see Figure 5.4). 

These topics are addressed in Chapters 6, 7 and 8, respectively. One and the same generic metadata 

exchange description, using XML standard is used for all platforms. Using the same data source for all 

platforms ensures the required consistency. 
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Figure 5.4 Model data collection for product lifecycle management (see Chapter 6), anomaly detection and identification 
(see Chapter 7) and formal verification (see Chapter 8) 

6. Product lifecycle management 
KE-works implements the product lifecycle management environment for the Dutch use cases 

(Machinaide, 2021). This environment addresses all of the steps in the continuous development 

process introduced in Figure 4.1. The product lifecycle environment is implemented in KE-chain, a 

cloud-based collaboration and integration platform (KE-works, 2021). KE-chain provides access to 

MACHINAIDE users to lifecycle templates for various machine configurations. In KE-chain a process 

template is implemented which follows the schematic overview shown in Figure 6.1. This process 

template consists of five primary steps which can be highly iterative and repetitive: 

- Specification of system requirements 

- Specification of (sub-)system design 

- Specification of software settings and state machines 

- Implementation of the system model and software 

- Monitoring the operational behaviour of a machine given the active set of settings. 

 

Figure 6.1 Product lifecycle process (per machine) implemented in KE-chain 

As can be seen from the product lifecycle process template which needs to be implemented in KE-

chain there are several integrations which need to be implemented: 
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- The system model specified using Cordis SUITE (Cordis SUITE, 2021) needs to be imported in 

KE-chain. KE-chain should be able to read and interpret the system model and translate it into 

the KE-chain cloud database. 

- When the machine server is running, the settings changed need to be updated in KE-chain. In 

KE-chain the settings should be automatically connected to the system model. Settings should 

be traced back to the system model. 

- During operation of the machine messages, errors and KPIs should be automatically sent to 

KE-chain. KE-chain will display and connect the messages and errors to the system model. 

Moreover, end users should be able to configure the parameters which will be observed. 

On top of the individual lifecycle of a single machine, it should be possible to register and compare 

multiple machine configurations in the KE-chain environment. The management environment is 

schematically illustrated in Figure 6.2. KE-chain should offer the functionality to register new machines 

and provide restricted access to the lifecycle data of these machines. During the operation of these 

machines, data is accumulated which can be used to compare various operational configurations. 

 

Figure 6.2 Product lifecycle process (per family) implemented in KE-chain 

7. Anomaly detection and identification 
TNO’s contribution to WP5 is focused on the detection of anomalies in the behaviour of operational 

systems and the identification of the underlying root causes of detected anomalies. These are 

techniques that correspond to the monitoring and analysis steps in the system improvement cycle 

introduced in Figure 4.1. 

TNO proposes the following three-step anomaly detection and identification procedure. 

• Phase 1 (Passive diagnosis/passive monitoring): In the first phase, system anomalies/failures 

are detected by observing and analysing the system’s (observable) events. If an anomaly is 

detected, then the second phase starts.  

• Phase 2 (Active diagnosis): In the second phase, an active diagnoser takes over from the 

normal controller when it receives a trigger from the passive diagnosis/passive monitoring 

phase that an anomaly has been detected. After the active diagnoser has disabled the normal 

control behaviour, it issues specific commands to identify the root cause of the detected 

anomaly. Based on the events coming from the controller, the number of possible root causes 
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gets reduced. The active diagnosis phase stops when the number of possible root causes 

cannot be reduced any further, e.g. when a single root cause remains. 

• Phase 3 (Reporting): In the final step of the method, the remaining possible root causes of the 

detected anomaly get reported to a human operator or service engineer, e.g. via a data 

visualisation dashboard. If there are multiple possible root causes, the human operator or 

service engineer could apply manual steps to identify the actual root cause. 

A visualisation of the anomaly detection and identification method for specifically for control 

applications, is shown in Figure 7.1. The passive diagnoser monitors a system controller and 

activates an active diagnoser. This active diagnoser starts by deactivating the system controller 

and acts as the new system controller. As such, it triggers specifically to identify the nature of the 

detected anomaly. This can be derived from the responses the active diagnoser receives from the 

system. The last step involve reporting the identified root causes to a human operator, who can 

take corrective actions, e.g. the replacement of a broken component. 

 

Figure 7.1 Anomaly detection and identification approach (Okker, 2021) 

There are many different methods for anomaly detection; see (Chandola, Banerjee, & Kumar, 2012) 

and (Pang, Shen, Cao, & van den Hengel, 2021) for overviews. Two main categories of methods can 

be distinguished. On the one hand, there are methods that use domain knowledge to specify 

conditions that indicate the occurrence of an anomaly. Examples of anomaly detection methods 

include rule-based techniques, decision trees, and techniques for run-time verification (Leucker & 

Schallhart, 2009). On the other hand, there are anomaly detection techniques that are based on 

machine learning. These techniques typically identify the occurrence of an anomaly from deviations 

from what was learned to be normal. Both categories of anomaly detection have their strengths and 

weaknesses. The methods based on domain knowledge are typically easy to understand, but it 

involves a lot of work to specify them and it is impossible to specify all relevant anomalies. Techniques 

based on machine learning may be able to detect all anomalous behaviour, but are typically less 

understandable. 

TNO intends to consider both types of anomaly detection to assess their applicability to machine 

control applications, such as control systems specified using Cordis SUITE (Cordis SUITE, 2021). An 
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implementation of the anomaly detection and identification will be based on the model and 

operational data as collected from Cordis SUITE (see Chapter 5). Details about the implementation 

and application of the anomaly detection and identification methods will be presented in Machinaide 

deliverable D5.2 (Machinaide, 2021). For anomaly detection using machine learning, deliverable D5.2 

will address data preparation and learning anomalies using different types of autoencoders. For 

anomaly detection based on domain knowledge, deliverable D5.2 will present a rule-based language 

to formally specify anomalous behaviour in a modular manner. The specified rules are translated are 

translated into timed automata that are used for run-time verification. Furthermore, deliverable D5.2 

will present an active diagnoser which interacts with Cordis SUITE to identify the root cause of 

identified anomalies. The anomaly detection and identification is supported by dashboarding 

functionality; the dashboard is used to visualise system data and to report findings. 

8. Formal verification of low-code models 
TU/e focuses on the verification and validation of low-code specifications. More specifically, it has 

developed a verification methodology for the low-code models that are specified in Cordis Modeller 

(Cordis SUITE, 2021). This corresponds to the verification and validation step in the system 

improvement cycle introduced in Figure 4.1. An overview of the verification process is given in Figure 

8.1. We next describe the verification approach. 

 

Figure 8.1 Overview of the verification and validation process of low-code models 

The Cordis low-code models in essence consist of class diagrams and state machine diagrams, in which 

some of the behaviour is described using PLC code in structured text. The semantics of such models 

has been formalised using the mCRL2 language (Groote & Mousavi, 2014). This results in a full 

behavioural model of the low-code models. The translation of low-code models to mCRL2 is 

automated, and the resulting mCRL2 model can be used for studying the full state space of the model, 

and formal verification of requirements using the mCRL2 toolset (Bunte, et al., 2019). In particular, 

the full behaviour of the low-code models, i.e. the state machine diagrams including the structured 

text code, can be studied. This includes the be haviour of the system for all possible inputs, including 

input combinations that are unlikely, but not impossible, in practice. This enables, for instance, 

studying the behaviour of the system when input sensors are faulty and other situations that are hard 

or impossible to obtain during simulation. 

Safety and liveness requirements on low-code models can be formulated in terms of inputs, outputs, 

and states in the low-code model. Subsequently these requirements can be formalised using temporal 
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logic formulas (in this case the model mu-calculus). These formulas can be verified automatically, and 

if they are violated a counterexample is produced. These counterexamples then serve as input to 

improve the low-code models.  

The Merry-go-Round system described in Chapter 15 is used as a case study for the prototype of the 

verification. For the Cylinder and Gantry components of the system, requirements have been 

identified, formalised and verified. Part of the Cylinder model in Cordis modeller is shown in Figure 

8.2. Different representations of the state space corresponding to the semantics of the model are 

shown in Figure 8.3. 

 

Figure 8.2 Cylinder state machine in Cordis Modeller 

 

Figure 8.3 Views of the state space of the Cylinder control software generated using the mCRL2 toolset 

During the case study it was observed that the semantics is not yet completely clearly defined. In 

particular, the order in which objects and state machines execute needs clarification. To this end, 

Cordis models will be extended with an explicit order of execution. This clarifies the behaviour to the 

creator of the model, and it eases the verification process developed by TU/e. A second complication 

in the verification process is the size of the state space. Even for the case study’s relatively simple 
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models, state spaces already are in the order of 10s of millions of states. This is mainly due to the 

unrestricted inputs in the model. 

In the remainder of the project, TU/e plans to scale verification of low-code models to industrial 

models. As a first step, the Merry-go-Round demo model will be fully verified out-of-the-box. For this, 

the verification methodology will be extended with symbolic model checking techniques, which 

enables the scaling to much larger state spaces (100s of billions of states and beyond). Additionally, 

improvements to the translation of low-code models to mCRL2 will be investigated that result in 

smaller state spaces and an accurate representation of the semantics. The merit of compositional 

verification techniques will also be investigated in the context of the verification. It is expected that 

this leads to improved scalability of the verification on the one hand, and incremental verification of 

updates to the low-code models in the feedback cycle on the other hand. 

Ultimately, the improved verification shall be applied to industrial low-code models provided by Lely 

and/or Additive Industries. 

9. Smart Factory Ecosystem 
The Finnish demonstration in the Machinaide project involves five partners, Konecranes, Aalto 

University, Remion, RollResearch International and Ideal. The use case for Finnish consortium is an 

industrial smart crane, Ilmatar (Autiosalo, 2018) combined with an intelligent grinding machine in a 

Smart Factory Ecosystem. The Ecosystem, including different machines, represents a central platform 

and research environment when developing new technologies for the machines of the Ecosystem and 

ways to integrate them seamlessly to operate in smart and connected factories of the future. 

This test platform represents a part of an actual production process and can be used for developing, 

evaluating and demonstrating Digital Twin (DT) enabled process optimisation, processing of multiple 

DTs, HMIs and lifecycle management. Figure 9.1 shows an example update cycle that can be run on 

the platform.  

 

Figure 9.1 Update cycle for the Smart Factory ecosystem located at Aalto Industrial Internet Campus 



Machinaide Deliverable 5.1  
Public 

 

14 
 

9.1. Crane lifecycle update requirements  
Crane-specific lifecycle update needs are in the following development areas: (1) upkeeping the Digital 

Twin architecture and data, (2) increasing knowledge/intelligence of the Digital Twin based on lifecycle 

data analytics during lifecycle, and (3) enabling new control, automation and remote monitoring 

features by updating the crane via Digital Twin. At least the following usage scenarios should be 

handled via the Digital Twin: 

1. Storing all control parameter history and control component information (model, serial 

number, spare part ID) as part of the Digital Twin. Enabling updates and restoration of control 

parameters via the Digital Twin when replacing control components in physical crane. 

2. Enabling user access control updates/changes for the crane via the Digital Twin. Different 

users may be given different levels of access to features and new features may be added 

during the lifecycle. (VDMA OPC UA data model) 

3. Updating predictive maintenance planning of the Digital Twin based on collected data from a 

population of similar products. 

4. Applying and updating machine learning algorithms to identify anomalies and trends based 

on condition monitoring data from crane sensors. (Edge computing solution) 

9.2. Grinding machine lifecycle update requirements 
In most of the industrial cases the grinding machines (Machinaide, 2021) are not part of the 

production, but part of maintenance. The exception is the roll manufacturers, who sell the rolls to the 

customers in the paper and steel industry. Therefore, the grinding machine is not viewed here as a 

part of the production, but part of maintenance. 

Grinding machine specific lifecycle needs for the Digital Twin come mainly from the availability 

guarantee of the grinding machine, which can be as high as 95 to 99 percent. During different phases 

of the lifecycle the needs change. In the beginning optimal grinding procedures are the main focus. 

Operators are still unfamiliar with the new control system and make operating errors. When the 

machine gets older, monitoring of the motors and other automation system parts becomes more 

important to determine the optimal time for replacing old parts with new ones. Also, the need for a 

mechanical overhaul can be estimated, e.g. from the power consumption changes of the motors.  

The grinding machine continuously collects data about the ground rolls. The usage of the data in 

combination with the production line data can provide also new insights about the optimal shape of 

the rolls, their optimal operation time, etc.  

The mentioned topics require constant updates in the Digital Twin. Also, the feedback from the 

grinding machine to the digital twin must be present during the lifecycle of the machine.  

Summarized it can be said that predictive maintenance, operator learning and data analyses are the 

most important topics that can be tested on the Machinaide Finnish test platform. 

10. Digital twin management through its lifecycle 
IDEAL GRP participates in WP5 in defining how the information related to a digital twin is managed 

through its lifecycle. This includes information on machine improvement design and optimisation, 

verification as well as release of machines, machine configuration improvements and updates. IDEAL 

GRP’s definitions are mostly implemented in the Finnish use cases including the Crane and Grinding 

machine digital twin lifecycle. 
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Development focuses on following key areas: (1) managing the as-is state of the production machinery 

via the digital twin definitions, (2) managing the digital twin information during design, optimisation 

and verification, (3) updating the digital twin information with the released configuration and (4) 

enabling the updates to be released to the machine. 

At least the following use cases should be handled: 
1. Understanding the current state of the machine through digital twin including control 

parameter history and components 
2. Viewing the change history for the digital twin 
3. Analysing the effect of the updates to the digital twin performance (through data collected in 

previous WPs) 
4. Enabling predictive maintenance use cases by providing platform for storing component 

information, historical data and through previous WPs run simulations of the digital twin 
5. Studying how the release of updates are done to the machine through digital twin 

11. Multivariate fuzzy time-series data modelling and prediction 
Aalto University contributes to the analysis step of the system improvement cycle introduced in Figure 

4.1. Machine data modelling has been studied in Aalto University as a part of ongoing master´s thesis 

project by Tuomas Keski-Heikkilä, and for WP5 one example is presented as an example. It is data 

analysis with multivariate time-series data from an industrial crane Ilmatar (Autiosalo, 2018). When 

data is analysed, it can be used to update machine parameters to improve its operations. In the study, 

a fuzzy modelling method was developed, and three usage scenarios were targeted: (1) data 

visualisation, (2) prediction, and (3) anomaly detection. The crane stores data from sensors, a total of 

96 variables. Large amounts of data are available and the main challenges for the modelling method 

are high dimensionality of the data, being able to provide real-time analysis and the scalability of the 

modelling method. 

In the fuzzy modelling method, the raw data is compressed in a fuzzy format. Fuzzy modelling reduces 

the required file size, improves data processing efficiency, provides in-built aggregation, and increases 

the interpretability of the model. In the fuzzy modelling method, the raw variable data is saved as a 

set of if-then rules, which are based on membership functions defined for each variable in a fuzzy 

model. Storing the data in a fuzzy format introduces a minor inaccuracy in the data, depending mainly 

on the number of membership functions used and the method of determining the if-then rule weights. 

Figure 11.1 shows a graphical representation of a fuzzy model through QtFuzzylite 6 (FuzzyLite 

Limited, 2021), which is a graphical fuzzy control design tool. Defining variables can be included in the 

fuzzy model, which allows the user to easily view the model in any state. An example of a defining 

variable can be time or alarm data. An analyst may for example want to see how different machine 

parameters behaved in a specific time frame when an alarm has been active. This may provide 

valuable information, which can be used to improve the design or usage of the machine. 



Machinaide Deliverable 5.1  
Public 

 

16 
 

 

Figure 11.1 Overview of the user interface of a graphical fuzzy control design tool QtFuzzylite 6. The user interface consists 

of three main elements: input variables on the left, output variables on the right and the rule block below  

Visualisation can be done directly from a fuzzy model that has analysed the raw data (see Figure 11.2). 

By visualising the built fuzzy models, the usage of the machine can be better understood. The visual 

information may also help to recognise harmful anomalies or such machine behaviour or machine 

usage that could be non-optimal over the lifetime of the crane. For example, if all heavy lifting is done 

at the same spot, we may predict that wear to cables is highest in the affected spot. Thus, maintenance 

engineers should be vigilant when inspecting these spots. Or better, control algorithm parameters 

could be adjusted to extend machine lifecycle between maintenance or failures by avoiding having all 

high load peaks at the same locations.  

 

Figure 11.2 Examples of visualisation from raw data points (left) and from heat maps fuzzy model (2D in the middle and 3D 

on the right) 

The second targeted usage scenario, prediction, has been tested and developed for cumulative signals 

and periodical signals. With periodical signals the fuzzy predictive system was taught with noisy sine 

and cosine signals, and this predictive system was then used to iteratively forecast the signals from a 

given starting point. Figure 11.3 shows the comparison between the real continued signals and the 

forecasted signals. The goal of the predictions is to be able to predict complex N-signal systems. 

Currently, the developed method only works for limited types of signals. Potentially the predictions 

could suggest changes to configuration parameters throughout the machine lifecycle.  



Machinaide Deliverable 5.1  
Public 

 

17 
 

  

Figure 11.3 Comparison of noisy sine and cosine wave signals with the forecasted versions obtained through fuzzy predictive 

modelling 

The third targeted usage scenario, anomaly detection, can be implemented in a fuzzy modelling 

method in three different ways: based on historical data, based on expert knowledge, or based on 

density. The different ways of implementation are suitable for different types of anomaly detection, 

using historical data allows the user to detect abnormal usage patterns or parameter behaviour. On 

the other hand, expert knowledge can be used to design simple fuzzy rules to detect and quantify 

more obvious faults in the system. Anomaly detection can potentially help identify problems in the 

machine or its usage, and this information can be then used to improve the machine over its lifecycle. 

12. Time Series Forecasting for Anomaly Detection 
In WP5, TEKNOPAR participates in the development of methodologies and specifications of data 

interfaces and machine improvement strategy for Digital Twin across lifecycle phases, and in the 

development of lifecycle and Digital Twin architectures for managing updates across lifecycle phases. 

The work to be performed by TEKNOPAR includes the following: 

• Data set preparation (So far some amount of data has been collected in InfluxDB) 

• Data quality enhancements and data preprocessing 

• Feature extraction and preprocessing of data to be used for predictive maintenance 

• Development of machine learning (ML) algorithms for predictive maintenance in the ERMETAL 

use case (Machinaide, 2021) 

• Use time series data collected/generated and the selected algorithms for remaining useful life 

(RUL) estimation; techniques used include LSTM and Random Forest 

• Training of ML models for predictive maintenance purposes 

• Testing the models developed 

• Hyperparameter tuning (Comparison of developed models performance and model 

optimisation) 

• Visualisation of models developed and results obtained 

• Establishment of the Platform and the Enterprise tiers of Figure 12.1. (The Edge tier has been 

formed, and some data has been collected) 

A three tier-architecture for the ERMETAL use case (Machinaide, 2021) will be developed (see Figure 

12.1). 
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Figure 12.1 Three-tier architecture for ERMETAL use case 

Dakik contributes to predictive analysis and the implementation of time series anomaly detection. The 

anomaly detection approach flags anomalies if the relative difference between the expected value 

generated by the algorithm and the observed value is higher than a threshold that is calculated using 

the statistics obtained from training error (relative difference is used to prevent false negatives for 

thresholds with lower magnitudes). After a literature review and testing on our data we selected Long 

Short Term Memory (LSTM) networks and Autoregressive integrated moving average (ARIMA) to work 

with. We used the Keras library (KERAS, 2021) with the TensorFlow backend (TensorFlow, 2021) for 

Python for the LSTM Network implementation and the pmdarima library (PyPI, 2021) for Python for 

the ARIMA implementation. We will continue our work on other anomaly detection approaches and 

algorithms that can be used with those approaches. 

Figure 12.2 shows the prediction quality of ARIMA. 

 

Figure 12.2 Predictive analysis using ARIMA 

Figure 12.3 shows the anomaly detection using predictions from an LSTM network. The yellow line 

represents the threshold value and the plot under it is the relative error between the prediction and 

the observed value. Since no error is above the threshold, no anomalies are flagged. 

 

Figure 12.3 Time series anomaly detection using LSTM networks 
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13. Conclusion 
Machinaide WP5 addresses the investigation of data usage across different lifecycle phases. Major 

focus is put on the exploitation of data originating from later lifecycle phases by applications defined 

during earlier lifecycle phases like used for planning, engineering, coding and configuring. Machinaide 

deliverable D5.1, i.e. this document, has introduced a continuous improvement cycle for system 

development. Moreover it describes architectures and (outlines of) methods to realise steps in this 

cycle. The implementation of the methods and the results of applying the implemented methods to 

the different use cases (Machinaide, 2021) will be presented in Machinaide deliverable D5.2 

(Machinaide, 2021). 
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15. Appendix: Merry-go-Round case study 
To avoid confidentiality issues, TNO and TU/e have used an artificial production system as the basis 

for the results presented in this deliverable. Merry-go-Round is a system of Cordis Automation used 

to teach users about Cordis SUITE (Cordis SUITE, 2021) and to test its functionality. Merry-go-Round 

is a (virtual) system designed to indefinitely move trays between components that form a loop. The 

trays (shown in blue and white) move over Merry-go-Round’s components to eventually return to 

their starting point, where the route repeats. Each component has sensors and actuators. The machine 

can move trays clockwise and counter-clockwise. Figure 15.1 shows a simulation of Merry-go-Round. 

When the system starts in the counter-clockwise configuration, a gantry moves trays from the back of 

Merry-go-round (an arbitrary starting point) to the left conveyor. The left conveyor transports the 

trays to the left lift. This lift (shown in green) moves the trays down onto the front conveyor. Next, the 

front conveyor moves trays to the right lift. The right lift moves the trays onto the right conveyor, 

which transports the trays to the right gantry. The right gantry puts the trays back in the starting 

position. As one can see in Figure 15.1, there are four trays in the Merry-go-Round system. 

 

Figure 15.1 Merry-go-Round system (simulation) 

The controller of Merry-go-Round shown in Figure 15.1 has been implemented in Cordis SUITE. An 

overview of the Cordis Suite components and the Merry-go-Round is shown in Figure 15.2. Cordis 

Modeler allows users to describe the controller in terms of UML object, state and activity diagrams 

and provides ways to check the diagrams’ syntax. Cordis Modeler can translate the combination of 

diagrams into code for different kinds of programmable logic controllers. Cordis Modeler can also 

generate diagrams representing the current state in state machine models in the Cordis Dashboard. 

The generated code compiles into a controller for the various types of Programmable Logic Controllers 

(PLCs). 

The Machine Control Server retrieves the events from different types of PLCs and sends them to the 

Cordis Dashboard. The Cordis Dashboard shows the system’s observable variables and the current 

states in the various state machine diagrams. It also allows sending commands to the system. The 

Machine Control Server also contains the functionality to create plugins. These plugins subscribe to 
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events of controllers and send commands to controllers connected to the Machine Control Server. 

Examples of plugins are specific human-machine interfaces for a customer or digital twin data retrieval 

and collection. An additional component for simulating a machine is the Cordis Gateway. The Cordis 

Gateway acts as a proxy between the controller and external simulations, e.g. the Merry-go-Round 

simulation in Figure 15.2. 

 

Figure 15.2 Cordis SUITE and Merry-go-Round system overview (Okker, 2021) 


