

VISDOM team September.2021

 1/16

 D2.2.1
Documentations of the data models

Version history

Version Date Author (Partner) Notes

0.1 31.08.2021 Kari Systä (TAU) Initial structure

0.2 06.08.2021 Kari Systä (TAU) Small fixes

0.3 07.09.2021 Aleksi Kytölä (VINCIT) Roadmapper tool section initial draft

0.4 07.09.2021 Lou Somers and
Roelof Hamberg
(CPP)

Text for CPP section

0.5 07.09.2021 Kari Systä (TAU) Added a candidate section for RUG demo

0.6 14/09/2021 Paris Avgeriou and
Yikun Li (RUG)

Drafted RUG demo section

0.7 22/09/2021 Duc Hong (TAU) Text for teaching case demo

0.8 30.09.2021 Ville Heikkilä (TAU) Text and diagrams for teaching case demo

0.9 04.10.2021 Kari Systä (TAU) Unification, summary, response to
comments.

0.10 11.10.2021 Ville Heikkilä (TAU) Cleaning teaching case demo text

1.00 12.10.2021 Kari Systä (TAU) Cleaned up, candidate for the deliverable

1 Introduction
This document follows the target set in the FPP

“In task T2.2 we define the data models needed by the demonstrators and their
visualization types but also in the analysis (see T2.3). The data models are
documented (D2.2.1) and supported by PoC implementations (D2.2.2).”

VISDOM team September.2021

 2/16

Thus, this document is organized according to the demos so that each demo is covered in
a separate chapter. The discussions cover the first generation of demos, that have been
shown e.g. at the first and second demo.

After presenting the demo cases some findings are summarized and directions for future
research are given.

2 Teaching demo

2.1 Short description of the demo
In the teaching use case, the identified main stakeholders are teachers, teaching
assistants and students. As these stakeholders have differing tasks and responsibilities on
the same course, they have individual information needs and thus, are presented with
different views into the data.

Based on a stakeholder interview, the main interest for teachers was identified to be
seeing how students’ progress over a course. Seeing the progress helps teachers to
evaluate if there are, for example, some difficult topics or bottleneck exercises that
require extra attention. However, teaching assistants are more interested in seeing the
current status of students during each course week and to be able to identify students
that might need help. Students, on the other hand, are likely interested to see how they
are progressing in relation to the course goals and how much work they are required to
do to achieve their personal goals.

The teaching demo is designed to show and pilot the above needs and builds around a
programming course, taught in Tampere University. The course consists of weekly
exercises, project works and an exam, and all course activities grant students points
towards the final course grade. Since there are usually from 100 to 300 students on the
course at a time, all the course material and exercise assignments as well as their
submission system with automatic grading are published in a learning management
system called Plussa (https://wiki.aalto.fi/pages/viewpage.action?pageId=159755451).
Students solve weekly exercises locally and push their solutions into their own code
repositories, hosted in the University’s GitLab instance. Therefore, Plussa works as the
main source of automatically collected data for the teaching demo, and GitLab serves as
another data source.

2.2 Used data sources and their data models
As the first implementation for the data backend for the teaching demo case, a data
fetcher implementation that collected all the course data from Plussa and GitLab was
used. The collected Plussa data included metadata about the exercises in the course and
points data about the students participating in the course. In the course, the exercises
were collected into modules which correspond to a calendar week with a total of 14
weeks in the course. The points data included exercise specific points that the students
received as well as all the submissions the students had made for each exercise. The

VISDOM team September.2021

 3/16

collected GitLab data included the exercise specific commit data that each student had
made.

The data fetcher preprocessed the collected data to conform to the data model described
in figure 1. The course points part of the data model matches closely to the data model
used in the Plussa REST API. Thus, most of the preprocessing involved tying the commit
data to the exercises. This preprocessed data was then stored to Elastic Search database
and used as the input for the visualizations. Only data from students who had given their
permission for the data collection was collected and all the data that could identify the
individual students was pseudonymised in a way that only someone who has teacher
access to the course in the Plussa system can find out the actual student identities.

Figure 1. The data model representing the current situation for each student in a course in the teaching
demo. Some additional metadata attributes that are not displayed here were also included in the data.

The data shown in Figure 1 is already rather far preprocessed for visualization; the intent
to follow the progress of the students has clearly affected the design. The actual domain
elements to be visualized are the structured representation of a student's tasks (module,
exercise), evaluation of the exercises and commits.

To make comparisons and predictions on how the students were progressing on the
ongoing instance of the course data about the earlier instances of the course is needed. A
summary (aggregated) data from earlier implementation is thus given to the visualization.
The data model of this is shown in Figure 2.

VISDOM team September.2021

 4/16

Figure 2. Data model used to represent the aggregated data from a course in the teaching demo. It contains
weekly information about performances of students grouped by the grade (0, 1, 2, 3, 4, or 5) they received

from the course.

This approach only works if the previous course instance has a similar module and
exercise structure as the new instance. In the teaching demo case the course instances
vary slightly but not enough to cause issues for this approach of comparing points and
other values between course instances.

Together the data models represented in figures 1 and 2 are given as input to the
visualizations. To be exact, for the course that is being visualized, one Course data
document following data model from figure 1 and one Aggregated course data document
following data model from figure 2 is the combined input data. The contained
information includes the student specific data list outlined in the D2.3.1 section 3.e.3,
though the cumulative and average values (items 3, 4, 6 and 7) are not given explicitly:

1. Number of completed tasks on a given week
2. Number of points gathered on a given week
3. Number of completed tasks cumulatively up to a given week
4. Number of points acquired cumulatively up to a given week
5. Number of commits per each submitted task per given week
6. Average number of commits per task up to a given week
7. Number of commits cumulatively up to a given week
8. History data from previous implementation on course

a. Grades of students from previous implementation
b. Number of tasks, points and commits from students at each given time

point

To be able to visualize the student data using the progress metrics defined in D2.3.2
section 2.e.3 the input data requires some further processing. For example, the module
specific cumulative, missed and relational points are calculated for each student at this
point. In the demo this processing is done in the visualization code each time visualization
is started. The data model described in figure 3 represents the data model created and
used by visualizations after they have combined the data from the ongoing course with

VISDOM team September.2021

 5/16

the aggregated data from the previous course instance and done the required data
processing.

Figure 3. Data model for the fully processed data that visualization applications use when visualizing the

course data in the teaching demo. Note, that the given data model might not match exactly to what is used in
the visualizations but includes the same content and links between the different items.

2.3 Lessons learned and guidance for next phases
The first demo concentrated on quick development of visualizations, and the data
backend was not paid too much attention. However, while implementing the visualization
we discovered the following problems:

● In some visualization use cases it is natural to use time measures relative to the
start of the project – sometimes it is more natural to use absolute calendar time.

● The data was complemented with metadata, and visualization code gets easily fixed
to ad hoc design of that metadata. Metadata needs should be part of the design of
data models.

● There is a "hyperparameter", which is the time length of each "round". This time
length would be the unit of the x-axis in visualizations. With this parameter, we can
shrink or extend the view of data, which can provide a better way to analyze the

VISDOM team September.2021

 6/16

data. This also brings the flexibility for visualizations, because the current solution
has the fixed time unit, which would not work appropriately when the time unit
changes

● Although the attribute-mapping method is the central factor to generate the
desired visualizations, the system configurations can increase the degrees of
freedom that the visualization would change the data representation significantly.
With the combination of attribute-mapping configuration, and the system
configuration, we can map a configuration to one of the previously developed
visualizations.

● Not all attributes can be mapped to any visualization variables. The property of
attributes can affect the way it can be displayed.

● The data adapter is important in the software, as without processing the raw data
first from the data fetcher, the time for the client for processing the raw data every
reload is noticeable.

● The creation of the combine data (shown in Figure 3) is a time-consuming operation
and slows down the initialization of the visualization.

3 Roadmap tool

3.1 Short description of the demo
VISDOM Roadmapper is a tool prototype that visualizes the roadmap of a SaaS product to
facilitate the discussion of what features or tasks should be completed next. The tool uses
customer and task models alongside work and value ratings as data to generate
visualizations to aid in the planning of the project roadmap.

3.2 Used data sources and their data models
The ER diagram below represents the data model that the Roadmapper tool uses
internally. Tasks can be imported into roadmaps from supported project management
tools (Trello, Jira) or they can be added manually.

The roadmap and customers are created by the Project Owner user. More users can then
be invited with chosen roles and can optionally be assigned as representatives for
customers.

Users submit value / work ratings for tasks via the applications web user interface.

VISDOM team September.2021

 7/16

Figure 4. Roadmapper data model entity-relationship diagram

Some of the concepts in the above Figure relate to the implementation of the tool. The
visualized domain data include the following four elements: Roadmap, Milestone, Task,
Task Rating, and Customer.

3.3 Lessons learned and guidance for next phases

VISDOM team September.2021

 8/16

It’s important to have a distinct roadmap from the project management tools available.
Developers tend to fall in the mode of thinking that the roadmap visualization is another
view on the Trello or JIRA tickets, but it is a tool for discussion on the business goal, the
big picture and technical dependencies. To discuss the latter we need to visualize the
dependencies somehow.

Often roadmapping is guided by the upcoming deals or the needs of the existing
customers. However, as the development of a SaaS system proceeds, we need to start
tackling the technical debt. Thus, it would be beneficial to add visualization of technical
debt payback on the roadmap. This helps to see the overall amount of the debt and see
how much it slows down the future development of new features. On the other hand, it
calms down the developers as they see that something is being done to handle the
technical debt.

4 Quality demo at Canon Production Printing

4.1 Short description of the demo
There are two dashboards involved:

1. Runtime Performance Trend Visualization

2. Visualization of example-driven development to track progress and regression
over time

The first one, the visualization of runtime performance trends is described in more detail
in D2.3.1. It shows for each software build the performance of the different image
processing algorithms as measured in the automated regression tests, corrected for the
speed of the test machine used.

The second one is a visualization dashboard to track progress and regression over time of
software development. The specifications of the functionality to be developed is
example-driven, largely inspired by behaviour driven development. The examples serve to
illustrate the main functionality on the one hand, and provide an overview for this, while
the examples are at the same time executed as tests on the developed software for each
build. The specifications in so-called feature files evolve with the developed software
product and are guaranteed to be in sync with each other.

4.2 Used data sources and their data models
The visualization of the runtime performance of image processing software uses
execution time data from the functional logging that is written during the regression tests
(as described in D2.3.1).

The data model can be visualized as in Figure 5:

VISDOM team September.2021

 9/16

Figure 6: data model of the runtime monitoring in the Canon demo.

After each build, a number of automated regression tests will be run. For each regression
test, the execution time taken by the different image processing algorithms is logged.
Also the name of the machine on which a test runs is logged to be able to correct for the
speed of its processor. The specific versions of the algorithms used in each test run can be
traced back via the build number.

In other words, the data to be visualized include Algorithm, its Timing, and Version. In
addition, the Build, Test Run and Test Machine are used, too.

The visualization of the example-driven development uses data of the development
repositories as well as data of build-time test results. The data model can be sketched as
in Figure 7.

VISDOM team September.2021

 10/16

Figure 7. Use of development repositories in the Canon case.

The Living Documentation Generator (LDG) combines multiple inputs to a single
dashboard overview, which is a collection of static HTML pages in the first version. The
.feature files contain plain text specifications in a structured language format also suitable
for test definition. The enriched scenario outputs are higher level explanations of the
supported scenarios, expressed in free Markdown format. Generated test results after
each build are combined by the LDG to update the dashboard.

4.3 Lessons learned and guidance for next phases
In order to increase the speed of tracing back the possible causes of sudden performance
drops, it is important to consider the performance visualization graphs on a regular basis
and keep track of changes in the algorithms.

The first version of the development dashboard is being used by the product owner. The
first request for useability is to have a slightly more fine-grained status of the features in
the overview to enable development tracking in a more natural way. Full traceability to
work item definitions in TFS is foreseen for the future.

5 Quality demo by Experis

5.1 Short description of the demo
The quality demo builds around a DevOps team that develops a product named PHE
developed in Experis (that consists in health & wellbeing services for their employees)
composed of two projects. These two projects consist of: (a) an application (APP) to be

VISDOM team September.2021

 11/16

deployed in the final users devices (named phe); and, (b) a set of services to be deployed
in a server that are consumed by the APP (named phe_server). Following DevOps
strategy, the team is composed of two connected teams, development team that is
responsible for the development of both products and operation and a team that is
focused on the services deployment. The source code and the backlog are managed
using GitLab. GitLab data is complemented by static (source) code analysis provided by
SonarQube and the continuous integration tool Jenkins. [From D3.4.2]

5.2 Used data sources and their data models
The data sources used are data from the PHE and PHE Server projects, Experis projects
dealing with health and wellness services for their employees.

The applications contain user data that is collected through activity wristbands, thus
generating a high volume of data to be processed.

The organization of this data is based on a relational BB that organizes this data to later
be processed and displayed.

Within the Visdom project, this data is analyzed through the solution proposed as
demonstrated since the relevant information is extracted from a DevOps environment,
which is treated and displayed through the QRapids tool where you can see the graphs of
each of the projects addressing issues of interest such as Bugs ratio, well defined issues,
comment ratio, duplication density, test performance, passed test percentage, etc.)

Below are the data sources and the quality model from which it starts.

Data sources:

Quality
Aspect

Factor Assessed
Metric

Description Calculation Raw Data Data Source

Maintainability

Code Quality Complexity Files below the
threshold of
cyclomatic
complexity (10 by
default)

Density of

non−complex

files

=Non−Complex

filesTotal

number of files

where a file is
complex if the
<cyclomatic
complexity> per
<function> is greater
than <10>.

Cyclomatic
complexity per
function of
each file, total
number of files

SonarQube

VISDOM team September.2021

 12/16

Maintainability

Code Quality Comments Files whose
comment density
is outside the
defined
thresholds (by
default 10%-30%)

Density of commented
files =Commented
filesTotal number of
files

where a file is
commented if the <
density of comment
lines> is between 10%
and 30% Density of
comment lines
=Comment lines(Lines
of code + Comment
lines)

Density of
comment lines
and lines of
code per each
file

SonarQube

Maintainability

Code Quality Duplication Files below the
threshold of
duplicated lines
percentage

Absence of
duplications=Files
without
duplicationsTotal
number of files

where a file has no
duplications if the <
density of
duplication> is less
than 5% Density of
duplication
=𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑
𝑙𝑖𝑛𝑒𝑠Lines

Duplicated
lines and lines
of code per file

SonarQube

 Software
Stability

Bug density Ratio of open
issues of the type
bug with respect
to the total
number of issues
within a
customized
timeframe

Ratio of bugs
=𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑛
𝑖𝑠𝑠𝑢𝑒𝑠/𝑖𝑛
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠/𝑟𝑒−𝑜𝑝𝑒𝑛𝑒𝑑
𝑜𝑓 𝑡𝑦𝑝𝑒
"𝑏𝑢𝑔"𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑜𝑝𝑒𝑛 𝑖𝑠𝑠𝑢𝑒𝑠/𝑖𝑛
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠/𝑟𝑒−𝑜𝑝𝑒𝑛𝑒𝑑
∗100

Total number
of issues (a.k.a.
tasks) per
status (e.g.,
open, done),
type (e.g., bug,
maintenance,
feature), and
timeframe
(e.g.,
current/last
month or
current/last
sprint)

Jira, GitLab,
Redmine,
Mantis

Productivity

Issues’
Velocity

Resolved
Issues’
Throughput

Density of issues
whose resolution
didn't take longer
than the defined
duration
threshold

=𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑠𝑢𝑒𝑠
𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇𝑜𝑡𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑠𝑢𝑒𝑠 𝑖𝑛
𝑎 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒

where the duration
threshold is user
defined

Total number
of issues with
resolved status
(e.g. sprint,
week, month)
and total
issues in
timeframe

Jira, Mantis,
GitLab

VISDOM team September.2021

 13/16

Development
Speed

Avg.
Automation
Duration

Density of
automated
tests that
didn't take
longer than
the defined
duration
threshold

=𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑡𝑒𝑠𝑡𝑠 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇𝑜𝑡𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑡𝑒𝑠𝑡𝑠 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛
𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒

where the
duration
threshold is user
defined

Every automated tests
with test duration
under a threshold,
and total number of
automated tests in
timeframe (week,
month, sprint, etc.)

Jenkins Avg.
Automation
Duration

Development
Speed

Build
performance

Density of
daily builds
that didn't
take longer
than the
defined
duration
threshold

=𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑏𝑢𝑖𝑙𝑑𝑠 𝑛𝑜𝑡
𝑡𝑎𝑘𝑖𝑛𝑔 𝑚𝑜𝑟𝑒
𝑡ℎ𝑎𝑛 𝑡ℎ𝑒
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇𝑜𝑡𝑎𝑙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑏𝑢𝑖𝑙𝑑𝑠 𝑖𝑛 𝑎
𝑔𝑖𝑣𝑒𝑛
𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒

where the
duration
threshold is user
defined

Every build with build
duration under a
threshold, and total
number of builds in
timeframe (week,
month, sprint, etc.)

Jenkins Build
performance

As for the extracted data model, it considers the possibilities based on the data sources as
explained in D2.3.1 which details the set of indicators aggregated in a quality model
where each level of the quality model provides an assessment of quality (these are
Quality metrics, quality factors and strategic indicators).

This demo is centered around the quality model composed of the above metrics. The
model as well as the visualization is based on the data of three categories. 1) static code
quality consists of Complexity, Comment Density and Number of Duplicated Lines, 2)
dynamic quality measured from the Reported Issues, 3) development speed as rate of
Automated Tests and number of Daily Builds.

Quality model

VISDOM team September.2021

 14/16

Figure 8. Quality models in the Experis demo.

As can be seen in the quality image of the model, it is based on data sources from GitLab,
Sonarqube and Jenkins where GitLab data is complemented by static (source) code
analysis provided by SonarQube and the continuous integration tool Jenkins (aspect that
was highlighted in D3.4.2).

On the other hand, as already explained in general terms in D2.3.2 metrics are being used
to measure the quality of the product, there are metrics for the quality aspects (which are
development progress, performance, external quality, code quality and compilation
status). These quality aspects can be combined to calculate the indicators used by the
DevOps team to assess the quality of the monitored products.

5.3 Lessons learned and guidance for next phases.
It should be noted that it has been possible to contrast the results with the original data
and that a more global vision of the results can be appreciated, i.e., where before the
focus was on individual issues, now there is a global vision that provides information with
context of the state of the developments, being able to know that, for example, if there is
technical debt, what it may be due to or that if the times are delayed with respect to the
planning, it can be easily observed where the main problems are to be found. In this way
we have obtained tests aligned with the DevOps philosophy where the shared and
horizontal information gives an extra in terms of development control as well as the
anticipation of solutions before the problems become evident.

6 Technical Debt demo at RUG

6.1 Short description of the demo
The demo tool consists of two components: the SATD classification tool and the SATD
visualization tool. The SATD classification utilizes a machine-learning (CNN-based)
approach to automatically identify SATD from source code comments, commit messages,
pull requests, and issue tracking systems. The SATD visualization tool is a web-based

VISDOM team September.2021

 15/16

application that uses the output from the SATD classification tool, processes it and
visualizes the results.

The tool is meant to be used by members of the development team in order for them to
obtain an accurate view of the system’s internal quality. It can show both snapshots of
the system’s technical debt, as well as its evolution over time, allowing software
engineers to look both at the big picture and zoom in on individual details (e.g. specific
technical debt items). It can be used during discussions about the software internal
quality, and particularly about prioritizing tasks to improve such quality, e.g. by means of
refactoring. The tool uses multiple sources (issues, pull requests, commits, code
comments) in order to provide a more complete picture of the system’s technical debt:
while none of the sources in itself is comprehensive in technical debt identification, by
combining the sources we can obtain a composite and rich view of internal quality
problems.

6.2 Used data sources and their data models
The data model is illustrated in the diagram below:

Figure 9. Data models of the Technical Debt visualization by RUG.

VISDOM team September.2021

 16/16

6.3 Lessons learned and guidance for next phases
Some preliminary usage of the tool by software practitioners has demonstrated that the
tool achieves its goal relatively well. The different visualizations provided allow both for
macroscopic and microscopic views on technical debt. Different stakeholders have been
able to use it without facing issues and were able to provide us evidence on the merit of
the tool. They also gave us some points for improvement. First, our SATD classification
approach does not differentiate between unpaid SATD and paid SATD. It is important to
extract all unpaid SATD items from different sources. Then developers can measure them
and prioritize the SATD repayment. Second, our approach does not tackle measuring the
identified SATD. Technical debt can be measured in terms of the risk it entails. Using this
property of SATD, we can prioritize certain items over others, indicating to developers to
focus more on what is important. We plan to improve on these two points in the next
iteration of the tool, as well as working further on the usability to ensure it can be used
off-the-shelf by software engineers.

7 Discussion and Conclusions

The five demos used the following domain concepts to be visualized:

1. Teaching: Module, Exercise, Exercise Grading, and Commit. (4)
2. Roadmap tool: Roadmap, Milestone, Task, Task Rating, Customer (5)
3. Canon: Algorithm, Timing, Build, Test Run and Test Machine. (6)
4. Experis: Complexity, Comment Density, Number of Duplicated Lines, Reported

Issues, rate of Automated Tests and number of Daily Builds (6)
5. RUG: Issues, Pull Requests, Commits, Code Comments (4)

The total number of input data types is 25 out of which only few (Issue, Commit, Task) are
shared among the demo cases.

The demos also vary between each other on how data has been processed for the
visualization. In the teaching demo case, the data is already pre-processed for the
visualization purposes. On the other hand, Experis and RUG demos assume that the data
is analyzed and visualization shows the analyzed data. Actually, in all of our demos the
visualizations want to use pre-processed data, but the nature of preprocessing varies.

These findings support the central idea of the VISDOM architecture: instead of aiming at a
general unified data models, we should define purpose-specific data-adapters and
maximize their reusability. As stated in D2.5.1 “Data adapters implement a two-way
adaptation. Firstly, it provides visualizations a uniform data model regardless of the data
source. As an example, the data adapter may facilitate visualization for similar "ticket"
data regardless of it being fetched from Jira or Trello. Secondly, data adapters may
provide different data for different types of visualizations. ” In addition to that, the
experiences from the first generation demos indicate that the adapters should be built
around some analysis and pre-processing so that visualization gets data that more closely
matches the actual concepts to be visualized.

