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Project Acronyms 

<ACR> <Acronyms> 

BUMBLE Blended Modelling for Enhanced Software and Systems Engineering 

DSML Domain-Specific Modeling Language 

UML Unified Modeling Language 

EMF Eclipse Modeling Framework 

UML-RT UML for Real-time 

EBNF Extended Backus-Naur Form 

XML eXtensible Markup Language 

XLST eXtensible Stylesheet Language Transformations 

ETL Epsilon Transformation Language 

MML Mapping modeling Language 

ATL Atlas Transformation Language 

PSS Portable test and Stimulus Standard 

AMW Atlas Model Weaver 

HOT Higher order transformation 

MEO Mapping Ecore-OWL 

RDF Resource Description Framework 

DIML Diagram Interchange Mapping Language 

MOF Meta-Object Facility 
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1. Introduction 

In this deliverable we report on the activities carried out as part of tasks T4.1 and T4.2 in WP4, in 

particular for what concerns the definition, implementation, and validation via application to industrial 

use-cases of a mapping language in the context of the Eclipse Modeling Framework (EMF). 

In this scope, a mapping language is a structured and formalised means for precisely describing 

mapping rules between two or more domain-specific modeling languages (DSMLs). In this context, a 

modeling language is intended to be defined in terms of a metamodel. 

The definition of a mapping language is pivotal for multiple activities in BUMBLE. Explicit mapping rules 

enable us to link in a deterministic manner multiple DSMLs; in BUMBLE,  the rules are a fundamental 

input to: 

1. correctly generate editors from a DSML definition. In this case the DSML is mapped to one or 

more notation-specific DSMLs (see Section 3). 

2. correctly synchronize models between two different DSMLs. In this case the DSMLs, which may 

represent two different notations (in terms of abstract and concrete syntaxes), are mapped to 

one another (see Section 4). 

3. provide co-evolution mechanisms in terms of in-place model transformations for both generation 

(WP3) and synchronization purposes (WP4-5). 

Once the mapping language is defined and implemented, its instances (mapping models) will be used 

as input to generation and synchronization transformations. More specifically, a mapping model 

represents the guiding principle driving the transformation to properly generate correct information from 

one model or to properly propagate changes across models. If defined at meta-metamodel level across 

multiple DSMLs, mapping models could even be used for driving co-evolution across DSMLs (and 

thereby notations). 

The work and solutions described in this deliverable contribute to the project core requirements BC1, 

BC4, BC9 (as described in D2.2). 

The remainder of the deliverable is structured as follows. In Section 2 we provide an overview of the 

state of the art in mapping modeling/description. In Section 3 we describe the actions and results in 

relation to explicit and implicit mapping of blended notations, with direct application to multiple industrial 

use-cases. In Section 4 we introduce a first version of our modeling language for flexible mapping and 

outline the next steps in Section 5. 

 

2. State of the art on mapping modeling/description 

Various mapping languages have been proposed in the literature to support different model 

management operations (e.g., model transformation, model migration, model integration). In the 

following, we present these contributions, and highlight their advantages and disadvantages with 

respect to our approach.  

In [LHBJ06], authors propose a mapping metamodel based on the Eclipse Modeling Framework (EMF), 

that supports mapping specifications between two metamodels. Moreover, they contribute with the Atlas 

Model Weaver (AMW) tool, which simplifies mapping visualization, and enables the generation of 

transformation models conforming to Atlas Transformation Language (ATL) from the mapping model. In 

addition, AMW allows for the generation of a textual representation of the mapping model and validates 
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the conformity of the latter to its metamodel. However, the mapping metamodel only provides one-to-

one, one-to-many, and many-to-one relationships, and restricts the specification of more complex 

mappings (e.g., target metamodel contains elements that do not have a correspondence with any of the 

elements of the source metamodel, thus, need to be created). Moreover, the AMW tool generates a 

read-only textual representation of the mapping model and is restricted to the generation of ATL model 

transformations. Ecore2Ecore1 is a plugin, distributed with EMF, that is originally implemented with the 

goal of supporting metamodel evolution and is widely used for such purpose. Nevertheless, being that 

it allows the definition of mappings between two metamodels, it can be used to define mapping models 

that could serve as input to higher-order transformations (HOTs) UI and generate language-specific 

model transformations. However, just like AMW, it does not provide a way for the user to specify more 

complex mappings and it does not restrict correspondences that are not valid bindings. 

In [HBL+08], authors propose a textual mapping language called MEO (Mapping Ecore-OWL) that aims 

to enable the use of RDF resources as EMF objects and the serialization of EMF objects in RDF 

resources. The approach is based on EMF, and it defines correspondences between the domain model 

(conforming to Ecore), and the OWL ontology model. Moreover, it supports the generation of paired ATL 

transformations from HOTs, which automates the process of defining a bridge between EMF objects 

and RDF resources. However, the mapping metamodel is specific to OWL/RDF Resources. 

In [KDSC14], authors propose a solution to enable the exchange of models between meta-modeling 

tools, thus, supporting interoperability, and avoiding vendor lock-in. This approach uses bridges at the 

metameta level to export metamodels from different environments into an intermediate one and uses 

binding components to create tree-structures of the metamodels. The main contribution of this approach 

is the graphical mapping language that is used to map between elements of the trees. Moreover, the 

mapping language is used as input to the code generator that outputs Epsilon Transformation Language 

(ETL) transformations. However, this mapping-based approach is focused on enabling the exchange of 

models between different meta-modeling tools, and as such, it specifies mapping correspondences 

between elements of meta metamodels, and generates model transformations for metamodels, while 

our approach aims to specify mapping correspondences between elements of metamodels and 

generate model transformations for models. 

In [BBL08], authors propose Malan, a MApping LANguage that supports the definition of a schema 

mapping, between a source and target data schema. The mappings can be defined both textually and 

graphically (not simultaneously) using Papyrus. The graphical mapping is supported by the definition of 

a UML profile that contains a stereotype that defines the mapping concept for UML. In addition, these 

mappings are used as input to the Malan processor that generates a transformation. However, this 

approach manifests a few limitations. To begin with, the source and target schema should be expressed 

as UML class diagrams. Now even though UML is a widely used modeling language, and allows for the 

definition of the mapping concept using UML profiles, this restricts the use of Ecore metamodels. 

Moreover, the transformation program only generates XSLT stylesheets that convert XML documents 

into XML, HTML, or plain text documents. 

In [ZKK07], authors propose a solution for the integration of heterogeneous modeling languages that 

incorporates both the definition of a mapping language and a rule definition language. Even though their 

objectives differ from ours, being that the mapping language is defined independently from the rule 

integration language, it can support other model manipulations (e.g., model transformations). However, 

all metamodels (i.e., source, target, mapping, and integration) conform to the ADONIS meta-metamodel, 

in order to avoid conflicts among metamodels. Unless we define mappings from the ADONIS meta-

metamodel to Ecore meta-metamodel, we cannot use Ecore models and metamodels. 
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In [ALP06], authors propose DIML, a Diagram Interchange Mapping Language, that aims to define 

mappings between elements of MOF-based modeling languages (e.g., UML), and Diagram Interchange 

(DI) languages. DI is not restricted to UML, therefore, in a broad context, DIML can be used to create 

and transform visual diagrams for various MOF-based DSMLs. However, DIML is still a specific-purpose 

mapping language with a limited purpose of defining the concrete syntax of MOF-based modeling 

languages, and cannot be applied to more generic examples. 

 

3. Explicit and implicit mapping of blended notations 

In this section we describe the actions and results in relation to explicit and implicit mapping of 

blended notations, with direct application to multiple industrial use-cases (UC1, UC2, UC6, described 

in D2.1). 

3.1. Explicit mappings 

As part of a prototype for the generation and synchronization of blended editors in the EMF, we designed 

and implemented a mapping editor between input graphical and textual notations using Java and the 

WindowBuilder library. The inputs to the mapping editor are represented by: 

● A DSML defined in terms of Ecore (in EMF) 

● A library of symbols for mapping to the specific graphical notation 

● A set of textual concepts, extracted from a given EBNF grammar, for mapping to the specific 

textual notation 

Note that all these elements can be customized and replaced. More specifically, any DSML defined in 

Ecore can be given as input to the editor. The library of symbols can be customized by removing and 

adding symbols and the set of textual concepts can be any as long as it obeys to an EBNF grammar. 

The mappings are saved in an ad-hoc XML format and it is used by another component of the prototype 

as input for the implementation of synchronization mechanisms between graphical and textual notations. 

In terms of reusability and portability, the mapping editor is flexible and can be used for any pair of 

graphical and textual notations. Importantly, all the interface components are generated dynamically 

through XML files. Figure 1 displays the graphical and textual notations from the related XML files  that 

are generated by the first component. Furthermore, it displays the repository of symbols to be associated 

with the graphical notation through the XML mapping file (containing addresses and IDs of symbols) 

and, therefore, other symbols specific to the domain can be added to the mapping editor with simplicity. 

Furthermore, it provides AND/OR operators to define complex mappings between graphical and textual 

elements (e.g. one graphical element may correspond to the combination of several textual elements 

and vice versa). This mapping file is utilized to implement a corresponding EBNF grammar used for the 

synchronization process. 

In Figure 1 we show the mapping between the Portable test and Stimulus Standard1 (PSS) graphical 

and textual notations, as well as the association of graphical symbols to the PSS concepts. More 

specifically, the symbol with Id =1 and Name = Action is associated with the graphical action concept. 

 
1
The Portable Test and Stimulus Standard (PSS) defines a specification to create a single representation of stimulus and test scenarios usable by 

a variety of users across many levels of integration under different configurations. This representation facilitates the generation of diverse 

implementations of a scenario that run on a variety of execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA 
prototyping, and post-silicon. With this standard, users can specify a set of behaviors once and observe consistent behavior across multiple 
implementations. 
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The assigned symbol will be available in the blended modeling editor for the modeling of the graphical 

action. On the other side, the textual syntax for action is specified as: action name {}. Subsequently, this 

mapping between graphical and textual action can be added to the queue (grid). Similarly, the mapping 

between graphical and textual notations for other PSS concepts, like buffer, objects, etc. is performed 

and saved in an XML file as well. 

 

 

Figure 1 - Mapping editor 

3.2. Implicit mappings 

A different approach to the explicit mapping editor approach in Section 3.1 is represented by the implicit 

mapping rules that we encoded in a dedicated prototype for the synchronization of blended editors for 

UML-RT state-machines. In this case, since both notations for UML-RT are defined a-priori and not 

intended to be customized by the user, the mapping rules are embedded in the model transformations 

in charge of the synchronization between graphical and textual notations. 

In Listing 1 we depict an excerpt of the transformation in charge of propagating changes from graphical 

to textual notation. Note that these transformations were implemented using ETL in EMF.  

rule Trigger2Trigger 

   transform s: Source!Trigger 

   to t: Target!Trigger, mpt:Target!MethodParameterTrigger,m:Target!Method, pa:       

Target!Parameter, pet: Target!PortEventTrigger,       

p:Target!Port , e:Target!Event { 

   if (s.name.matches(".*\\..*")){ 

     p.name = s.name.split("\\.").first(); 

     e.name = s.name.split("\\.").second(); 

     pet.port = p; 
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     pet.event = e; 

   } 

  else if (s.name.matches(".*\\(.*")){ 

     m.name = s.name.split("\\(").first(); 

     pa.name = s.name.split("\\(").second(); 

     pa.name = s.name.split("\\)").first(); 

     mpt.method = m; 

     mpt.parameter = pa; 

   } 

   else { 

   t.name = s.name; 

   } 

 } 

Listing 1 - Mappings implicitly defined in an ETL model transformation 

 

As we can see in this specific rule, from an element of type Trigger in graphical UML-RT state-machine, 

the transformation generates a textual element of type Trigger and a set of other elements composing 

it. Although this is a transformation rule, it actually materializes a precise mapping rule between Trigger 

in the graphical notation and Trigger in the textual notation. While this solution may be preferable in the 

specific case where notations are not supposed to change or when the user is not intended to customize 

mappings, it is not flexible enough for our final purpose being a flexible mapping modeling solution that 

can be used for: generating blended editors, co-evolving them, and generate synchronization 

transformations. Nevertheless, both explicit and implicit mappings shown in this section laid the ground 

for the mapping modeling language described in the next section. 

 

4. A flexible mapping modeling language 

Given the experiences with mapping described in the previous section and in conjunction with the project 

requirements (core requirements BC1, BC4, BC9, as described in D2.2), we created a mapping 

modeling language (MML) defined as a metamodel, i.e. the most suitable form for our purposes. We 

investigated different possible technological choices, more specifically Xtext and JetBrains MPS for a 

textual mapping modeling language and Ecore for a tree-based mapping modeling language. Since the 

core usages of MML would be to (i) support the definition of explicit mapping rules between DSMLs in 

a user-friendly manner and (ii) provide a transformation-friendly input to generation of editors and 

synchronization mechanisms, we opted for an implementation in Ecore. The additional advantage is that 

a textual notation for it could be defined in Xtext exploiting the very same BUMBLE features. 

In Figure 2 we depict the current version of the MML defined and implemented in Ecore. A 

MappingModel is a tuple <name, input, output, Rules*>, where name is a unique model name, input is 

the source EPackage (representing the root element of the source metamodel), output is the target 

EPackage (representing the root element of the target metamodel), and finally Rules*, which is a 

possibly empty set of elements of type MappingRule. 

A MappingRule is in turn a tuple <name, action, input, output, ChildRules*>, where name is a unique 

mapping rule name, action represents the type of mapping (i.e., transform, add, remove). input is a 

possibly empty set of elements of type EObject (representing the source model element(s) to be mapped 

from), output is a possibly empty set of elements of type EObject (representing the target model 
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element(s) to map to), and finally ChildRules*, which is a possibly empty set of elements of type 

MappingRule representing sub-rules of the current mapping rule. Sub-rules are intended to be helper 

rules to the parent mapping rule. 

Action is an enumeration with three mutually exclusive literals being: 

● transform, used when a non-empty set of input elements in the source model are transformed 

into a non-empty set of output elements in the target model; 

● add, used when a non-empty set of output elements are added to the target model; 

● remove, used when a non-empty set of input elements are removed from the target model. 

While this action may seem redundant, since it would not lead to any action in case the two 

models are conforming to different metamodels, it is a core feature in case the mapping rule is 

used for an in-place transformation, where the target model is an “updated” version of the source 

model (conforming to the same metamodel). 

We have defined specific constraints in MML to enforce the correct type of Action to be selected 

depending on the cardinalities of input and output in MappingRule. More specifically: 

● transform, if input > 0 && output > 0 

● add, if input == 0 && output > 0 

● remove, if input > 0 && output == 0 

 

Figure 2 - Mapping metamodel in Ecore 

5. Next steps 

We are currently exploiting the MML to design the higher-order transformations in charge of generating 

synchronization transformations (see D4.2). MML will be employed in most automation aspects between 

notations in EMF. We will continue validating MML by applying it to more use cases as well as by 

formalizing mapping rules in MML between DSMLs of various nature. 
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