

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the

ITEA Declaration of Non-Disclosure.

D4.1 Mapping rules for blended

notations generation, bidirectional

synchronization, and co-evolution

BUMBLE

Blended Modelling for Enhanced Software and Systems

Engineering

2

BUMBLE

Project Acronyms

<ACR> <Acronyms>

BUMBLE Blended Modelling for Enhanced Software and Systems Engineering

DSML Domain-Specific Modeling Language

UML Unified Modeling Language

EMF Eclipse Modeling Framework

UML-RT UML for Real-time

EBNF Extended Backus-Naur Form

XML eXtensible Markup Language

XLST eXtensible Stylesheet Language Transformations

ETL Epsilon Transformation Language

MML Mapping modeling Language

ATL Atlas Transformation Language

PSS Portable test and Stimulus Standard

AMW Atlas Model Weaver

HOT Higher order transformation

MEO Mapping Ecore-OWL

RDF Resource Description Framework

DIML Diagram Interchange Mapping Language

MOF Meta-Object Facility

3

BUMBLE

Table of contents

1. Introduction 4

2. State of the art on mapping modeling/description 4

3. Explicit and implicit mapping of blended notations 6

3.1. Explicit mappings 6

3.2. Implicit mappings 7

4. A flexible mapping modeling language 8

5. Next steps 9

References 10

4

BUMBLE

1. Introduction

In this deliverable we report on the activities carried out as part of tasks T4.1 and T4.2 in WP4, in

particular for what concerns the definition, implementation, and validation via application to industrial

use-cases of a mapping language in the context of the Eclipse Modeling Framework (EMF).

In this scope, a mapping language is a structured and formalised means for precisely describing

mapping rules between two or more domain-specific modeling languages (DSMLs). In this context, a

modeling language is intended to be defined in terms of a metamodel.

The definition of a mapping language is pivotal for multiple activities in BUMBLE. Explicit mapping rules

enable us to link in a deterministic manner multiple DSMLs; in BUMBLE, the rules are a fundamental

input to:

1. correctly generate editors from a DSML definition. In this case the DSML is mapped to one or

more notation-specific DSMLs (see Section 3).

2. correctly synchronize models between two different DSMLs. In this case the DSMLs, which may

represent two different notations (in terms of abstract and concrete syntaxes), are mapped to

one another (see Section 4).

3. provide co-evolution mechanisms in terms of in-place model transformations for both generation

(WP3) and synchronization purposes (WP4-5).

Once the mapping language is defined and implemented, its instances (mapping models) will be used

as input to generation and synchronization transformations. More specifically, a mapping model

represents the guiding principle driving the transformation to properly generate correct information from

one model or to properly propagate changes across models. If defined at meta-metamodel level across

multiple DSMLs, mapping models could even be used for driving co-evolution across DSMLs (and

thereby notations).

The work and solutions described in this deliverable contribute to the project core requirements BC1,

BC4, BC9 (as described in D2.2).

The remainder of the deliverable is structured as follows. In Section 2 we provide an overview of the

state of the art in mapping modeling/description. In Section 3 we describe the actions and results in

relation to explicit and implicit mapping of blended notations, with direct application to multiple industrial

use-cases. In Section 4 we introduce a first version of our modeling language for flexible mapping and

outline the next steps in Section 5.

2. State of the art on mapping modeling/description

Various mapping languages have been proposed in the literature to support different model

management operations (e.g., model transformation, model migration, model integration). In the

following, we present these contributions, and highlight their advantages and disadvantages with

respect to our approach.

In [LHBJ06], authors propose a mapping metamodel based on the Eclipse Modeling Framework (EMF),

that supports mapping specifications between two metamodels. Moreover, they contribute with the Atlas

Model Weaver (AMW) tool, which simplifies mapping visualization, and enables the generation of

transformation models conforming to Atlas Transformation Language (ATL) from the mapping model. In

addition, AMW allows for the generation of a textual representation of the mapping model and validates

5

BUMBLE

the conformity of the latter to its metamodel. However, the mapping metamodel only provides one-to-

one, one-to-many, and many-to-one relationships, and restricts the specification of more complex

mappings (e.g., target metamodel contains elements that do not have a correspondence with any of the

elements of the source metamodel, thus, need to be created). Moreover, the AMW tool generates a

read-only textual representation of the mapping model and is restricted to the generation of ATL model

transformations. Ecore2Ecore1 is a plugin, distributed with EMF, that is originally implemented with the

goal of supporting metamodel evolution and is widely used for such purpose. Nevertheless, being that

it allows the definition of mappings between two metamodels, it can be used to define mapping models

that could serve as input to higher-order transformations (HOTs) UI and generate language-specific

model transformations. However, just like AMW, it does not provide a way for the user to specify more

complex mappings and it does not restrict correspondences that are not valid bindings.

In [HBL+08], authors propose a textual mapping language called MEO (Mapping Ecore-OWL) that aims

to enable the use of RDF resources as EMF objects and the serialization of EMF objects in RDF

resources. The approach is based on EMF, and it defines correspondences between the domain model

(conforming to Ecore), and the OWL ontology model. Moreover, it supports the generation of paired ATL

transformations from HOTs, which automates the process of defining a bridge between EMF objects

and RDF resources. However, the mapping metamodel is specific to OWL/RDF Resources.

In [KDSC14], authors propose a solution to enable the exchange of models between meta-modeling

tools, thus, supporting interoperability, and avoiding vendor lock-in. This approach uses bridges at the

metameta level to export metamodels from different environments into an intermediate one and uses

binding components to create tree-structures of the metamodels. The main contribution of this approach

is the graphical mapping language that is used to map between elements of the trees. Moreover, the

mapping language is used as input to the code generator that outputs Epsilon Transformation Language

(ETL) transformations. However, this mapping-based approach is focused on enabling the exchange of

models between different meta-modeling tools, and as such, it specifies mapping correspondences

between elements of meta metamodels, and generates model transformations for metamodels, while

our approach aims to specify mapping correspondences between elements of metamodels and

generate model transformations for models.

In [BBL08], authors propose Malan, a MApping LANguage that supports the definition of a schema

mapping, between a source and target data schema. The mappings can be defined both textually and

graphically (not simultaneously) using Papyrus. The graphical mapping is supported by the definition of

a UML profile that contains a stereotype that defines the mapping concept for UML. In addition, these

mappings are used as input to the Malan processor that generates a transformation. However, this

approach manifests a few limitations. To begin with, the source and target schema should be expressed

as UML class diagrams. Now even though UML is a widely used modeling language, and allows for the

definition of the mapping concept using UML profiles, this restricts the use of Ecore metamodels.

Moreover, the transformation program only generates XSLT stylesheets that convert XML documents

into XML, HTML, or plain text documents.

In [ZKK07], authors propose a solution for the integration of heterogeneous modeling languages that

incorporates both the definition of a mapping language and a rule definition language. Even though their

objectives differ from ours, being that the mapping language is defined independently from the rule

integration language, it can support other model manipulations (e.g., model transformations). However,

all metamodels (i.e., source, target, mapping, and integration) conform to the ADONIS meta-metamodel,

in order to avoid conflicts among metamodels. Unless we define mappings from the ADONIS meta-

metamodel to Ecore meta-metamodel, we cannot use Ecore models and metamodels.

6

BUMBLE

In [ALP06], authors propose DIML, a Diagram Interchange Mapping Language, that aims to define

mappings between elements of MOF-based modeling languages (e.g., UML), and Diagram Interchange

(DI) languages. DI is not restricted to UML, therefore, in a broad context, DIML can be used to create

and transform visual diagrams for various MOF-based DSMLs. However, DIML is still a specific-purpose

mapping language with a limited purpose of defining the concrete syntax of MOF-based modeling

languages, and cannot be applied to more generic examples.

3. Explicit and implicit mapping of blended notations

In this section we describe the actions and results in relation to explicit and implicit mapping of

blended notations, with direct application to multiple industrial use-cases (UC1, UC2, UC6, described

in D2.1).

3.1. Explicit mappings

As part of a prototype for the generation and synchronization of blended editors in the EMF, we designed

and implemented a mapping editor between input graphical and textual notations using Java and the

WindowBuilder library. The inputs to the mapping editor are represented by:

● A DSML defined in terms of Ecore (in EMF)

● A library of symbols for mapping to the specific graphical notation

● A set of textual concepts, extracted from a given EBNF grammar, for mapping to the specific

textual notation

Note that all these elements can be customized and replaced. More specifically, any DSML defined in

Ecore can be given as input to the editor. The library of symbols can be customized by removing and

adding symbols and the set of textual concepts can be any as long as it obeys to an EBNF grammar.

The mappings are saved in an ad-hoc XML format and it is used by another component of the prototype

as input for the implementation of synchronization mechanisms between graphical and textual notations.

In terms of reusability and portability, the mapping editor is flexible and can be used for any pair of

graphical and textual notations. Importantly, all the interface components are generated dynamically

through XML files. Figure 1 displays the graphical and textual notations from the related XML files that

are generated by the first component. Furthermore, it displays the repository of symbols to be associated

with the graphical notation through the XML mapping file (containing addresses and IDs of symbols)

and, therefore, other symbols specific to the domain can be added to the mapping editor with simplicity.

Furthermore, it provides AND/OR operators to define complex mappings between graphical and textual

elements (e.g. one graphical element may correspond to the combination of several textual elements

and vice versa). This mapping file is utilized to implement a corresponding EBNF grammar used for the

synchronization process.

In Figure 1 we show the mapping between the Portable test and Stimulus Standard1 (PSS) graphical

and textual notations, as well as the association of graphical symbols to the PSS concepts. More

specifically, the symbol with Id =1 and Name = Action is associated with the graphical action concept.

1
The Portable Test and Stimulus Standard (PSS) defines a specification to create a single representation of stimulus and test scenarios usable by

a variety of users across many levels of integration under different configurations. This representation facilitates the generation of diverse

implementations of a scenario that run on a variety of execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA
prototyping, and post-silicon. With this standard, users can specify a set of behaviors once and observe consistent behavior across multiple
implementations.

7

BUMBLE

The assigned symbol will be available in the blended modeling editor for the modeling of the graphical

action. On the other side, the textual syntax for action is specified as: action name {}. Subsequently, this

mapping between graphical and textual action can be added to the queue (grid). Similarly, the mapping

between graphical and textual notations for other PSS concepts, like buffer, objects, etc. is performed

and saved in an XML file as well.

Figure 1 - Mapping editor

3.2. Implicit mappings

A different approach to the explicit mapping editor approach in Section 3.1 is represented by the implicit

mapping rules that we encoded in a dedicated prototype for the synchronization of blended editors for

UML-RT state-machines. In this case, since both notations for UML-RT are defined a-priori and not

intended to be customized by the user, the mapping rules are embedded in the model transformations

in charge of the synchronization between graphical and textual notations.

In Listing 1 we depict an excerpt of the transformation in charge of propagating changes from graphical

to textual notation. Note that these transformations were implemented using ETL in EMF.

rule Trigger2Trigger

 transform s: Source!Trigger

 to t: Target!Trigger, mpt:Target!MethodParameterTrigger,m:Target!Method, pa:

Target!Parameter, pet: Target!PortEventTrigger,

p:Target!Port , e:Target!Event {

 if (s.name.matches(".*\\..*")){

 p.name = s.name.split("\\.").first();

 e.name = s.name.split("\\.").second();

 pet.port = p;

8

BUMBLE

 pet.event = e;

 }

 else if (s.name.matches(".*\\(.*")){

 m.name = s.name.split("\\(").first();

 pa.name = s.name.split("\\(").second();

 pa.name = s.name.split("\\)").first();

 mpt.method = m;

 mpt.parameter = pa;

 }

 else {

 t.name = s.name;

 }

 }

Listing 1 - Mappings implicitly defined in an ETL model transformation

As we can see in this specific rule, from an element of type Trigger in graphical UML-RT state-machine,

the transformation generates a textual element of type Trigger and a set of other elements composing

it. Although this is a transformation rule, it actually materializes a precise mapping rule between Trigger

in the graphical notation and Trigger in the textual notation. While this solution may be preferable in the

specific case where notations are not supposed to change or when the user is not intended to customize

mappings, it is not flexible enough for our final purpose being a flexible mapping modeling solution that

can be used for: generating blended editors, co-evolving them, and generate synchronization

transformations. Nevertheless, both explicit and implicit mappings shown in this section laid the ground

for the mapping modeling language described in the next section.

4. A flexible mapping modeling language

Given the experiences with mapping described in the previous section and in conjunction with the project

requirements (core requirements BC1, BC4, BC9, as described in D2.2), we created a mapping

modeling language (MML) defined as a metamodel, i.e. the most suitable form for our purposes. We

investigated different possible technological choices, more specifically Xtext and JetBrains MPS for a

textual mapping modeling language and Ecore for a tree-based mapping modeling language. Since the

core usages of MML would be to (i) support the definition of explicit mapping rules between DSMLs in

a user-friendly manner and (ii) provide a transformation-friendly input to generation of editors and

synchronization mechanisms, we opted for an implementation in Ecore. The additional advantage is that

a textual notation for it could be defined in Xtext exploiting the very same BUMBLE features.

In Figure 2 we depict the current version of the MML defined and implemented in Ecore. A

MappingModel is a tuple <name, input, output, Rules*>, where name is a unique model name, input is

the source EPackage (representing the root element of the source metamodel), output is the target

EPackage (representing the root element of the target metamodel), and finally Rules*, which is a

possibly empty set of elements of type MappingRule.

A MappingRule is in turn a tuple <name, action, input, output, ChildRules*>, where name is a unique

mapping rule name, action represents the type of mapping (i.e., transform, add, remove). input is a

possibly empty set of elements of type EObject (representing the source model element(s) to be mapped

from), output is a possibly empty set of elements of type EObject (representing the target model

9

BUMBLE

element(s) to map to), and finally ChildRules*, which is a possibly empty set of elements of type

MappingRule representing sub-rules of the current mapping rule. Sub-rules are intended to be helper

rules to the parent mapping rule.

Action is an enumeration with three mutually exclusive literals being:

● transform, used when a non-empty set of input elements in the source model are transformed

into a non-empty set of output elements in the target model;

● add, used when a non-empty set of output elements are added to the target model;

● remove, used when a non-empty set of input elements are removed from the target model.

While this action may seem redundant, since it would not lead to any action in case the two

models are conforming to different metamodels, it is a core feature in case the mapping rule is

used for an in-place transformation, where the target model is an “updated” version of the source

model (conforming to the same metamodel).

We have defined specific constraints in MML to enforce the correct type of Action to be selected

depending on the cardinalities of input and output in MappingRule. More specifically:

● transform, if input > 0 && output > 0

● add, if input == 0 && output > 0

● remove, if input > 0 && output == 0

Figure 2 - Mapping metamodel in Ecore

5. Next steps

We are currently exploiting the MML to design the higher-order transformations in charge of generating

synchronization transformations (see D4.2). MML will be employed in most automation aspects between

notations in EMF. We will continue validating MML by applying it to more use cases as well as by

formalizing mapping rules in MML between DSMLs of various nature.

10

BUMBLE

References

[ALP06] Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. A mapping language from models to di

diagrams. In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors, Model Driven

Engineering Languages and Systems, pages 454–468, Berlin, Heidelberg, 2006. Springer Berlin

Heidelberg.

[BBL08] Arnaud Blouin, Olivier Beaudoux, and Stephane Loiseau. Malan: A mapping language for the

data manipulation. In Proceedings of the eighth ACM Symposium on Document Engineering, pages 66–

75, 2008.

[HBL+08] Guillaume Hillairet, Frederic Bertrand, Jean Yves Lafaye, et al. Bridging emf applications and

rdf data sources. In Proceedings of the 4th International Workshop on Semantic Web Enabled Software

Engineering, SWESE, 2008.

[KDSC14] Heiko Kern, Vladimir Dimitrieski, Fred Stefan, and Milan Celikovic. Mapping-based exchange

of models between meta-modeling tools. 10 2014.

[LHBJ06] Denivaldo Lopes, Slimane Hammoudi, Jean B´ezivin, and Fr´ed´eric Jouault. Mapping

specification in mda: From theory to practice. In Interoperability of enterprise software and applications,

pages 253–264. Springer, 2006.

[ZKK07] Srdjan Zivkovic, H Kuhn, and Dimitris Karagiannis. Facilitate modeling using method

integration: An approach using mappings and integration rules. 2007.

	Project Acronyms
	Table of contents
	1. Introduction
	2. State of the art on mapping modeling/description
	3. Explicit and implicit mapping of blended notations
	3.1. Explicit mappings
	3.2. Implicit mappings

	4. A flexible mapping modeling language
	5. Next steps
	References

