

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the

ITEA Declaration of Non-Disclosure.

D4.2 Synchronization of blended

notations
BUMBLE

Blended Modelling for Enhanced Software and Systems

Engineering

2

BUMBLE

Project Acronyms

<ACR> <Acronyms>

BUMBLE Blended Modelling for Enhanced Software and Systems Engineering

DSML Domain-Specific Modeling Language

UML Unified Modeling Language

EMF Eclipse Modeling Framework

UML-RT UML for Real-time

EBNF Extended Backus-Naur Form

XML eXtensible Markup Language

Alf Action language for foundational UML

ETL Epsilon Transformation Language

MML Mapping modeling Language

GMF Graphical Modeling Framework

PSS Portable test and Stimulus Standard

JAVACC Java Compiler Compiler

HOT Higher order transformation

DMA Direct Memory Access

SM State Machine

MOF Meta-Object Facility

Papyrus-RT Papyrus for Real-Time

QVT Query/View/Transformation

QVTo QVT operational

3

BUMBLE

4

BUMBLE

Table of contents

1. Introduction 5

2. State of the art on synchronization and HOTs 5

3. Synchronization solutions 6

3.1. Synchronization for Portable test and Stimulus Standard (UC1) 6

Input artefacts 7

Generation of graphical and textual syntaxes 8

Mapping and Synchronization 9

3.2. Synchronization for UML-RT State Machines (UC1, UC2) 13

3.3. Synchronization between system and software artefacts 15

3.4. Synchronization with DClare 17

4. HOTs for bidirectional synchronization 18

5. Next steps 20

References 21

Appendix 1 - UML-RT metamodels 22

5

BUMBLE

1. Introduction

In this deliverable we describe the core activities and results of task T4.3 in Work Package 4 (WP4).

More specifically, the theories defined in T4.1 and T4.2 in terms of mapping between DSMLs are

exploited to drive higher order transformations (HOTs), which are designed and implemented in T4.3,

to satisfy the core requirements BC1, BC4, BC9 (as described in D2.2).

HOTs are powerful transformations defined at the metamodeling level [TIS09]. Given two DSMLs and a

mapping model between them, HOTs are able to automatically generate bidirectional model

transformations for synchronizing models conforming to the two DSMLs . Specific HOTs will realize the

mapping rules defined in the previous tasks of the BUMBLE project (see D4.1).

The usage of HOTs entails at least three scenarios:

● Synchronization across different languages (either same or different notations)

● Synchronization across different notations of the same language

● Co-evolution mechanisms for models conforming to an evolving language

Except for specific synchronization with the transformation tool DClare (see Section 3.4) that also

applies to the MPS environment, the rest of this deliverable concerns synchronization in the context of

the Eclipse Modeling Framework (EMF), since the projectional nature of MPS requires a different kind

of synchronization mechanisms.

The remainder of this deliverable is structured as follows. In Section 2 we provide an overview of the

state of the art in synchronization including HOTs. In Section 3 we describe the actions and results in

relation to the solutions achieved in this WP for synchronization across notations as well as across

different modeling artefacts. All solutions have successfully been implemented (or are being

implemented) in industrial use-cases in BUMBLE. In Section 4 we introduce the usage scenarios and

the intended solutions for HOTs together with the selected technologies and the motivation behind those

choices. We conclude the deliverable by outlining the next steps in Section 5.

2. State of the art on synchronization and HOTs

Very little has been done in combined means for synchronised editing in both textual and graphical

syntaxes and customisation of the concrete syntaxes for MOF-based languages (including Ecore and

UML).

Synchronised editing in multiple (customisable) concrete syntaxes for non-MOF DSMLs can also be

realised with Qt (https://www.qt.io/) by using a model-view architecture where the 'model' reflects the

DSML concepts and any 'view' is actually an editor for some concrete syntax. However, Qt has no

support for DSML-based automation (e.g., autocompletion, validation), which means that a DSML

engineer needs to program most of it manually (although well supported by IDE tools).

Several research efforts have been directed to mixing textual and graphical modeling. A textual editor

for the Action Language for Foundational UML (Alf) has been developed based on Xtext [LAZ11].

In [AND07], the authors provide an approach for defining combined textual and graphical DSMLs based

on the AToM3 tool. Starting from a metamodel definition, different diagram types can be assigned to

different parts of the metamodel. A graphical concrete syntax is assigned by default, while a textual one

can be given by providing triple graph grammar rules to map it to its corresponding portion of the

common metamodel.

https://www.qt.io/

6

BUMBLE

Charfi et al. [CHA09] explore the possibilities to define a single concrete syntax supporting both

graphical and textual notations. Synchronization is provided only for a very small subset of UML while

we focus on generation of synchronization mechanisms from any Ecore-based DSML.

In [SCH08], the authors provide the needed steps for embedding generated EMF-based textual model

editors into graphical editors defined in terms of the Eclipse Graphical Modeling Framework (GMF). That

approach provides pop-up boxes to textually edit elements of graphical models rather than allowing

seamless editing of the entire model using a chosen syntax (i.e., blending). The focus of their solution

is on the integration of editors based on EMF, while the aim in BUMBLE, and specifically T4.3, is to

generate automatically synchronization mechanisms across existing Ecore-based textual and graphical

notations. Moreover, the change propagation mechanisms proposed by the authors are on-demand

triggered by the modeller's commit, while in BUMBLE we focus on on-the-fly change propagation across

the modeling views also.

Related to the switching between graphical and textual syntaxes, two approaches are proposed to ease

transformations of models containing both graphical and textual elements. The first is Grammarware

[WIM05], by which a model is exported as text. The second is Modelware [WIM05], by which a model

containing graphical and textual content is transformed into a fully graphical model. Transformation from

mixed models to either text or graphics is on demand rather than on-the-fly and the approach does not

allow concurrent editing. Mixed textual and graphical modeling can also be realised with Qt, where the

approach is to use a graphical environment with embedded textual editors. However, DSML engineers

would need to realise most of this manually. Mixed notations and the possibility to switch between them

are supported in JetBrains MPS for non-MOF DSMLs and rely on the principle of projectional editing.

There exist approaches for synchronising graphical and textual models via semi-automated

mechanisms in the form of synchronisation model transformations. These model transformations are, in

some approaches, also generated, thanks to HOTs [MAR15], which are though specific to the DSML at

hand. The aim of T4.3, and the work described in this deliverable, is to provide cross-DSML HOTs for

any Ecore-based DSML.

3. Synchronization solutions

In this section we describe the solutions achieved in this WP for synchronization across notations as

well as across different modeling artefacts. Note that the transformations described in this section are

not generated by HOTs, but they were manually written to gather a variegated set of blueprints for the

HOTs. All solutions have successfully been implemented (or are being implemented) in industrial use-

cases in BUMBLE (UC1, UC2, UC6, described in D2.1).

3.1. Synchronization for Portable test and Stimulus Standard (UC1)

In this section we describe a generic solution to support seamless runtime synchronization between

graphical and textual syntaxes for multiple DSMLs. The high-level architecture of this solution is shown

in Figure 1. The framework takes in input DSMLs in the form of: (i) metamodels defined in Ecor, (ii)

textual domain-specific languages (DSLs), or (iii) grammar portions. From them, it generates graphical

and textual notations automatically through the BUMBLE-M2T-metamodel and BUMBLE-Language-

Analyzer components, respectively. The generated graphical and textual notations are saved in an XML

format and serve as an input for mapping and synchronization activities.

7

BUMBLE

The BUMBLE-Mapping-Editor component is developed to define explicit mappings between graphical

and textual syntaxes. Mappings are also saved in an XML format and serve as an input for the

synchronization mechanisms. For runtime synchronization, mapping rules are materialized as an EBNF

grammar through the BUMBLE-EBNF-Generator component.

In the following we show the usage of the proposed framework for blended modeling and more

importantly synchronization of graphical and textual notations for the Portable test and Stimulus

Standard (PSS) use case.

Figure 1 - The high level architecture of proposed framework

Input artefacts

The proposed framework requires a textual DSL/grammar (plain text) and a metamodel (in Ecore) for

the generation of textual and graphical notations respectively. In our use case, PSS carries along a C++-

like DSL for the specification of test intents. The samples of PSS DSL are available in the PSS

specification1 and can be given as an input to our framework for the generation of textual notations for

PSS. On the other hand, a canonical metamodel for PSS was not available, to the best of our knowledge.

Therefore, we proposed such a PSS metamodel and implemented it using Ecore in EMF, as shown in

Figure 2. The main PSS concepts like actions, objects, resources etc. and their semantics are included

in the metamodel. This metamodel is given as an input to our framework for the generation of graphical

notations.

1https://www.accellera.org/downloads/standards/portable-
stimulus#:~:text=The%20Portable%20Test%20and%20Stimulus,of%20integration%20under%20differ
ent%20 configurations

8

BUMBLE

Figure 2 - PSS metamodel in Ecore

Generation of graphical and textual syntaxes

With the component “Generation of graphical and textual syntaxes” the user selects a DSL/grammar file

as an input through the “Browse” button and starts the generation of the required tokens (textual

notation) using the “Parse” Button. The generated grammar tokens can be saved in an XML file, which

is further utilized in the mapping process. This module is capable of generating textual notations for

different types of DSLs/grammars. For demonstration purposes, a grammar sample from the PSS DSL

is considered ,where an action is specified through input and output buffer types. The respective textual

notation (tokens) are generated and subsequently, saved in an XML file as shown in Figure 3.

Figure 3 - BUMBLE-M2T-metamodel component for the generation of graphical syntax

9

BUMBLE

For the generation of graphical notations, the BUMBLE-Language-Analyzer (Figure 4-a) is developed

via model-to-text transformations in Acceleo and Java. Particularly, it takes a metamodel as an input

and generates the corresponding graphical notation and semantic information in XML format. For

demonstration, the PSS metamodel is given as an input and the generated XML file is shown in Figure

4-b. This XML file is further utilized in the mapping process as described in the remainder of this section.

Figure 4-a - BUMBLE-Language-Analyzer Figure 4-b - PSS textual syntaxes in XML

Mapping and Synchronization

The domain expert’s feedback is crucial in the mapping process. For this purpose, a mapping editor is

developed as shown in Figure 5. In terms of reusability and portability, BUMBLE-Mapping-Editor is

flexible and can be used for any pair of graphical and textual notations. Importantly, all the interface

components are generated dynamically through the XML files. Particularly, it displays the graphical and

textual notations from the related XML files that are generated by BUMBLE-Language-Analyzer.

Furthermore, it displays the repository of symbols to be associated with the graphical notation through

mappings (containing addresses and IDs of symbols) and, therefore, other symbols specific to the

domain can be added to the mapping editor with simplicity. In addition, it provides AND/OR operators

to define complex mappings between graphical and textual elements (e.g., one graphical element may

correspond to the combination of several textual elements and vice versa). This mapping file is utilized

to generate the corresponding EBNF grammar for synchronization purposes.

10

BUMBLE

Figure 5 - BUMBLE Mapping Editor with PSS example

In Figure 6 we show the mapping between the PSS graphical and textual notations, as well as the

association of graphical symbols to the PSS concepts, as furtherly described in deliverable D4.1.

The BUMBLE-EBNF-Generator component is responsible for generating an EBNF grammar by utilizing

the mapping XML. This step is essential for seamless synchronization and switching between graphical

and textual notations. The JAVACC2 platform is used to implement this component. Few EBNF mapping

grammar rules for the PSS action and buffer concepts are given here for demonstration purposes:

Rule 1: <Action> : := <Graphical-Action> | <Textual-Action>

Rule 2: <Graphical-Action> : := <Name><Symbol> | <Name><Symbol><Relationship>(<Graphical-Data

Buffer>)*

Rule 3: <Textual-Action> : := action <Name> { } | action <Name> { (<Textual-Data Buffer>)* }

Rule 4: <Data Buffer> : := <Graphical-Data Buffer> | <Textual-Data Buffer>

Rule 5: <Graphical-Data Buffer> : := <Type><Name><Symbol>

Rule 6: <Textual-Data Buffer> : := <Type> data_buff <Name>;

Rule 7: <Relationship> : := Containment <Symbol>

Rule 8: <Name> : := ([a-z][A-Z][0-9])*

Rule 9: <Symbol> : := ([a-z][/][\][A-Z][0-9])*

Rule 10: <Type> : := input | output

For better understanding, consider a simple PSS DSL example where an action having two buffers is

defined as:

action mem2mem {

input data_buff src Buffer;

output data_buff dst Buffer;

}

Based on the aforementioned EBNF rules, a parsing tree of the given example is shown in Figure 6 and

is used to achieve seamless synchronization and switching between graphical and textual notations.

Please note that terminal symbols are displayed in orange boxes.

2 https://javacc.github.io/javacc/

11

BUMBLE

Figure 6 - Parsing tree of EBNF rules for PSS action concept

The implementation of EBNF is accomplished through the JAVACC platform as shown in Figure 7-a.

More specifically, all EBNF rules are implemented in a JAVACC template file (i.e. representing a

grammar). It is pertinent to mention that the implementation of EBNF is done as a service, so that it can

be easily imported in other tools for editor generation like Eclipse Sirius. To verify the EBNF service in

JAVACC, a test client application is also developed and shown in Figure 7-b. It provides an interface to

input textual or graphical syntaxes and subsequently calls the EBNF service to receive the equivalent

textual or graphical syntaxes accordingly as shown in Figure 7-b.

Figure 7-a - EBNF implementation in JAVACC Figure 7-b - Test client for EBNF Service

Finally, Eclipse Sirius is used to generate the blended modeling editor. The architecture of the editor

generation component is shown in Figure 8. In the first step, a graphical editor is generated in Sirius by

utilizing the PSS metamodel. In the second step, a textual view is incorporated in the graphical editor

for the specification of textual PSS. The blended modeling editor supports seamless synchronization

and switching between graphical and textual notations using Java services, model-to-text and text-to-

model transformations, and the Synchronizer component. Particularly, Java services are used to

communicate with the Synchronizer, while model-to-text and text-to-model transformations are

intermediate components to perform suitable propagation of model changes between graphical and

textual notations and display them in the blended modeling editor accordingly for seamless switching.

12

BUMBLE

Figure 8 - Architecture of editor generation component

The generated PSS blended modeling editor is shown in Figure 9. Particularly, it offers drag/drop

functionality for different PSS graphical elements (provided in a palette) with suitable symbols that were

chosen during the mapping process. The “Update Views” button is provided to synchronize the two

notations on-demand. The outcome of the synchronization process (i.e. Successful, Done with Errors

and Failed) is displayed too. Here, a simple PSS Direct Memory Access (DMA) example is considered

where an action (mem2mem) and two buffers (input source and output destination) are modeled

graphically, as shown in Figure 9. Subsequently, a seamless switching is performed via the “Update

Views” button to generate the corresponding textual syntax. After successful synchronization, a

component (dma_c) is defined textually and synchronization is performed to represent the dma_c

component graphically as shown in Figure 9.

Figure 9 - PSS Blended Modeling Editor

13

BUMBLE

3.2. Synchronization for UML-RT State Machines (UC1, UC2)

UML-RT is a real-time profile for UML that aims to simplify the ever-increasing complex software

architecture specification for real-time embedded systems and it relies on state machines for behavior

modeling. Most off-the-shelf UML modeling tools focus on graphical editing features and do not allow

seamless graphical--textual editing. To overcome this challenge, we define a textual notation for UML-

RT state-machines (SMs) and synchronize it with the graphical notations available in Papyrus-RT (open

source) and RTist (commercial tool from one of the BUMBLE’s partners, HCL). Note that in this section

we describe the solution for Papyrus-RT (UC1), which is orthogonal to the one in RTist (UC2).

Figure 10 provides a high-level architecture that includes all the components required to synchronize

between graphical and textual notations for UML-RT SMs and how they are connected together. In the

following, we provide the description for each of the components.

Figure 10: High-level architecture for the synchronization between the graphical and textual notations

for UML-RT state machines.

Ecore MMM: The Ecore meta-metamodel is a language that conforms to itself and is used to define

Ecore metamodels.

Metamodels: Metamodels (defined in Ecore) conceive the concepts, the relationships and well-

formedness rules that formalize how the meta-concepts can be legally combined for valid UML-RT SM

models. The UML-RT SMs use case consists of two metamodels that are used to define the graphical

and textual notations.

14

BUMBLE

- Graphical notation MM: The metamodel used to describe the graphical model for UML-RT

SMs is the underlying metamodel used in Papyrus-RT and it is available as open-source (the

metamodel in Ecore is depicted in Figure 15 in Appendix 1).

- Textual notation MM: The metamodel used to describe the textual model for UML-RT SMs is

defined manually using the Xtext language workbench (the metamodel in Ecore is depicted in

Figure 16 in Appendix 1). It takes into consideration i) the feedback from UML-RT’s customers

and architects in RTist, and ii) the UML-RT metamodel portion describing state-machines, as

blueprint. Moreover, the scope provider by Xtext is customized to only allow cross-references

for elements declared in the same model file, support the inheritance mechanism, and restrict

transitions to only cross-reference pseudo states and states that are on the same level of

nesting as the transition, or their immediate entry and exit points. Consequently, this

customization contributes to the enforcement of the UML-RT's modularity.

Models: In order to instantiate the textual and graphical notation metamodels, we create two models

(i.e., textual model and graphical model) respectively. These models will be used both as source and

target models, depending on the direction of the transformation.

Epsilon Transformation Language (ETL): ETL is a hybrid model transformation language that

provides both declarative execution schemes for simple transformations and imperative features for

supporting complex transformations. ETL Transformations are organized in modules that contain a

number of transformation rules that specify one source and target parameters.

ETL Transformations: In order to provide the synchronization mechanisms for UML-RT SMs, we define

two model-to-model unidirectional transformations. The transformations are exogenous and horizontal,

as the models are expressed in different modeling languages and reside in the same abstraction level.

The first step consists of identifying the mapping in order to determine which elements in the source

model are actually mapped into a corresponding element in the target model. The majority of elements

have a one-to-one mapping, as the modeling languages are conceptually similar. In such circumstances,

the transformation rules are rather straightforward and contain one source and one target parameter

(see Listing 1). On the occasions where one element in the source model is mapped to more than one

element in the target model, the transformation rules contain one source and multiple target parameters

(see Listing 2). Lastly, in the event of multiple elements in the source model mapping to one single

element in the target model, the transformation rules need to be defined separately as it is not possible

to define transformation rules with multiple source parameters (e.g., transformation rules for transitions

defined in the Textual2Graphical transformation).

Textual2Graphical: This transformation takes as input the textual model and produces as output the

graphical model. Listing 1 is an example of the transformation rule written in ETL for transforming a

Junction from the source metamodel (i.e., textual notation MM) into a JunctionPoint in the target

metamodel (i.e., graphical notation MM).

rule Junction2Junction

 transform s: Source!Junction

 to t: Target!JunctionPoint

 {

 t.name=s.name;

 }

Listing 1 - Textual2Graphical ETL rule

https://www.powerthesaurus.org/rather_straightforward/synonyms

15

BUMBLE

Graphical2Textual: This transformation takes as input the graphical model and produces as output

the textual model. Listing 2 shows an example of the transformation rule written in ETL for transforming

a Trigger from the source metamodel (i.e., graphical notation MM) into multiple types of Trigger in the

target metamodel (i.e., textual notation MM).

rule Trigger2Trigger

 transform s: Source!Trigger

 to t: Target!Trigger, mpt:Target!MethodParameterTrigger,m:Target!Method, pa:

Target!Parameter, pet: Target!PortEventTrigger,

p:Target!Port , e:Target!Event {

 if (s.name.matches(".*\\..*")){

 p.name = s.name.split("\\.").first();

 e.name = s.name.split("\\.").second();

 pet.port = p;

 pet.event = e;

 }

 else if (s.name.matches(".*\\(.*")){

 m.name = s.name.split("\\(").first();

 pa.name = s.name.split("\\(").second();

 pa.name = s.name.split("\\)").first();

 mpt.method = m;

 mpt.parameter = pa;

 }

 else {

 t.name = s.name;

 }

 }

Listing 2 - Graphical2Textual ETL rule

3.3. Synchronization between system and software artefacts

In this section we describe a solution for synchronization between system and software engineers and

thereby related (modeling) artefacts. Although the scenario originates from Saab's use case, the same

settings are common in companies dealing with software-intensive systems.

Problem: a SysML system model is created to describe the decomposition of the system into function

blocks that are then assigned to software or hardware components. Moreover, the intended functionality

of those components is modelled via behavioural diagrams (e.g., state machines) and internal block

diagrams. The software components are implemented in various ways, among which C++.

In the current state of practice, system engineers prepare handover presentations for the software

engineers based on excerpts of the system model that need to be implemented in e.g., C++. This is

time-consuming and thereby usually a one-time activity. The result is that throughout evolution of the

system, the system model and the software implementation diverge.

Solution: To ensure that the model can be used as accurate documentation of the implementation and

to ensure that the implementation correctly follows the plan as laid out in the system model,

synchronization between them is needed. Given the abstraction gap between the system model and

code, this synchronization cannot be completely automated (if there was enough detail in the model to

do so, the code would be automatically generated instead of manually implemented). Hence, we

propose to verify architectural guidelines and provide software engineers with insights into the model

16

BUMBLE

and conversely, system engineers with more insight into the implementation. The automated evaluation

of these guidelines provides faster feedback loops between the engineers.

We propose a bridge between the C++ IDE (JetBrains CLion) and the modeling tool (IBM Rational

Rhapsody). The code and model notations will be blended in the following two ways: 1) when editing

code in CLion, a software engineer will be able to see the related portion of the model she is editing.

For example, when editing a class, she will see the state machine in which that class is a state. 2) When

editing the model in Rhapsody, a system engineer will be able to see the related portion of the

implementation she is editing. For example, when editing a state machine, the related code showing the

class definitions corresponding to the states in that state machine will be shown. In both cases, the

additional information is aimed to be shown inside the IDE by means of plug-ins for CLion and Rhapsody,

thus blending the two notations. Figure 11 gives an overview of the proposed bridge and its constituent

components.

Figure 11 - System and software artefacts synchronization

There, the two Matcher items match specific code and model elements, as defined by the rules, and

store the mined elements in a generic common format as elements. In the current phase, we have

identified three initial architectural guidelines that must be checked. Correspondingly, we match code

repositories to system components in the model, classes in the code to states in the model, and specific

declarations in the code to events (signals) in the model. The dictionary is used to assist the matcher in

finding equivalent elements that are named differently in model and code (for example because there

can be no spaces in variable names in the code). Blending of the notations is shown in the figure as the

plugins for the two development tools, that will show the elements of the model/code.

As part of the study, we have performed a validation workshop (prior to starting implementation) with

engineers at Saab. Initial feedback of the engineers indicates a positive view of the proposed solution.

For example, a software engineer remarked that blending the notations would assist in improving

understanding of the model. “This will help me to learn to know the model and understand the model

17

BUMBLE

better. Currently, I don’t look at the model.” Another remark: “As a software engineer, this will help me

to see what has changed in the model and will give some help to see how complete the implementation

is.”

Based on the outcome of the validation workshop, currently a prototype implementation is being

developed, focusing initially on creating the mapping rules (see D4.1) required for mapping

implementation to model and vice versa. An important outcome of the validation workshop was that the

mapping rules should be made in such a way that they do not become another maintenance burden in

the development process (“As a system engineer I would be unhappy with maintaining rules if it means

to change a term in multiple places.”).

3.4. Synchronization with DClare

DClare realises blended modeling by transforming the abstract syntaxes of different modeling

languages. This is especially valuable in MPS where the synchronization of multiple concrete syntaxes

for a given abstract syntax is already supported by MPS itself. However, in MPS the abstract syntax is

very much driven by its concrete appearance in the editors. This implies that blending multiple concrete

syntaxes in MPS requires the transformation of multiple abstract syntaxes. This is exactly what Dclare

supports.

There is also a need for transformations between models of different Ecore-based models in EMF. That

is why we plan to realise model-transformations within EMF too. The engine is the same for EMF and

MPS. There is already an integration with MPS, a connector for EMF is still to be developed.

Figure 12 shows the basic architecture of DClare-based transformation specifications and executions.

The small dark blue rectangle is the connector that connects MPS models to the DClare engine. The

engine reacts to any change in the models and changes the opposite models according to the

transformation specification. The generator of MPS is extended to also generate the transformation rules

that are executed by the DClare engine.

Figure 12 - Transformations with DClare

18

BUMBLE

The specification of the transformation is based on attribute and rule specifications. Within MPS we

realised a so-called ‘language aspect’ for defining attributes and rules in MPS. The (meta)language for

this is an extension of the base-language of MPS itself. This guarantees easy adaptation by the MPS

community.

Figure 13 shows how transformations are defined in MPS using DClareForMPS rulesets.

Figure 13 - DClareForMPS in MPS

4. HOTs for bidirectional synchronization

The main objective of WP4 is to provide a set of HOTs to semi-automatically generate the

synchronization infrastructure, in terms of bidirectional model transformations, across concrete

syntaxes. Being able to automatically generate synchronization mechanisms through HOTs brings the

following advantages: (i) the solution is generic and not tailored to a specific DSML; (ii) the solution is

flexible and allows co-evolution in response to DSML evolution (since synchronization mechanisms are

not fixed but rather generated from the DSML metamodel, whenever the metamodel evolves, the

mechanisms can be incrementally re-generated from the evolved DSML); (iii) the definition of HOTs is

a one-time effort, which can then be transparently leveraged by developers to generate their own

synchronization infrastructure for a given DSML.

On the one hand, the use cases refined in WP2, the architecture and methodology defined in WP3, and

the visualization specific DSMLs and mapping models defined in WP3-WP4 will be exploited to define

the solutions in WP4 as well as to evaluate the resulting implementation. On the other hand, the

capabilities of the solutions defined in WP4 will influence the overall architecture and methodology

defined in WP3. We envision that results from WP4 (HOTs for the generation of synchronization

mechanisms from DSMLs) will be also exploited by WP5 for collaborative modeling.

19

BUMBLE

In Figure 14 we provide an architecture for the generation and usage of model transformations

generated via HOTs in BUMBLE. Given two DSMLs defined in terms of Ecore (in EMF), a mapping

model, conforming to the mapping metamodel defined in D4.1, conceives the mapping rules for

synchronizing models conforming to the two DSMLs. Interestingly, this architecture and the

transformations in it entail multiple usage scenarios, as follows:

- In case the DSMLs are two entirely disjoint (but somehow connected/dependent) languages,

the generated transformations provide synchronization across different languages (either

same or different notations).

- In case the DSMLs represent two notations of the same language, the generated

transformations provide synchronization across different notations of the language.

- In addition, in case DSML2 represents an evolution of DSML1, the generated transformations

provide co-evolution mechanisms for models conforming to DSML1.

Figure 14 - Architecture for HOTs and bidirectional synchronization

20

BUMBLE

In Figure 14 we can see the mapping modeling language (MML) described in D4.1, which is used to

formalize the mapping rules between DSML1 and DSML2 in a mapping model MMML. This model together

with the two DSMLs are given in input to our set of HOTs defined in Xtend. The output of the HOTs are

synchronization model transformations defined in QVT Operational. These model transformations are

then in charge of automated synchronization between two instances of DSML1 and DSML2, that is to

say MDSML1 and MDSML2. The type of transformation (i.e., endogenous, exogenous, out-of-place, in-place)

depends on the nature of the two DSMLs, as explained in the scenarios above.

Xtend was chosen as the language for implementing the HOTs for multiple reasons. First of all, it is a

flexible and expressive dialect of Java, and it compiles into readable Java 8 compatible source code. In

addition, any existing Java library can be used seamlessly. The compiled output is readable and pretty-

printed, and runs usually at least as fast as the equivalent handwritten Java code. Xtend provides

powerful macros, lambdas, operator overloading and several other modern language features. Finally,

Xtend is included in the Eclipse release train and follows all Eclipse releases.

For model transformations generated via our HOTs in Xtend we chose QVT Operational (QVTo), which

is an implementation of the Operational Mappings Language defined by MOF 2.0

Query/View/Transformation (QVT). The reasons behind this choice were first of all the fact that QVT is

a MOF standard, and since our focus is on MOF languages, a transformation language also based on

MOF is preferred. In addition, QVTo brings together benefits from both the declarative and imperative

QVT and it is very well-suited for both exogenous and endogenous transformations, also in-place.

Currently, we are implementing the HOTs described in this section. More specifically, we are isolating

the transformation concepts that will be embedded in the HOTs from the mapping information that will

be encoded as mapping rules in the mapping models leveraged by the HOTs.

5. Next steps

We will continue working on the synchronization of system and software artefacts since it requires

specific solutions based on consistency management. We will exploit results from other activities in all

tasks of WP4 for this. We are working on DClare for EMF to offer the powerful bidirectional

transformation means to Ecore-based metamodels too.

Regarding the core activity of the WP, namely T4.3, after implementing the HOTs, we will validate them

by exploiting the use-cases mentioned in this deliverable. Moreover, we will exercise them for the three

scenarios (i.e., sync across different notations, sync across languages, co-evolution) in order to fine

tune them.

21

BUMBLE

References

[AND07] Andrés, F. P., De Lara, J., & Guerra, E. (2007, October). Domain specific languages with

graphical and textual views. In International Symposium on Applications of Graph Transformations with

Industrial Relevance (pp. 82-97). Springer, Berlin, Heidelberg.

[LAZ11] Lazăr, C. L. (2011). Integrating Alf editor into UML editors. Studia Universitatis Babes-Bolyai,

Informatica, 56(3).

[AND07] Domain specific languages with graphical and textual views

[CHA09] Charfi, A., Schmidt, A., & Spriestersbach, A. (2009, June). A hybrid graphical and textual

notation and editor for UML actions. In European Conference on Model Driven Architecture-Foundations

and Applications (pp. 237-252). Springer, Berlin, Heidelberg.

[SCH08] Scheidgen, M. (2008, June). Textual modeling embedded into graphical modeling. In European

Conference on Model Driven Architecture-Foundations and Applications (pp. 153-168). Springer, Berlin,

Heidelberg.

[WIM05] Wimmer, M., & Kramler, G. (2005, October). Bridging grammarware and modelware. In

International Conference on Model Driven Engineering Languages and Systems (pp. 159-168).

Springer, Berlin, Heidelberg.

[MAR15] Maro, S., Steghöfer, J. P., Anjorin, A., Tichy, M., & Gelin, L. (2015, October). On integrating

graphical and textual editors for a UML profile based domain specific language: an industrial experience.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language

Engineering (pp. 1-12).

[TIS09] Tisi, M., Jouault, F., Fraternali, P., Ceri, S., & Bézivin, J. (2009, June). On the use of higher-

order model transformations. In European Conference on Model Driven Architecture-Foundations and

Applications (pp. 18-33). Springer, Berlin, Heidelberg.

22

BUMBLE

Appendix 1 – Excerpt of UML-RT metamodels

Figure 15 – Excerpt of the UML-RT metamodel in Ecore for graphical modelling in Papyrus-RT

Figure 16 – Excerpt of the UML-RT metamodel in Ecore for textual modelin in Xtext

	D4.2 Synchronization of blended notations
	Project Acronyms
	1.
	Table of contents
	1. Introduction
	2. State of the art on synchronization and HOTs
	3. Synchronization solutions
	3.1. Synchronization for Portable test and Stimulus Standard (UC1)
	Input artefacts
	Generation of graphical and textual syntaxes
	Mapping and Synchronization

	3.2. Synchronization for UML-RT State Machines (UC1, UC2)
	3.3. Synchronization between system and software artefacts
	3.4. Synchronization with DClare

	4. HOTs for bidirectional synchronization
	5. Next steps
	References
	Appendix 1 – Excerpt of UML-RT metamodels

