

BUMBLE Deliverable D2.2 (Version 1)

BUMBLE Requirements Specification

Edited by: BUMBLE Team

Date: June 2021

Project: BUMBLE - Blended Modeling for Enhanced Software and Systems Engineering

2

BUMBLE
Deliverable 2.2

Page 2 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

Contents

ACRONYMS .. 4

1. INTRODUCTION ... 6

1.1. Classification of Requirements .. 7
1.2. Deliverable Status .. 8

2. UC1 - SOFTWARE OPEN-SOURCE BLENDED MODELING .. 9

2.1. Core Requirements... 9
2.2. Technical Requirements ... 10

3. UC2 - COMBINED TEXTUAL AND GRAPHICAL MODELING OF STATE MACHINES IN HCL RTIST .. 11

3.1. Core Requirements... 11
3.2. Technical Requirements ... 12

4. UC3 - VEHICULAR ARCHITECTURAL MODELING IN EAST-ADL ... 13

4.1. Core Requirements... 13
4.1.1. Editors .. 13
4.1.2. (De-)Serialization .. 14
4.1.3. Tree-Based Editing ... 14
4.1.4. Textual Modeling .. 14
4.1.5. Graphical Modeling ... 15
4.1.6. Diffing and Merging ... 16
4.1.7. Multi-User Support .. 16

4.2. Technical Requirements ... 17

5. UC4 - CROSS-DISCIPLINARY COUPLING OF MODELS .. 19

5.1. Core Requirements... 19
5.1.1. Modeling and Model Management ... 19
5.1.2. Blended Modeling ... 20
5.1.3. Model Collaboration .. 20
5.1.4. Language Development .. 20
5.1.5. Integration .. 21

5.2. Technical Requirements ... 21

6. UC5 - REACTIVE AND INCREMENTAL TRANSFORMATIONS ACROSS DSMLS 25

6.1. Core Requirements... 25
6.2. Technical Requirements ... 25

7. UC6 - BLENDED EDITING AND CONSISTENCY CHECKING OF SYSML MODELS AND RELATED

PROGRAM CODE ... 27

7.1. Core Requirements... 27

7.2. Technical Requirements ... 27

8. UC7 - MULTI- AND CROSS-DISCIPLINARY MODELING WORKBENCH 28

8.1. Core Requirements... 28
8.2. Technical Requirements ... 29

9. UC8 - MODEL-DRIVEN DEVELOPMENT OF WORKFLOW MODELS FOR DEBT COLLECTING

ADVOCACY ... 31

9.1. Core Requirements... 31
9.2. Technical Requirements ... 32

10. UC9 - AUTOMATED DESIGN RULE VERIFICATION ON VEHICLE MODELS 33

3

BUMBLE
Deliverable 2.2

Page 3 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

11. UC10 - DEVELOPMENT PROCESS OF LOW-LEVEL SOFTWARE .. 34

11.1. Core Requirements .. 34
11.2. Technical Requirements .. 35

12. UC11 - MULTI-ASPECT MODELING FOR HIGHLY CONFIGURABLE AUTOMOTIVE TEST BEDS

READY FOR SMART ENGINEERING DEMANDS ... 36

12.1. Core Requirements .. 36
12.2. Technical Requirements .. 38

13. UC12 - AGILE V-MODEL SYSTEM ARCHITECTURE ... 39

13.1. Core Requirements .. 39
13.2. Technical Requirements .. 40

14. SELECTED COMMON REQUIREMENTS .. 41

14.1. Core Requirements .. 41
14.1.1. Blended Modeling ... 41
14.1.2. Real-Time Collaboration .. 42
14.1.3. Model Non-Conformance... 43
14.1.4. Contextual Integration ... 43
14.1.5. Model Life-Cycle Management .. 43

14.2. Technical Requirements .. 46
14.2.1. Blended Modeling ... 46
14.2.2. Real-Time Collaboration .. 48
14.2.3. Contextual Integration ... 49
14.2.4. Model Life-Cycle Management .. 50

4

BUMBLE
Deliverable 2.2

Page 4 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

Acronyms

AD Microsoft Azure Active Directory

API Application Programming Interface

B Blended Syntaxes & Modeling

BPM4DCA Business Process Management for Debt Collector Advocates

C Collaborative Modeling

CAD Computer Aided Design

CAE Computer Aided Engineering

CR Change Request

CRUD Create, Read, Update, Delete

DCA Debt Collector Advocates

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

E Evolution

ECU Electronic Control Unit

ELK Eclipse Layout Kernel

EMF Eclipse Modelling Framework

EN European Norm

GLSP Graphical Language Server Platform

GUI Graphical User Interface

IDE Integrated Development Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

LSP Language Server Protocol

5

BUMBLE
Deliverable 2.2

Page 5 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ME Modeling Environment

MOF Meta-Object Facility

MPS Meta-Programming System

N Model Non-Conformance

OAUTH2 Open Authentication Protocol Version 2.0

PLM Product Life-Cycle Management

RAfEBM Reactive Architecture for Editing Blended Models

SSSD System Security Services Daemon

T Traceability

UC Use Case

UI User Interface

UML Unified Modelling Language

UML-RT UML Real-Time

VCS Version Control System

VS Microsoft Visual Studio

WP Work Package

XMI Metadata Interchange

XML Extendable Markup Language

6

BUMBLE
Deliverable 2.2

Page 6 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

1. Introduction

This document describes requirements for blended collaborative modeling as identified for the use

cases of BUMBLE, see Deliverable D2.1. The purpose of these requirements is to clarify what

functionality is to be developed as part of the BUMBLE technologies in work packages WP3, WP4

and WP5. Hence, requirements that are specific to a concrete DSML without being relevant to the

development of the BUMBLE technologies are not listed in this Deliverable D2.2.

This deliverable D2.2 has three versions at M20, M30 and M36. This first version provides an initial

inventory of functional and non-functional requirements based on the use case descriptions in

Deliverable D2.1. In addition, an initial identification of requirements common to multiple use cases

is made to enable WP3, WP4 and WP5 to focus on during the M20-M30 period.

Recalling from Deliverable D2.1, BUMBLE identifies two kinds of use cases:

• System/software specification (S): use cases about system and software engineering

• Testing (T): use cases concerning automation of test activities

Table 1 gives an overview of the 12 use cases in BUMBLE. Use case UC1 is a public use case by

all academic partners in BUMBLE, while the other use cases are by industrial partners.

Table 1. BUMBLE Use Cases

Use Case Description Lead Partner

UC1 (S) Software Open-Source Blended Modeling MDH

UC2 (S) Combined Textual and Graphical Modeling of State

Machines in HCL RTist

HCL

UC3 (S) Vehicular Architectural Modeling in EAST-ADL Volvo

UC4 (S) Cross-Disciplinary Coupling of Models Canon

UC5 (S) Reactive and Incremental Transformations across DSMLs MVG

UC6 (S) Blended Editing and Consistency Checking of SysML

Models and Related Program Code

Saab

UC7 (S) Multi- and Cross-Disciplinary Modeling Workbench Sioux

UC8 (S) Model-Driven Development of Workflow Models for Debt

Collecting Advocacy

Hermes

UC9 (S) Automated Design Rule Verification on Vehicle Models Ford

UC101 (S) Development Process of Low-Level Software Unibap

1 Change Request CR3 describes two use cases of Ford. These have been merged into a single
use case (UC9). Identifier UC10 is assigned to a use case of Unibap, which was not yet in CR3.

7

BUMBLE
Deliverable 2.2

Page 7 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

Use Case Description Lead Partner

UC11 (T) Multi-Aspect Modeling for Highly Configurable Automotive

Test Beds Ready for Smart Engineering Demands

AVL

UC12 (T) Agile V-model System Architecture Pictor

1.1. Classification of Requirements

For the complex functionalities that are to be realized by BUMBLE technologies, the requirements

reflect a multitude of aspects. It is therefore desirable to enable classifying requirements and to

identify for which key technologies a requirement is relevant. Hence, BUMBLE partners concluded

to introduce a light-weight classification for requirements to ease such identification. To describe

this classification, it is relevant to first identify the two types of users that BUMBLE addresses:

Definition 1: DSML User A DSML user or end-user is someone who exploits a DSML to create

concrete models for a specific product context. To illustrate this, recall that the BUMBLE use cases

cover various DSMLs to describe state machines. A DSML user expresses a specific state machine

in one of those DSMLs and by doing so, this DSML user exploits the DSML tooling as realized by

(a) DSML developer(s).

Definition 2: DSML Developer A DSML developer is someone who applies the BUMBLE

technologies to create and implement DSML definitions (including any facilities such as editors,

parsers, generations, etc. that come with a defining and implementing a DSML definition).

Considering the example of state machines, this covers for instance the approach to capture a

Mealy or Moore based state machine language (e.g., grammar) in some data structure (abstract

syntax tree) and providing editors (e.g., textual and/or graphical), parsers and generators etc. A

DSML developer exploits the BUMBLE technologies as a basis for implementing DSML definitions.

BUMBLE identifies two levels of requirements as follows:

Definition 3: Core Requirement A core requirement describes a key principle that is to be realized.

This is expressed from the perspective of a user of the BUMBLE technologies. This means that the

requirement is (mostly) independent of a solution approach or solution technology. Core

requirements can be relevant for a DSML user or a DSML developer (or both) and link directly to

realizing added value in the context in which the DSML user and/or DSL developer applies the

BUMBLE technologies.

Definition 4: Technical Requirement Technical requirements detail core requirements from the

perspective of the solution approach or solution technology perspective. Technical requirements

primarily address needs of DSML developers, thereby also considering the technical context in

which DSML definitions are to be created.

An example core requirement is the ability to support multiple syntaxes (e.g., editable textual and

graphical representations of a state machine DSML definition) while the choice for Eclipse or

Jetbrains MPS as base solution technology implies different detailing into technical requirements.

8

BUMBLE
Deliverable 2.2

Page 8 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

Since technical requirements detail core requirements, there should (eventually) be at least one

technical requirement referring to each core requirement. We expect this to prevail more explicitly

during the BUMBLE project with each updated version of this Deliverable D2.2 at M36 and M42.

Next to the distinction in two levels of details, it was concluded to tag both core and technical

requirements with the following 5 key aspects that BUMBLE will address (a shortcut letter is used

later on in this deliverable). Note that a requirement can be relevant for multiple key aspects:

• Blended Syntaxes & Modeling (B) This includes any aspect related to synchronization /

transformation between multiple representations (syntaxes).

• Collaborative Modeling (C) This covers any ability to cooperate in using the same DSML

model instances or DSML definitions between multiple DSML users and/or DSML developers.

• Evolution (E) This can be related to evolution of DSML definitions (User is a DSML Developer)

or evolution of instances of a DSML (User is a DSML User) or both.

• Traceability (T) This aspect covers both traceability within a (set of) DSML model instances or

definitions at a given instance in time but also traceability in the context of their evolution.

• Model Non-Conformance (N) This refers to the ability of a DSML user to have syntactical

elements that are not (yet) part of a model instance. An example is a partially typed text that is

to be parsed to enable a mapping of the text onto the appropriate elements of a DSML.

Chapter 14 presents an initial selection of (core and technical) requirements common to multiple

use cases that will be addressed in BUMBLE. For such common requirements, possible links to

open-source project(s) may be indicated (if applicable). This gives a wider contex tual scope than

just BUMBLE in view of potential discussions on further clarifying requirements and/or publishing

the BUMBLE technologies that provide a solution to such a requirement.

1.2. Deliverable Status

There will be three versions of this deliverable in accordance with the BUMBLE project plan. For

this is the first version, a preliminary list of requirements has been identified for most use cases.

UC9 (Ford) has not provided requirements yet. Focus has mostly been on identifying core

requirements, while technical requirements are gradually emerging from the technological choices

that are being made. Hence, identification of selected common requirements in Chapter 14 also

concentrates on core requirements with a preliminary list of common technical requirements

9

BUMBLE
Deliverable 2.2

Page 9 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

2. UC1 - Software Open-Source Blended Modeling

This use case covers a public show case for the BUMBLE technologies. Starting from a MOF-based

DSML, the BUMBLE framework is expected to provide the possibility to generate at least two model

specific notations, one graphical and one textual, and related editors. In addition, the BUMBLE

framework will need to support model synchronization mappings between the DSML and the

generated notations. Given the DSML, the generated notations, and the model synchronization

mappings, the framework is expected to semi-automatically generate synchronization mechanisms

between notations and DSML and co-evolution transformations. In addition, the framework should

provide an API to access the elements of the abstract syntax tree in order to enable traceability to

model elements independent of the concrete notation in which the model is edited.

Given the DSML and its corresponding editor(s), the framework provides a collaboration mechanism

that allows multiple users to collaboratively edit the models in real-time. The collaboration

mechanism is independent of the number of users collaborating on the models at a given moment

in time and supports remotely distributed users. In addition to real-time editing, the collaboration

mechanism also keeps track of different versions of the edited models via a set of Git -like

diff/merging functionalities.

2.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C1.1 B, T
The framework shall allow to describe mappings between a DSML

specification (metamodel) and a notation of choice.

C1.2 B

Given the DSML specification and the mappings to the notation of choice,

the framework shall semi-automatically generate notation-specific

specification (e.g., grammar) and related editing features.

C1.3 B, C, T

Given the DSML specification and the mappings to the notation of choice

and the notation-specific specification (e.g., grammar), the framework

shall semi-automatically generate synchronization mechanisms (model

transformations) to keep generated notation and DSML in sync.

C1.4 B, C
The framework shall allow change propagation across notations and

synchronization both on-demand or on-the-fly, upon user’s choice.

C1.5 C
The framework shall allow a model to be viewed and edited in real-time

in a collaborative fashion by multiple users.

C1.6 C, T
The framework shall allow to version models and apply diff/merge

features, in a GIT-based fashion.

10

BUMBLE
Deliverable 2.2

Page 10 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

2.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T1.1 B, C, T
The framework shall be implemented in the

Eclipse ecosystem.

C1.1, C1.2, C1.3,

C1.4, C1.5, C1.6

T1.2 B, C, T
The framework shall support MOF-based

DSMLs.

C1.1, C1.2, C1.3,

C1.4, C1.5, C1.6

11

BUMBLE
Deliverable 2.2

Page 11 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

3. UC2 - Combined Textual and Graphical Modeling of State

Machines in HCL RTist

Users of HCL RTist will be able to use a textual notation for creating, viewing, and editing state

machines, as an alternative to the current graphical notation. The textual notation should use a

syntax that is easy to learn and use. The Eclipse editor that implements the syntax will support

common features such as content assist, navigation etc. These commands will take the semantic

context of the state machine into consideration to provide accurate and relevant results. When

editing a state machine in one notation, information present in other notations will be preserved to

an as large extent possible.

3.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C2.1 B

The textual state machine notation should cover all aspects of UML-RT

state machines. That is, it should be possible to fully define a state

machine textually without using any other notation or view.

C2.2 B

Changes in the state machine model should update the textual notation

without losing non-semantic information it contains, such as comments,

indentations, and other white-space characters. The “layout” of the code

as chosen by the user when typing the text should hence be preserved.

C2.3 B, E, T

Changing a state machine in the textual notation should update the

semantic model in a way that preserves the identity of the model

elements. For example, incoming references to the model elements in the

state machine should not become broken unless the target element was

deleted or renamed.

C2.4 B, T

References in the textual state machine notation that refers to model

elements defined outside the state machine should be bound to the

correct model element, using the capsule that owns the state machine as

the context for reference resolution.

C2.5 B, T

Similar to C2.4 Content Assist (a.k.a. “code completion”) for references

should utilize the capsule that owns the state machine as the context for

finding valid target objects for the references.

C2.6 B

Semantic checks (a.k.a. validation rules) should be implemented which

detects semantically incorrect models which the textual syntax permits

creating. An example is creation of an internal transition at state machine

level.

C2.7 B

Changes in the state machine model should update the graphical notation

without losing non-semantic information it contains, such as colors,

symbol sizes, line routing and other layout information.

12

BUMBLE
Deliverable 2.2

Page 12 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

3.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T2.1 B

The Eclipse editor that implements the new

state machine syntax should provide content

assist and navigation that utilizes the

semantic context of the state machine.

C2.4

T2.2 B

A textually defined state machine is persisted

using the textual syntax, while other parts of

the model are persisted as XMI. The textual

state machine files should be EMF fragments

from a resource loading point of view.

C2.2

13

BUMBLE
Deliverable 2.2

Page 13 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

4. UC3 - Vehicular Architectural Modeling in EAST-ADL

Development of automotive embedded systems at Volvo involves large amounts of data from

multiple stakeholders. To organize this data efficiently and ensure that syntax and semantics of the

content are consistent, a metamodel is required.

Autosar and EAST-ADL are architecture description languages for automotive embedded systems,

covering complementary aspects of software, electronics, and mechatronics. Use Case 3 is about

providing multi-mode editing and viewing capabilities for such models, as well as metamodel

evolution support, with focus on EAST-ADL.

4.1. Core Requirements

4.1.1. Editors

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.1 B

It should be possible to split the information in one model into different

files. The package structure uniquely identifies the elements in an EAST-

ADL model. The elements themselves can reside in separate files. The

persistence layer the editors are based on resolves these references

automatically in the memory representation of the model without exposing

the concrete file decomposition to the user.

C3.2 B

Information should be possible to subset according to different model

aspects. A particular editor or editor view may address only a subset of

the model. According to:

• Package Containment Edit only elements in the selected package

or its subpackages.

• Element Kind Edit only elements of a certain kind or set of kinds,

e.g. related to a package of the metamodel related to, e.g., variability,

timing, behavior.

• Element Criteria Edit only elements that fulfil a selected set of

criteria, e.g., allocated to a certain ECU, realizing a certain feature,

part of a certain variability configuration, active in a certain mode,

etc. In adding elements in such a view, the model will be updated

such that the new element complies with the criterion. For example,

the new element may be allocated to the ECU, realize the Feature,

be part of the variant, etc.

C3.3 B

Shared information relevant only to specific editors (graphical, textual,

tree-based) should be stored separately from the model itself:

• Graphical information such as colors and positions should be stored

in a separate file; the graphical editor aspects shall be separated.

This information needs to be updated if the model is edited in a

different representation.

• Meta information needed by a textual editor shall also be separated.

14

BUMBLE
Deliverable 2.2

Page 14 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.4 N

It should be possible to create models in the editor that do not fully

conform to the meta-model in order to ensure rapid prototyping and

evolution of content.

C3.5 N

It should be possible to integrate automated semantic checks into the

editors to inform the user about inconsistencies of the model, e.g., with

respect to the meta-model or the semantics.

4.1.2. (De-)Serialization

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.6 B

The order of elements in the eaxml file should be preserved on

deserialization. New elements should be added according to the order in

the tree or textual representation on serialization. New elements added

in the graphical representation should be added at the end of the list of

existing elements in the respective package. The order of existing

elements should be maintained in the serialization.

4.1.3. Tree-Based Editing

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.7 B
The tree-based editor shows all elements of a model using the metamodel

element hierarchy in packageable elements to structure the information.

C3.8 B

Views shall be possible to define based on information subsetting, i.e.

only a subset of model content is exposed according to criteria defined

by the user or pre-defined by the editor (e.g., to only show elements in a

specific package of the meta-model such as timing or variability).

C3.9 B
The order of elements in the underlying model can be changed by

dragging elements into a different order in an unsorted view.

C3.10 B

It should be possible to sort the information in the tree by either the meta-

class type, or in alphabetical order of the short name of the element, or

in the order in which they are stored in the underlying eaxml file. View

sorting does not affect the underlying order of elements in the model.

4.1.4. Textual Modeling

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.11 B
A text editor will typically operate on a subset of the model. Declarations

in the text are probably required to define which packages are available

15

BUMBLE
Deliverable 2.2

Page 15 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

to the package for anything added. For example, packages with datatypes

or other elements may be imported and subsequently visible and part of

the scope.

4.1.5. Graphical Modeling

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.12 B

A diagram will concern a subset of the model. This subset will be defined

by the user and needs to be stored for later retrieval. The elements shown

in the diagram are based on a query. This query can select elements that

are in a Parent/child relation (e.g., elements in the same package or

function decomposition), in a reference relation (relations implemented

as association classes in EAST-ADL, e.g., allocations [e.g., elements that

are allocated to a certain ECU], realizations; alternatively relations as

references with a role name from a safety case to other elements), or of

the same meta-class (e.g., all requirements).

C3.13 B

Diagrams depicting a parent/child relation can be instantiated from any

editor by invoking an action on the parent element (e.g., on a package).

If no parent element is selected, a dialog allowing to select a package

should be shown.

C3.14 B

It is also necessary to define the context for new elements that are added

to the model in the graphical view. This context defines where in the

package hierarchy new elements are stored and how they are woven with

existing elements, e.g., realizing a specific feature or allocating to a

specific ECU. The context can be derived from the query that defines the

diagram, since that query contains the type of relationship that is being

shown in the diagram.

C3.15 B

Deleting anything in a diagram is primarily about deleting from the

diagram canvas. If an element shall also be deleted from the model, it

must be done explicitly, e.g., by right clicking or ctrl-deleting. This is

because a user may want to customize the viewpoint and include/exclude

elements depending on the purpose of the diagram.

C3.16 B

It should be possible to model concepts in different ways. Containment

could, e.g., be modelled using the black diamond composition relation or

direct graphical containment (boxes within boxes). Both ways of modeling

should be supported and might need to change the appearance of the

elements (e.g., whether attributes are shown or not). It should be possible

to switch between these alternatives easily.

C3.17 B

It should be possible to have different diagram types that use a slightly

different concrete graphical syntax and different editor capabilities.

Timing diagrams can expose event chains, feature diagrams can show

the variation points, structural diagrams show allocations, and specialized

diagrams for the safety cases are also necessary.

16

BUMBLE
Deliverable 2.2

Page 16 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.18 B

The editor should support auto-layouting that automatically selects the

diagram type and the kind of visualization (e.g., composition or

containment), in particular when generating a new diagram from a

different editor. Auto-layouting should be based on element types, i.e.,

keep elements of the same type together.

4.1.6. Diffing and Merging

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.19 C, E
There should be functionality for diffing and merging of EAST-ADL

models to support collaborative modeling of different team members.

C3.20 C, E

Diffing and merging should be performed based on the concrete elements

of the model, i.e., based on the meta-model rather than on the structure

of the file. This means that changes in the order of the underlying eaxml

file should not be made visible to the user.

C3.21 C, E

Visualizing and managing diff and merge should be possible in a

graphical, textual, and tree-based view. It should be possible to see

conflicts, added elements, and deleted elements. It should be possible to

select the version to keep.

4.1.7. Multi-User Support

Ideally, multi-user editing should be supported, even though these requirements have low priority.

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.22 C

It should be possible to define access and editing rights for different

stakeholders that are automatically enforced by the tooling in order to

limit users’ ability to see certain parts of the model or change certain parts

of the model.

C3.23 C, E

Two or more users should be able to concurrently edit the same model

without the need for explicit commit and check-out operations. Changes

performed by one user should automatically become visible to the other

user. Editing conflicts should be dealt with using conflict resolution

mechanisms (e.g., first come, first serve).

C3.24 C, E

Even if multi-user concurrent editing is available, it should still be possible

to diff and merge a model that has been modified offline with a model that

has been concurrently edited in order to support engineers that have

been working on the model without access to the concurrent editing

environment.

17

BUMBLE
Deliverable 2.2

Page 17 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

4.2. Technical Requirements

The overall solution shall be implemented by means of applying different forms of the Language

Server Protocol (LSP). For each particular editor, a corresponding language server shall be

provided. As a side effect, this will enable the application of the tool within browser-based IDEs as

VS Code and Eclipse Theia.

The textual editor shall be implemented by applying the Xtext framework and its capability of

exporting standalone LSP applications. The graphical editor shall be implemented based on the

Eclipse Graphical Language Server Platform (GLSP). For enabling auto-layouting functions in the

GLSP editors, the Eclipse Layout Kernel (ELK) shall be applied. For implementing the tree editor,

some kind of JSON Forms in combination with LSP will be applied.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T3.1 B

The usage of Xtext requires a grammar as a

basis for the textual editors. This grammar

shall be inferred from the EAST-ADL

metamodel, which is already provided by

Xtext out-of-the-box. However, such initially

metamodel-inferred grammars are typically

not amenable for end users, so that the

language engineer in general adjusts the

initially inferred grammar. This adjustment

procedure must be automated as far as

possible, especially since the EAST-ADL

metamodel and thereby also the inferred

grammar can evolve.

C3.1, C3.2, C3.3,

C3.4, C3.5, C3.11

T3.2 B

The currently favored textual syntax applies

whitespace indentation to define model

element hierarchies and scopes. However,

the typical Xtext-style grammars use brackets

to define such hierarchies and scopes. Thus,

corresponding adaptations shall be

implemented to support a whitespace-aware

textual language. This should also be

considered in the automation after the initial

grammar inference (cf. T3.1).

C3.1, C3.2, C3.3,

C3.4, C3.5, C3.11

T3.3 B

On editing one particular text file, the textual

editor shall support referencing and importing

contents of other model parts, which requires

adaptations on the initially generated Xtext

application regarding scoping, linking, etc.

C3.11

T3.4 B

The GLSP approach requires configuring and

implementing a client as well as a server side,

distinguishing the notation-specific client

rendering and the overall model management

on the server side.

C3.1, C3.2, C3.3,

C3.4, C3.5, C3.8,

C3.12, C3.13, C3.14,

C3.15, C3.16, C3.17,

C3.18

18

BUMBLE
Deliverable 2.2

Page 18 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

Particularly, this includes two aspects. First,

the model information that is relevant to

certain views / diagrams / text editors must be

identified and configured for the particular

language clients and servers. Second, so-

called handlers decide which information is

notation-specific and/or relevant to the model.

Thus, the particular handlers must be

configured and implemented to separate

notation-specific and model-relevant

information and synchronize if the information

is relevant for both domains.

This effortful procedure shall be conveniently

guided for the language engineer for

efficiency purposes (e.g., by means of

documentation and/or automation).

19

BUMBLE
Deliverable 2.2

Page 19 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

5. UC4 - Cross-Disciplinary Coupling of Models

Canon Production Printing is aiming to increase printer modularity/variability and shortening product

development lead time while maintaining high quality software for each configuration of a Product

Family. The media handling software component requires tight coupling to information from

CAD/CAE models specified in Siemens NX. Mismatches between the CAD/CAE model and the

embedded software leads to errors and underperforming products.

Canon Production Printing wants to explore techniques to enable Collaborative Modeling for cross-

disciplinary models. It should be possible to access the models easily, and switch between multiple

notations (projections in MPS), as well as keeping the models, and their relationships, up to date

with (almost) no effort from the modelers.

Currently, the threshold of using JetBrains MPS as a tool for collaborating in models is too high; (1)

the default interface is heavily cluttered with tooling for language development, distracting from the

model development, (2) keeping the models in sync and up-to-date is too complicated for non-daily

users, (3) the tooling, including all DSML plugins requires multiple gigabytes of disk space.

5.1. Core Requirements

5.1.1. Modeling and Model Management

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.1 C, T
DSML users can authenticate themselves to gain access to the model

repository.

C4.2 C, T
DSML users can navigate through (relationships between) the existing

models via hyperlinks.

C4.3 C

DSML users can manage (CRUD) a hierarchy/organization of models

(folders/packages, as well as model roots), to achieve a maintainable

organization of the modeling content.

C4.4 C, T
DSML users can tag model versions, so that they can be used as

snapshots for later reference.

C4.5 C

Administrators, Qualified DSML Users/Owners can manage user

accounts, user groups, and access levels for the modeling environment

and modeling entities.

C4.6 C
DSML users can generate/download/deploy modeling artifacts, so that

modeling artifacts can be used outside of the modeling environment.

C4.7 C
DSML users can start/perform analysis on a model, to check for the model

for certain properties (correctness, performance, etc.).

C4.8 B, C

DSML users can see errors and feedback (if any) inline in the model editor

(when the erroneous model element is visible in the projection), so that

they can quickly identify issues in the model.

20

BUMBLE
Deliverable 2.2

Page 20 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.9 B, C

DSML users can see an overview of errors and feedback (if any) in an

overview per model editor (or model package), so that they can quickly

identify issues in the project.

C4.10 C, T
DSML users can follow a modeling reference (hyperlink) from the model

editor, so that they can easily navigate the relationships between models.

5.1.2. Blended Modeling

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.11 B, C DSML users can view and edit the models in different projections.

5.1.3. Model Collaboration

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.12 B, C

DSML users can see the current state of the model when they are

connected to the modeling environment, so that they are always up to

date.

C4.13 B, C
Qualified DSML users can retrieve and export models from external

sources to link information between systems.

C4.14 B, C
DSML users can apply (free-form text) reviewing annotations to the

model/model elements, so that they can review and track progress.

C4.15 B, C, E
DSML users can use the mutation history of a mode to see the evolution

of the model over time.

C4.16 B, C, T
DSML users can use a notebook-style view on the models, so that they

can mix the content with the description/documentation.

C4.17 B, C, T

DSML users can perform undo actions inside a model, so that they can

undo their own changes while other DSML users are performing non-

conflicting changes elsewhere in the DSML model instance.

5.1.4. Language Development

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.18 B, C, E, T
DSML developers can deploy a new language version, so that the model

users can make use of the new language features.

21

BUMBLE
Deliverable 2.2

Page 21 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.19 B, C, E, T
DSML developers can perform (automated) language migrations, so that

the models become consistent with the new language.

5.1.5. Integration

ID
Classification

(B, C, E, T, N)
Description of Requirement

C4.20 B, C
DSML users can instantiate a template for new (related) models using a

web-based wizard, so that creation of new models is low-effort.

C4.21 B, C

DSML developers can create web-based wizards to create templates for

models that have a default structure and sets required dependencies to

the DSMLs, to enable the modeling user to instantiate new models.

C4.22 C

DSML users can (incrementally) import (i.e., uploaded by users, or

retrieved from a server) data from a Git or CAD/CAE repository, so that

the external relationships can remain up to date.

C4.23 B

DSML developers can connect an action (button-press, intention called)

in the (web-based) front-end to a computation/analysis/transformation on

the server, so that the model can be used for analysis/generation

purposes.

C4.24 B

DSML users can visualize (interactively, inline, or in an external window)

the results of the modeling artifacts, to achieve a smooth integration

between the specification and the visualization.

C4.25 C

DSML users can use model editors within a larger application that defines

the workflow of the modeling activity, so that it eases the

creation/interaction with other components.

C4.26 B, C
DSML developers can integrate model editors with web-based

components, so that they can create simplified workflows.

5.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T4.1 C, T

Users can authenticate him/herself by logging

into the website through a

username/password combination.

C4.1

T4.2 C, T
Users can authenticate themselves in MPS

when connecting to the model repository.
C4.1

22

BUMBLE
Deliverable 2.2

Page 22 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T4.3 C, T
Users can authenticate themselves through

LDAP and OAUTH2 services.
C4.1, C4.5

T4.4 B, C

Users can access the model repository

through a website, and through a connection

with JetBrains MPS

C4.2

T4.5 C

Qualified DSML Users/Owners can set

access levels for models and model

packages, so that these models and model

packages are visible/readable/writable by a

particular set of users/groups.

C4.5

T4.6 C
Qualified DSML Users/Owners can set

access levels to models for each defined role.
C4.5

T4.7 C

Administrators can define roles such that

Qualified DSML Users/Owners can

assign/remove ‘Ordinary DSML Users’ to

such roles. Administrators can overrule

Qualified DSML Users/Owners.

C4.5

T4.8 C
Qualified DSML Users/Owners can create

groups of users.
C4.5

T4.9 C

Users can navigate and search (by name, tag,

package, project, owner) the model repository

to find a model.

C4.3

T4.10 C, T
Users can tag models (textual tags) and

model versions (Git tag) for later reference.
C4.4

T4.11 C, T

Users can generate and

download/transport/deploy the artifacts to a

defined location (local PC, Git, Windows

Share).

C4.6

T4.12 C

Users can start (predefined) external tools

(simulators, visualizations) from the modeling

environment.

C4.7

T4.13 B, C

DSML users can see errors and feedback (if

any) inline in the model editor, so that they

can quickly identify issues in the model.

C4.8

T4.14 B, C

DSML users can see an overview of errors

and feedback (if any) in an overview per

model editor (or model package), so that they

can quickly identify issues in the project.

C4.9

23

BUMBLE
Deliverable 2.2

Page 23 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T4.15 B, C, T

DSML users can follow an error in the error

overview to the location where the error is

reported. If the project does not show the

element, the model is selected.

C4.9, C4.10

T4.16 C, T

DSML users can follow a modeling reference

(hyperlink) from the model editor, so that they

can easily navigate the relationships between

models.

C4.10

T4.17 B, C

DSML users can view and edit the model

through their individually selected projection,

so that they can simplify/extend the

information shown in the model based on their

needs.

C4.11

T4.18 B, C

DSML users can see their model in multiple

(at least two) views, with different projections,

so that they can focus on the structure and

particular details at the same time.

C4.11

T4.19 B

DSML users can use textual syntax (with

highlighting, completion, cross-referencing)

within a graphical (diagrammatic/tabular)

model.

C4.11

T4.20 B

DSML developers can set the default view of

a model (entity) to a particular projection, so

that they can simplify/extend the information

shown in the model based on their needs (i.e.,

DSML developers can provide a default

projection for DSML users as a starting

situation).

C4.11

T4.21 B, C

DSML users can edit a model in each editable

view (text, tables, diagrams, and forms), so

that they have the freedom to choose the

most effective representation.

C4.11

T4.22 B, C
Views are automatically updated upon editing

by other DSML users.
C4.12

T4.23 B, C

DSML users can see collaborative feedback,

like the current selection or cursor location of

other users.

C4.12

T4.24 B, C

DSML users can see which users have the

model open, to improve communication and

avoid modeling conflicts.

C4.12

24

BUMBLE
Deliverable 2.2

Page 24 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T4.25 C, E, T

Qualified DSML users can (incrementally)

import from external sources (like Git or

CAD/CAE/PLM).

C4.13

T4.26 C, E, T
DSML Developers can specify incremental

import strategies for model types.
C4.13

T4.27 C, E, T
DSML users can resolve merge conflicts, so

that the models remain in a consistent state.
C4.13

T4.28 B, C

DSML users can apply (free-form text)

reviewing annotations to the model/model

elements, so that they can review and track

progress.

C4.14

T4.29 B, C, E

DSML users can use the mutation history of a

model (by the DSML user him/her-self as well

as by other DSML users), so that the

differences over time can be viewed.

C4.15

T4.30 C, E, T

DSML users can select model versions in the

mutation history, so that they can compare

the current model to the old model in any

selected projection (i.e., any of the available

syntaxes).

C4.15

T4.31 B, C, T

DSML users can use a notebook-style view

on the models, so that they can mix

(references of) the model content with the

description/documentation.

C4.16

T4.32 B, C, T

DSML users can perform undo actions inside

a model, so that they can undo their own

changes while other DSML users are

performing non-conflicting changes

elsewhere in the DSML model instance.

C4.17

25

BUMBLE
Deliverable 2.2

Page 25 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

6. UC5 - Reactive and Incremental Transformations across DSMLs

The use case combines collaborative and blending modeling of two different state-transition

modeling-languages that are transformed and synchronized instantly. The modelers (the users in

the uses-case) can change their models in different network locations and can view and edit their

models in their own preferred syntax, yet still be able to edit the models together. Changes made

by one user are immediately visible by other users. The use case is based on a combination of

highly desired functionality by customers of the Modeling Value Group, and essential features

relevant for most of the BUMBLE partners.

The two models can both be changed independently and synchronized later-on, or immediately

synchronize when either models are changed. Furthermore, the two models are not wired together

persistently, the transformation will match the models only when synchronized and only change

models when needed.

The use case blends two languages that are both languages for defining state-machines. State-

machines are well understood by most of the BUMBLE participants. One of the two languages w ill

have state-transformations that are children of the source-states (referring to the target state), the

other language will have state-transformations that are children of the state-machine itself (hence

peers from the states, and referring to the source and target states). This use case will therefore

contain a non-trivial (bidirectional) language-transformation.

6.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C5.1 B
Bi-directional immediate transformation and synchronization for the

DSML user.

C5.2 B Non-trivial bi-directional transformation of abstract syntaxes.

C5.3 C
Remote synchronization across different modeling clients for the DSML

user.

C5.4 E

Combining immediate and deferred synchronization by activating and

deactivating immediate synchronization and updating models via a VCS

when not synchronizing.

C5.5 B
Easy specification of non-trivial bid-directional transformations by the

DSML developer.

6.2. Technical Requirements

All models and meta-models will be viewed and maintained using MPS. The DclareForMPS engine

will take care of the immediate (reactive) and incremental synchronization and transformation of the

models. The delta’s broadcast server (part of Dclare) will be used to exchange mutations across

different synchronized MPS clients. The MPS GIT integration will be used to synchronize and or

26

BUMBLE
Deliverable 2.2

Page 26 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

merge defferedly. The rule definition aspect of DclareForMPS will be used to define the (bi -

directional) transformation between the two abstract syntaxes.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T5.1 B

Persistent models in MPS must keep

unchanged when they are transformed and

already consistent translations according to

the transformation definition (incrementality).

That implies that the node-identities within

MPS are also unchanged so that external

references are kept valid.

C5.1

T5.2 C

The part (MPS models) that is remotely and

immediately synchronized is chosen using a

dialogue integrated within MPS.

C5.3

T5.3 C

The combination of immediate and deferred

communication will be done consistently with

(and therefore using) the GIT integration of

MPS.

C5.4

T5.4 B

Since the MPS is used for the editing of the

models, also the definitions of the (bi-

directional) transformations need to be done

in a language that fits the ecosystem of MPS.

Preferably by using the same syntax (base-

language) for querying and manipulating

models.

C5.5

27

BUMBLE
Deliverable 2.2

Page 27 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

7. UC6 - Blended Editing and Consistency Checking of SysML

Models and Related Program Code

The development of large complex embedded systems at Saab involves many different models of

different notation, such as code, SysML, matlab, unstructured data, etc. To handle th is data

efficiently and ensure that syntax and semantics of the content are consistent, a metamodel is

required. The use case is about providing multi-mode editing and viewing capabilities for such

models, as well as metamodel evolution support.

7.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C6.1 B, T
Bi-directional transformation and synchronization of models, including

graphical traceability.

C6.2 E, N
Model consistency validation with graphical notification of violations

between code and related models.

C6.3 C, E
Feedback changes between code and models, especially in the case of

model validation violations.

7.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T6.1 B, T, N

Possible to view several different models

related to code in the same IDE, chosen from

CLion or Eclipse.

C6.1, C6.2, C6.3

T6.2 N
Architectural model violations visible in the

IDE.
C6.2

T6.3 B, E, T
Bidirectional Code to model traceability by

graphical or textual links to related models.
C6.1, C6.2

T6.4 B, E Collaborative feedback is visible in the IDE. C6.3

28

BUMBLE
Deliverable 2.2

Page 28 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

8. UC7 - Multi- and Cross-Disciplinary Modeling Workbench

At Sioux, we intend to blend different but interconnected aspects of a system specification, some

of which are expressed in graphical DSMLs of Supermodels and others in multi -notation DSMLs of

MPS and hence, facilitating multi- and cross-disciplinary modeling. Within BUMBLE we aim at

creating a blended modeling environment (ME) that combines the strengths of Supermodels and

MPS. Here, blended refers to mixing different (but potentially interconnected) language instances

on the same model. Live synchronization is expected between Supermodels and MPS views on the

multi aspect system specification. Support version control (git, svn) collaboration is expected

between multiple DSML users working on the same model. First iteration prototype is expected to

visualize differences well enough between models using graphical DSMLs and resolve conflicting

changes on DSML level.

8.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C7.1 B

The blended ME should consist of MPS and of Supermodels as optional

front-end (both run on the same machine). DSML user perceives the

blended ME as one environment.

C7.2 B
DSML user can use DSMLs in Supermodels to edit (parts of) a model

and/or can use other DSMLs in MPS to edit (other parts of) a model.

C7.3 B Supermodels and MPS editors should be synchronized (on-the-fly).

C7.4 B

The blended ME should allow model checks to be triggered from both

Supermodels and MPS (engages model checkers in both Supermodels

and MPS).

C7.5 B

The blended ME should allow generation to be triggered from both

Supermodels and MPS (engages generators in both Supermodels and

MPS).

C7.6 C, E
The blended ME should allow for collaboration via file-based version

control.

C7.7 C, E
The blended ME should provide diff and merge functionality on DSML

level from MPS (and optionally from Supermodels).

C7.8 B, E DSML developer can further develop the existing Supermodels DSMLs.

C7.9 B, E
DSML developer can implement (new) DSMLs in MPS for which it can

implement diagrammatic editors in Supermodels.

C7.10 B
DSML user can open (or create new) and save (persist) a model from

both Supermodels and MPS.

29

BUMBLE
Deliverable 2.2

Page 29 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

8.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T7.1 B

The blended ME should provide interfacing

technology suitable to bridge MPS (JVM) and

Supermodels (.NET).

C7.1

T7.2 B

The blended ME should be started either by

starting Supermodels or by starting MPS.

Starting Supermodels should start the

blended ME if it was not already started.

C7.1

T7.3 B

The blended ME should allow for flexible

deployments depending on DSML user

needs:

• only MPS (Supermodels is not

deployed/started).

• only Supermodels (MPS running

headless on the background).

• both Supermodels and MPS.

C7.1, C7.2

T7.4 B

Usability: Synchronization between MPS and

Supermodels should happen fast enough to

be perceived by the user as live updates

(probably less than 0.5s).

C7.3

T7.5 C, E

The blended ME should provide models

persistence mechanisms. At least file based

should be supported among others. (To allow

collaboration via file-based version control).

C7.1, C7.6

T7.6 B

The blended ME should provide interface

between MPS and Supermodels for model

checks and generation.

C7.4, C7.5

T7.7 B

Scalability: The blended ME should handle

big models (50+K elements) while keeping

the UI responsive enough.

C7.3, C7.4, C7.5

T7.8 C, E

Usability: visualize differences/conflicts

between models of graphical DSMLs in a

concise, readable, and clear way.

C7.1, C7.7

T7.9 C, E

The interfacing technology and interface

architecture provided by the blended ME

should be flexible enough to accommodate

developing existing and new DSMLs.

C7.8, C7.9

30

BUMBLE
Deliverable 2.2

Page 30 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T7.10 B

The blended ME should provide interface

from MPS to Supermodels for model files

creation, opening, closing.

C7.10

31

BUMBLE
Deliverable 2.2

Page 31 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

9. UC8 - Model-Driven Development of Workflow Models for Debt

Collecting Advocacy

HERMES İletisim’s main job is creating digital solutions especially in Information Communication

Technologies and Business Process Management area. HERMES provides Model Driven

Engineering Solution for the development of Rule Based Workflow and Business Process

Management Systems for various domains. Our aim is to design and implement a model-driven

engineering platform to ensure Business Process Management for Debt-Collector Advocates,

shortly called BPM4DCA. Debt Collector Advocates (DCA) usually cannot reach their

customers/debtors by using a single way of communication like Phone Call, SMS, Voice Message

or National ID SMS. Reaching a debtor, in fact, needs mostly reaching his/her guarantor, mother,

father or other relatives in many different ways. Moreover, these debt collectors should deal with

more than 10K case files in average which must be handled only in one month. Modeling with

BPM4DCA consists of both various modeling viewpoints and the construction of relations required

for managing the desired workflows. The blended modeling approach brought by the BUMBLE

project will facilitate modeling and implementation of both choreography and orchestration of

complex business services inside BPM4DCA.

9.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C8.1 C, T
Users can be authenticated to login to get access to a graphical and

textual modeling environment.

C8.2 B
Users can design their workflow by drag-and-dropping the elements in an

editing environment.

C8.3 C, T Users can access their previously accessed models on a system.

C8.4 B Users can view and draw graphically their workflow’s rules.

C8.5 C, T
Administrator users can give different priorities to manage and control

their access to the existing models.

C8.6 T Users can perform live tests for their workflows.

C8.7 B
Users can be informed about the notifications and errors in the modeling

environment.

C8.8 B, C
Users can edit their defined rules to represent them in a graphical view

simultaneously.

C8.9 T Users can store the models in a database to ease accessing them.

C8.10 B, C, T
Users can fork new tasks by using the attributes of the current task and

visualize relations of their workflows in a single diagram.

32

BUMBLE
Deliverable 2.2

Page 32 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C8.11 B
Users can modify the workflow in a textual and graphical editing

environment with low code or no code.

9.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T8.1 B
The workflow rules will be written in JsonLogic

format.
C8.4

T8.2 B
The model will be generated in XML format to

store in the database.
C8.9

T8.3 B

Design of the workflow will be performed

inside BPMDCA’s graphical modeling

environment based on the MxGraph.

C8.2

33

BUMBLE
Deliverable 2.2

Page 33 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

10. UC9 - Automated Design Rule Verification on Vehicle Models

No input to this deliverable has yet been provided for this use case lead by Ford.

34

BUMBLE
Deliverable 2.2

Page 34 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

11. UC10 - Development Process of Low-Level Software

Unibap is a young tech company, with a high level of innovation and variation in our portfolio, and

a wide range of skills and projects distributed among a relatively small number of employees. Our

projects flow along a chain where each step involves different people, skills, and tools. This diversity

introduces problems such as risk of miscommunication, difficulties in resource distribution,

complicated documentation, and more. The possibility to collaborate on and automatically switch

between representations of a model would both streamline our processes and eliminate several of

the risk factors, which is of great importance in our development of safety critical components. In

short, Bumble technology would support companies like Unibap in efficient utilization of valuable

resources, as well as in ensuring high quality in our products.

11.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C10.1 B The tool shall support creating a state machine as UML, and as XML.

C10.2 B
The tool shall support display of a state machine at diagram level as UML,

as XML, and as a state-event table.

C10.3 B
The tool shall support editing of a state machine at diagram level as UML,

as XML, and as a state event table.

C10.4 B
The tool shall support addition and display of snippets of full C17 to a

state machine state.

C10.5 B
The tool shall support dependencies on internal and external libraries for

the C17 snippets in a state machine state.

C10.6 B
The tool should support nested includes for the C17 snippets in a state

machine state.

C10.7 B, N

The tool shall automatically convert between UML, XML, and state-event

table representations of a state machine diagram on request, without loss

of information that cannot be displayed in the current representation.

C10.8 B, N
The GUI of the tool shall indicate when there is information that is not

visible in the current representation.

C10.9 T
The tool shall provide statistics of what states and branches have run

during a test, and what C functions have been called from these.

C10.10 B, C, T

The tool shall support version control, and diff and merge operations, on

a state machine, with the possibility to see a graphical representation of

the differences between versions.

C10.11 B
The tool shall be able to generate a fully functional C code representation

of a state machine for export on request.

35

BUMBLE
Deliverable 2.2

Page 35 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

11.2. Technical Requirements

We are currently investigating HCL RTist as a potential match for our requirements. Depending on

the result, we may present additional technical requirements in future versions of this document.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T10.1 -
It must be possible to use the tool in a Linux

environment.
-

36

BUMBLE
Deliverable 2.2

Page 36 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

12. UC11 - Multi-Aspect Modeling for Highly Configurable

Automotive Test Beds Ready for Smart Engineering Demands

At BUMBLE (and HybriDLUX), AVL wants to extend existing and new DSLs with the ideas of

blended and collaborative modeling. With regard to collaborative modeling, two dimensions are of

interest: One is about enhancing existing/new DSLs in terms of collaborative modeling within a

dedicated user group/department (e.g. graphical model diff), while the second dimension is about

collaborative modeling across departments. In order to somewhat concretize the DSLs applied in

this context, the following three DSLs will be considered here:

• DSL A for measurement device specification (textual and graphical aspects) with database

integration and code generation - related to department X.

• DSL B for measurement device integration test definition (textual and graphical aspects) -

related to department Y. This DSL has links to DSL A regarding the reuse of the data sets there.

Furthermore, DSL B is considered for test case generation.

• DSL C for the definition of step-by-step instructions (textual, graphical and 3D CAD aspects),

applied in department Z. This DSL also has direct links to DSL A. Generated results of this DSL

are interactive documentations (e.g. web-based) up to virtual and augmented reality

applications.

Intra-departmental collaboration is most relevant for DSL A, while inter-departmental collaboration

is relevant for DSL B and DSL C. Note that there is not a single physical source or data model for

all DSLs. Instead, the DSLs are developed independently, but are actively linked for reuse of data

and notification of changes (subject of improvements).

12.1. Core Requirements

AVL use cases (based on three DSLs) are usually based on a so-called driving DSL representation.

As a DSL can have different representations (views, sometimes only read-only), the driving

representation is the one the DSML user is mostly working with. It has thus higher demands

regarding features or requirements like data consistency (e.g. to other data sources). A non-driving

representation may be outdated for a while, e.g. if changes are done in the driving DSL. Related, a

driving representation always must be available to the DSML user, even in invalid status (temporary

violation of metamodel), while secondary one may be removed or is not accessible as long as an

invalid status is the case.

ID
Classification

(B, C, E, T, N)
Description of Requirement

C11.1 B

DSML User has one driving DSL representation (textual), but has one or

more graphical representations, which shows aspect of the model

(reduced information), this is not sufficiently expressed by the driving one

(without addition further information).

C11.2 B

Changes to an instance of a driving DSL are forwarded to the alternative

representation either immediately or after some trigger event (e.g. model

is in a valid state, user event).

37

BUMBLE
Deliverable 2.2

Page 37 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C11.3 B
Changes on the alternative representation (if write enabled) are

forwarded to the driving DSL immediately.

C11.4 B
Differences based on changes on the driving DSL is illustrated on the

alternative representation (e.g. before-after-comparison).

C11.5 B, T
DSL must have the possibility to reference to external elements either

from other data sources or to related DSLs.

C11.6 B, T

Alternative data sources should be visualized alongside DSLs (e.g. CAD

models) to provide user-friendly input methods for the DSL (e.g. selecting

a part referenced by the DSL).

C11.7 C

Multiple users should be able to work on the same model (offline). Model

merge/diff techniques should be applied to synchronize the content again

(including graphical representations).

C11.8 C

Cross department collaboration: Different DSLs should be loosely

coupled by using references. Inconsistency should be indicated, if the

linked element has changed and should cause a certain action (e.g.

notification) by the user to ensure consistency again.

C11.9 C

Cross department collaboration - extension to C11.8. Fully automatic

consistency assurance is not required, but user support (e.g. quick fixes

based on the change) are favored.

C11.10 T

Traceability links between different DSL representations should support

editing navigation (e.g. marking one element in one representation should

highlight the related elements in the other representation).

C11.11 T
Traceability links between different but related DSLs should be

established to enable C11.8 and C11.9.

C11.12 T
Traceability links between model and generated artefacts should be

established to support backtracking.

C11.13 T
If generated artefacts are executable, traceability links should enable life

debugging (if useful including breakpoints).

C11.14 T

If generated artefacts are executable and create a particular outcome,

the outcome should be related to model elements (e.g. test execution and

test reports).

C11.15 E
If DSL definition evolves, users should automatically get an updated

version of the models.

C11.16 E
If models are updated during DSL evolution, changes should be indicated

to the user.

38

BUMBLE
Deliverable 2.2

Page 38 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C11.17 E

If models cannot be updated automatically, invalid model elements

should be indicated, and user should be supported in decision making

(e.g. quick fixes).

C11.18 C, E, T

If model editing or model evolution between different but related DSLs

lead to inconsistencies, these inconsistencies should be visualized to

support decision making in fixing the inconsistencies.

12.2. Technical Requirements

This use case will be realized using the Reactive Architecture for Editing Blended Models (RAfEBM),

see https://drive.google.com/drive/folders/16tNZeh9hgegYlp3g4mJdN3ghgMaSGGdt).

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T11.1 B
RAfEBM: Ensure Single-Source of truth (non-

redundant model source).

C11.1, C11.2, C11.3,

C11.4

T11.2 B
RAfEBM: Editable goal-oriented views with

view-specific languages (metamodels).

C11.1, C11.2, C11.3,

C11.4

T11.3 B
RAfEBM: Decouple model source from view-

specific languages / representations.

C11.1, C11.2, C11.3,

C11.4

T11.4 B
RAfEBM: Avoid bi-directional transformation

and synchronization.

C11.1, C11.2, C11.3,

C11.4

T11.5 B

RAfEBM: Implement only required edit

operations (clear definition what need to be

changed in model sources for a specific

operation).

C11.1, C11.2, C11.3,

C11.4

https://drive.google.com/drive/folders/16tNZeh9hgegYlp3g4mJdN3ghgMaSGGdt

39

BUMBLE
Deliverable 2.2

Page 39 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

13. UC12 - Agile V-model System Architecture

The evolved modeling of physical in a digital can be called a digital twin. The digital twin concept

has been introduced in several applications domains. In UC12, the application is structural

engineering for infrastructure. The digital twin must be supported by blended modeling to support

the user in the design and maintenance process of the target system. This use case of Pictor

considers table-based specifications of geometry and characteristics of the members and hinges.

The target system is a model of building structure with thousands of elements and hinges in different

materials. For example, a bridge in concrete with steel cables. The targets have requirements

according to standards with high safety for public transportation according to European standards.

The European norms EN 1992: for concrete structures are updated with more advanced practices

in civil engineering for building bridges in concrete and steel. The bridges are for roads and railway

tracks. Civil engineering has high safety requirements for public safety norms. New civil engineering

imposes new requirements on the software package and the same as the software package is to

meet the requirement on correctness and safety of the calculation for structural analysis.

13.1. Core Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

C12.1 B, T
The framework shall allow to describe mappings between a DSML

specification (metamodel) and a notation of choice.

C12.2 B

Given the DSML specification and the mappings to the notation of choice,

the framework shall semi-automatically generate notation-specific

specification (e.g., grammar) and related editing features.

C12.3 B, C, T

Given the DSML specification and the mappings to the notation of choice

and the notation-specific specification (e.g., grammar), the framework

shall semi-automatically generate synchronization mechanisms (model

transformations) to keep generated notation and DSML in sync.

C12.4 B, C
The framework shall allow change propagation across notations and

synchronization both on-demand or on-the-fly, upon user’s choice.

C12.5 C
The framework shall allow a model to be viewed and edited in real-time

in a collaborative fashion by multiple users.

C12.6 C, T
The framework shall allow to version models and apply diff/merge

features, in a GIT-based fashion.

C12.7 C DSML users can authenticate through a login on a website.

C12.8 C
DSML users can navigate the existing models on a website, to find

models with a low threshold.

C12.9 C

DSML users can manage (CRUD) a hierarchy/organization of models

(folders/packages, as well as model roots), to achieve a maintainable

organization of the modeling content.

40

BUMBLE
Deliverable 2.2

Page 40 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

C12.10 C
DSML users can tag model versions, so that they can be used as

snapshots for later reference.

13.2. Technical Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

T12.1 B, C, T
The framework shall be implemented in the

Eclipse ecosystem.

C12.1, C12.2, C12.3,

C12.4, C12.5, C12.6

T12.2 B, C, T
The framework shall support MOF-based

DSMLs.

C12.1, C12.2, C12.3,

C12.4, C12.5, C12.6

T12.3 B, T

The graphical view must support viewing

nodes, hinges, and members configurable for

visible or hidden.

C12.1

T12.4 B, T

The graphical view must show lines for center

of gravity, cables, and members configurable

for visible or hidden.

C12.1

T12.5 B, T

The graphical view must show x, y, z

coordinates at the point of interest for

configurable visible or hidden. The x, y, z

coordinates at the point or at the bottom of the

window.

C12.1

T12.6 B, T
The graphical view must show loads for

configurable visible or hidden.
C12.1

41

BUMBLE
Deliverable 2.2

Page 41 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

14. Selected Common Requirements

This chapter summarizes a selection of requirements that are common to multiple use cases and

are therefore considered to be addressed by the BUMBLE technologies in a generic way. This

approach allows reusing the BUMBLE technologies and hence, showing their generic applicability.

The goal of this chapter is to provide focus points to work packages WP3, WP4 and WP5 on

developing BUMBLE technologies in terms of satisfying requirements common to multiple use

cases. The BUMBLE project does not intend to develop one single set of coherent technological

solutions that covers all listed requirements. This originates not only from supporting both the

Eclipse and MPS based technology platforms, but to some extent also from conflicting contextual

details of the use cases. Instead, the BUMBLE project will develop multiple coherent sets of

technological solutions which each will address a (major) subset of the presented requirements.

This also means that multiple BUMBLE technologies may exist to satisfy the same requirement.

Hence, concrete usage of BUMBLE results still allows a choice to which collection of BUMBLE

technologies suits a use case best.

Since contributions for most individual use cases have focused on core requirements, while

technical requirements need further progress in making technological choices to enable clarifying

them further, this chapter also focuses on core requirements in Section 14.1. It is expected that

further core requirements may arise during the BUMBLE project and that the list of selected

common technical requirements in Section 14.2 will therefore increase as well. Updates and

extensions will be documented in subsequent versions of this deliverable in accordance with the

BUMBLE project plan.

14.1. Core Requirements

Based on the core requirements for the use cases in the previous chapters, we recognize a number

of subjects that allow further structuring requirements next to the classification in terms of Blended

(B), Collaboration (C), Evolution (E), Traceability (T) and Non-Conformance (N). We therefore use

a further structuring, among others deducted from those for use cases UC3 and UC4:

• Blended Modeling

• Real-Time Collaboration

• Model Non-Conformance

• Contextual Integration

• Model Life-Cycle Management

14.1.1. Blended Modeling

At the core of BUMBLE is the ability to exploit multiple syntaxes for a DSML. This introduces several

requirements compared to what is supported by existing DSML technologies. Requirements for

typical facilities provided by DSML technologies such as syntax highlighting, content assist, auto-

completion, (while-you-type) model validation, warning/error notifications, and artefact generation

are basically the same for the BUMBLE technologies and are therefore not listed here.

Nevertheless, it is explicitly stated by all use cases that such traditional facilities should basically

be agnostic to the specific set of supported concrete syntaxes for a DSML model definition. Here,

we focus on requirements introduced by the novelty of requiring support for multiple sy ntaxes as

identified by almost all use cases. Blended modeling particularly extends the facility of structuring

models in multiple (possibly configurable or predefined) editors/views to enable supporting multiple

42

BUMBLE
Deliverable 2.2

Page 42 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

syntaxes for the same elements of a DSML model definition. For this, the following common core

requirements are selected.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Cover UC-Specific Core

Requirement(s)

BC1 B

It must be possible to define multiple

concrete syntaxes / representations for a

single DSML model definition, including

relevant views or editors conforming to the

concrete syntaxes / representations.

C1.1, C1.2, C2.1, C3.7,

C3.11, C3.12,C3.16,

C3.17, C4.11, C4.16,

C7.1, C7.2, C8.11,

C10.2, C10.3, C11.1,

C12.1, C12.2

BC2 B, C

A DSML user must be able to select a

preferred concrete syntax / representation

for a DSML model instance. A DSML

developer must define a default concrete

syntax / representation.

C1.1, C2.1, C3.7, C4.11,

C7.10, C8.11, C10.2,

C11.1, C12.1, C12.2

BC3 B, C, E, T

In case multiple syntaxes exist for a (single

element of a) DSML model definition, all

concrete syntaxes / representations must be

updated in accordance with any changes

that have been performed by means of

using one of those syntaxes.

C1.3, C1.4, C1.5, C2.2,

C2.3, C2.7, C4.16,

C4.17, C5.1, C5.2, C5.5,

C6.1, C7.3, C10.7,

C11.2, C11.3, C12.3,

C12.4

BC4 B, C, E, T

In case multiple syntaxes exist for a (single

element of a) DSML model definition, it must

be possible that certain elements may not

be relevant or visible in one or more specific

abstract and concrete syntaxes. Semantics

of (an element of) a DSML model definition

that is considered in multiple abstract and

concrete syntaxes must (be enforced to)

be/remain the same.

C1.3, C1.2, C1.4, C1.5,

C2.2, C2.4, C2.6, C2.7,

C3.3, C3.8, C3.11,

C3.12, C3.14, C4.11,

C4.17, C5.1, C5.2, C5.3,

C5.4, C5.5, C6.1, C6.2,

C6.3, C7.2, C10.2,

C10.3, C10.4, C10.7,

C10.8, C11.1, C11.3,

C12.3, C12.4

14.1.2. Real-Time Collaboration

Another novelty of BUMBLE is the ability to support real-time collaboration between multi DSML

users that access the same (collection of) DSML model instance(s), although this is not a

requirement for all use cases. Various use cases that do require real -time collaboration, refer to a

web-based approach although not all use cases require or specify this. Collaboration at DSML

development is not explicitly expressed for any of the use cases and therefore not considered in

BUMBLE nor are there shared requirements in terms of real-time collaboration-specific facilities

such as a chat capability, the possibility of free-form textual reviewing annotations or feedback on

at which model element(s) other DSML users are editing/viewing at the same moment in time. These

aspects of real-time collaboration may however receive more attention in subsequent versions of

this deliverable when prototype implementations of the BUMBLE technologies allow for early

feedback from actual DSML users.

43

BUMBLE
Deliverable 2.2

Page 43 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Cover UC-Specific Core

Requirement(s)

BC5 B, C, E

It should be possible to support real-time

collaboration between multiple DSML users.

This means that - independent of which

concrete syntax the DSML users have

chosen - changes by an individual DSML

user are instantly visible to all other DSML

users that have viewing/reading and/or

editing/writing rights to the considered

(collection of) DSML model instance(s).

C1.5, C3.23, C3.24,

C4.12, C5.3, C7.3,

C12.5

14.1.3. Model Non-Conformance

Only use case UC3 explicitly specifies requirements on the ability to have support for model non -

conformance that do not relate to support for intermediate states of modifying a DSML model

instance that does not conform to its DSML model definition (which is generally needed when relying

on a parser-based approach). Since no other use case expresses requirements on model non-

conformance, no shared common requirements on model non-conformance are identified.

14.1.4. Contextual Integration

Although DSML technologies allow for developing the next generation of modeling environments,

these are generally to be integrated as part of a bigger context (which may not rely on any DSML

technology). Since the BUMBLE technologies should not disable such capability, a common

requirement is identified to capture this aspect even though only use cases UC4 and UC7 explicitly

express a clear need for being integrable in a larger context. We do note that both UC4 and UC7

will rely on the MPS technology as a basis for realizing their BUMBLE-based DSML solutions.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Cover UC-Specific Core

Requirement(s)

BC6 B, C

It should not be impossible to integrate

BUMBLE-based DSML environments in

larger (non DSML technology based)

applications that enable (real-time or non

real-time) collaboration between users of

that larger application context.

C4.23, C4.26, C7.1

14.1.5. Model Life-Cycle Management

Model (life-cycle) management is a generic need in the context of model-based development tools.

It plays a role as soon as one starts using modeling tools and models. It covers many aspects in

itself and for BUMBLE, these are relevant for both DSML model definitions (different levels of meta

models), including the definition of (multiple) concrete syntaxes and DSML model instances.

Core requirements identified for the different BUMBLE use cases are limited to the model (life -

cycle) management aspects of version control, persistence, (automated) (co-)evolution, access

control, and traceability. Such traceability covers both

44

BUMBLE
Deliverable 2.2

Page 44 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

• Referencing across elements of a single DSML or of multiple DSMLs at a specific moment in

time, i.e., for a given specific status or version of (the col lection of) DSML(s). This may also

cover references between DSML elements and information related to the execution of

underlying tooling (e.g., in the context of debuggers, analysis tools or generated code).

• Referencing or comparing DSML elements that have evolved over time, i.e., traceability in the

context of version control.

Version Control (Non Real-Time Collaboration)

The majority of use cases describe a need for having support for file -based version control, which

is a means to support non real-time collaboration between multiple DSML users of the same

(collection of) DSML model instance(s) and between multiple DSML developers of the same

(collection of) DSML model definition(s). Although GIT is mentioned in all these use cases as a

concrete version control system that is to be supported, also SVN is mentioned as relevant, while

one use case mentions PLM as well in this context.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Cover UC-Specific Core

Requirement(s)

BC7 C, E, T

It must be possible to exploit file-based

version control, including diff/merge and

tagging functionalities for both DSML model

definitions and instances.

C1.6, C3.19, C3.24,

C4.4, C4.15, C4.22,

C5.4, C7.6, C7.7,

C10.10, C11.7, C12.6,

C12.10

BC8 B, C, E

Diff/merge functionality should be available

at the model level instead of the underlying

persistence format, where a DSML user can

perform a diff/merge in a concrete syntax of

choice (e.g., textual or graphical).

C3.20, C3.21, C7.7,

C10.10

Persistence

File-based persistence of DSML model definitions and instances is not only in view of the need to

support file-based version control, but also to allow interaction with tools that are outside of the

DSML context. In general, DSML technologies allow persistence or (de-)serialization by means of

generators and parsers. While this is generally independent of the way a DSML model is dealt with

in a DSML tool, there are use cases for which more or less a one-to-one relation is required between

the structure of DSML model definitions and files persisting instances of those DSML model

definitions. Other use cases do not require nor wish such a one-to-one relation but some different

mapping. This aspect is therefore considered to be specific for the DSML context of such use case

and hence, there are no common requirements selected. Nevertheless, the BUMBLE technologies

must support these different approaches and can rely on the capability of existing DSML

technologies to do so.

(Automated) (Co-)Evolution

Although not many use cases in the previous chapters explicitly address details of (co-)evolution of

(collections of interrelated) DSML model definitions and instances, taking the ability to support such

capabilities has an important impact on primary facilities to be realized by the BUMBLE

technologies.

45

BUMBLE
Deliverable 2.2

Page 45 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Cover UC-Specific Core

Requirement(s)

BC9 E, T

It should be possible to deploy a new

version of a DSML model definition by

means of automatically migrating existing

instances of that DSML model definition. In

conjunction with that, cross-references to

other DSML model definitions and instances

must be migrated automatically.

C2.3, C2.4, C2.5, C4.19,

C5.4, C11.15

Access Control

Several use cases require the ability to use access control, which is clearly related to the aspect of

collaboration albeit with the additional need to limit freedom. Such limitations may refer to individual

elements of a DSML or to complete DSMLs. Other use cases have not specified such need. The

BUMBLE technologies should support both cases, i.e., with and without access control.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Cover UC-Specific Core

Requirement(s)

BC10 C, E, T

In view of various CRUD functionalities, in

particular related to collaboration and

(traceability in the context of) evolution, it

must be possible that DSML users can be

identified by means of a(n) (single)

authentication step (e.g., with a login) when

accessing the modeling environment.

C4.1, C8.1, C12.7

BC11 C, E, T

It must be possible to define different levels

of (CRUD) access for DSML users. In case

multiple access levels exist, the BUMBLE

framework should enforce conformance to

such access levels based on the

authentication step executed when DSML

users access the modeling environment.

C4.1, C4.5, C3.22, C8.3

BC12 C, E, T

In case access control is used, then based

on the level of (CRUD) access a DSML user

has (possibly including different levels of

administrator roles), (s)he must be able to

modify the level of (CRUD) access for

him/her-self or other DSML users.

C4.5, C8.5

BC13 C, E, T

By default, a DSML user must at least have

full access rights to model elements that

(s)he modified. In particular, while editing a

DSML instance, a DSML user must at least

be able to perform undo actions for

modification that (s)he made and is (by

default) not able to undo modifications

performed by other DSML users.

C4.17

46

BUMBLE
Deliverable 2.2

Page 46 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

14.2. Technical Requirements

BUMBLE focusses on two DSML technology platforms as a starting point: Eclipse and MPS. We

also consider interaction across these DSML technology platforms (including others given the

concrete context in certain use cases). For each of these DSML technology platforms, different

architectural and design choices can be made on how to realize the required BUMBLE

functionalities. The various approaches are primarily to be documented in Deliverables D3.1, D3.2,

and D3.3. In this section, we consider selected common technical requirements taking into account

(and hence referring to) relevant DSML technology platform contexts.

14.2.1. Blended Modeling

At the moment of writing this version of this deliverable, the requirements for blended modeling are

worked out more elaborately compared to the other requirements. Many of these requirements hold

for both DSML technology platforms, while few are specific to a DSML technology platform choice.

It is recognized that some of the technical requirements may individually already be satisfied by

existing DSML technologies available for one or both DSML technology platforms. This allows

BUMBLE to reuse and extend such existing technologies. It also helps in connecting to existing

open-source communities for exploitation of the BUMBLE technological solutions. Notice that the

combination of all requirements together is the core novelty of the solutions to be realized by the

BUMBLE project.

DSML Platform Independent Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT1 B

At least one editor/view (i.e., concrete

syntax) must be generated automatically

(on-the-fly or on demand) for a DSML model

definition.

BC1, BC2

BT2 B

It must be possible to define (a) textual

editor(s)/view(s) for (elements of) a DSML

model definition.

BC1

BT3 B

It must be possible to define (a) graphical

editor(s)/view(s) for (elements of) a DSML

model definition.

BC1

BT4 B

It must be possible to define (a) form-based

editor(s) (including tabular-like layouted

forms) for a DSML model definition.

BC1

BT5 B, C

DSML users must be able to choose the

editor/view (i.e., concrete syntax) to be used

to edit/view (elements of) a DSML model

instance.

BC2

BT6 B, C

DSML developers must be able to specify a

default editor/view (i.e., concrete syntax) for

(elements of) a DSML model instance that

BC2

47

BUMBLE
Deliverable 2.2

Page 47 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

is presented to a DSML user if (s)he has not

(yet) made a choose for a preferred

alternative editor/view (i.e., concrete

syntax) (if alternative(s) would be available).

BT7 B, C, T

Cross-referencing between elements of the

same or different DSML model instances

must be agnostic to any specific syntax that

a DSML user may have selected to edit/view

such DSML model instance(s).

BC1, BC2

BT8 B, C, E, T

In case multiple syntaxes exist for a (single

element of a) DSML model definition, DSML

developers must be able to exploit an (easy-

to-use) semi-automatic approach to

generate synchronization and/or

transformation mechanisms that operate at

the level of the elements of the relevant

DSML model definitions to update all

concrete syntaxes / representations in

accordance with any changes that may have

been performed by using one of those

syntaxes. This must enable at least one of

the following capabilities:

• automated real-time (on-the-fly)

synchronization/transformation.

• on-demand (i.e., based on an explicit

request of a DSML user)

synchronization/transformation.

next to also supporting:

• synchronization/transformation via file-

based version control.

BC1, BC3, BC4, BC6,

BC7, BC8

BT9 B, C, E

It must be possible to view

errors/notifications on the results of DSML

model instance validation in the editor/view

for any concrete syntax that represents

(elements of) the corresponding DSML

model definition. Model validation is

therefore to be realized at the level of

(elements of) the relevant DSML model

definitions while the interaction with the

DSML user is to be performed via all of the

available concrete syntaxes.

BC4

BT10 B, C, T

Errors/notifications on the results of DSML

model instance validation must be provided

with a reference to the relevant element(s)

represented by any concrete syntax of that

BC4

48

BUMBLE
Deliverable 2.2

Page 48 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

DSML model instance and/or of other

relevant DSML model instances causing the

error/notification to be present.

Eclipse Platform Specific Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT11 B
It must be possible to create/use MOF-

based DSML model definitions.
BC1

BT12 B
It must be possible to define (a) Xtext-based

textual editor(s)/view(s) for a DSML.
BC1

BT13 B

It must be possible to define (a) tree-based

editor(s)/view(s) for (elements of) a DSML

model definition.

BC1

14.2.2. Real-Time Collaboration

Real-time collaboration as considered by some use cases is assumed to be based on a server-

client approach, where the server and the different clients may or may not exist at different

computers. This allows for real-time collaboration between more traditional desktop application

clients and a centralized server, as well as for real-time collaboration exploiting web-clients using

traditional internet-browser technology and a centralized server. Both options are considered

relevant in the BUMBLE context, although some use cases are specifically referring to the web-

based approach.

DSML Platform Independent Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT14 B, C, E, T

Changes of (elements of) DSML model

instances by one DSML user must

automatically become visible to all DSML

users editing/viewing those (elements of)

the DSML model instances in (near) real-

time.

BC1, BC3, BC4, BC5

Eclipse Platform Dependent Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT15 B, C, E, T, N

DSML developers should be able to realize

real-time collaboration based on a

LSP/GLSP-based approach using an

BC4, BC5

49

BUMBLE
Deliverable 2.2

Page 49 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

extension (i.e., by means of plugins) of the

existing Eclipse IDE as desktop-client

application.

Note: DSML developers may also use a

different approach

MPS Platform Dependent Requirements

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT16 B, C, E, T

DSML developers should be able to realize

real-time collaboration based on using an

MPS Model Server, where the options of

using an extension (i.e., by means of

plugins) of the existing MPS IDE as

desktop-client application and/or a web-

client must be supported.

Note: DSML developers may also use a

different approach.

BC4, BC5

14.2.3. Contextual Integration

As explained in Section 14.1.4, only two use cases have expressed a need for integrating their

BUMBLE-based DSML solutions as part of a larger application context. At the moment of writing

this version of this deliverable, insufficient common technical requirements have been identified.

Hence, we have currently only two technical requirements to consider in WP3, WP4 and WP5 for

this aspect.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT17 B, C, E, T

It should not be impossible to integrate

BUMBLE technological solutions as ‘DSML

components’ in a bigger non DSML-

technology based application.

BC1, BC2, BC3, BC4,

BC5, BC6, BC10, BC11,

BC12, BC13

BT18 B, C, E, T

In the case of integrating BUMBLE

technological solutions as ‘DSML

components’ in a bigger (non DSML-

technology based) modeling environments,

it should not be impossible to use traditional

GUI widgets to represent certain elements

of DSML model instances, i.e., traditional

GUI widgets such as a checkbox or radio

button being a (default) concrete syntax.

BC1, BC2, BC3, BC4,

BC6

50

BUMBLE
Deliverable 2.2

Page 50 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

14.2.4. Model Life-Cycle Management

Non Real-Time Collaboration

Section 14.1.5 highlights a few specific version control systems mentioned in the context of different

use cases that are to be supported. We have selected this ability as a common technical

requirement.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT19 C, E, T

File-based version control must at least be

possible based on the traditional GIT and

SVN approaches (for both DSML model

definitions and DSML model instances).

BC7, BC8

BT20 B, C, E, T

Version control functionality (e.g.,

diff/merge/tagging) should be accessible by

a DSML user at any available concrete

syntax for the considered (collection of)

(elements of) (a) DSML model instance.

This requires diff/merge functionality at

persistence level to be (bi-directionally)

linked to diff/merge views at DSML model

instance level.

BC1, BC2, BC7, BC8

BT21 E, T

Version control of DSML model definitions

must not break concurrent use of instances

of such DSML model definitions. Any

conflicts that may arise must be either taken

care of automatically or resolved by DSML

users.

BC7, BC8, BC9

(Automated) (Co-)Evolution

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT22 E, T

DSML users who are editing/viewing

instances of DSML model definitions that

are to be updated with a new version by a

DSML developer should be informed about

an (upcoming) migration of these instances.

BC9

BT23 E, T

DSML users who are editing/viewing

instances of DSML model definitions that

are updated with a new version by a DSML

developer should be able to view the

differences with the previous version to be

able to understand the impact of automatic

migrations of these instances.

BC9

BT24 E, T
Migration of instances of DSML model

definitions to a new version should come
BC1, BC9

51

BUMBLE
Deliverable 2.2

Page 51 of 51 Deliverable D2.2 (Version 1) BUMBLE Requirements Specification

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

with migration of relevant editors/views for

all existing concrete syntaxes.

Access Control

Although a number of common core requirements have been selected in Section 14.1.5, only very

few technical requirements have been identified at the moment of writing this version of this

deliverable. Hence, for now, we have identified one common technical requirement for access

control. Further detailing is expected to emerge during the next period of the BUMBLE project when

more practical experience is obtained in deploying the BUMBLE technologies with respect to

collaboration.

ID
Classification

(B, C, E, T, N)
Description of Requirement

Details Core

Requirement(s)

BT25 C, E, T

DSML users can authenticate via standard

external infrastructural authentication

services, including LDAP and OAUTH22.

BC10, BC11, BC12,

BC13

2 Although not explicitly mentioned by use cases, support for authentication via SSSD and/or
Microsoft AD services may also be required.

