

BUMBLE Deliverable D3.2 (Version 1)

Architecture Description for BUMBLE MPS Platform

Edited by: BUMBLE Team

Date: November 2021

Project: BUMBLE - Blended Modeling for Enhanced Software and Systems Engineering

2

BUMBLE
Deliverable 3.2

Page 2 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

Contents

ACRONYMS .. 3

1. INTRODUCTION ... 4

2. JETBRAINS MPS AS BASE DSML TECHNOLOGY ... 5

2.1. Architecture Overview ... 5
2.2. Existing Support with respect to BUMBLE Features .. 7

2.2.1. Blended Syntaxes & Modelling (B) .. 7
2.2.2. Collaborative Modelling (C) .. 8
2.2.3. Evolution (E) .. 9
2.2.4. Traceability (T) .. 10
2.2.5. Model Non-Conformance (N) ... 11

3. BUMBLE EXTENSIONS TO JETBRAINS MPS .. 12

3.1. Real-Time Collaboration ... 12
3.1.1. Overview of Existing Technologies for Real-Time Collaboration 12
3.1.2. Architecture Description for UC4 (Cross-disciplinary Coupling of Models) 17

3.2. Contextual Integration .. 18
3.2.1. Architectural Description for UC4 (Cross-disciplinary Coupling of Models) 18
3.2.2. Architectural Description for UC7 (Multi- and Cross-Disciplinary Modeling Workbench) 19

3.3. Model Life-Cycle Management .. 21
3.3.1. Architectural Description for UC4 (Cross-disciplinary Coupling of Models) 21
3.3.2. Architectural Description for UC7 (Multi- and Cross-Disciplinary Modeling Workbench) 22

4. REFERENCES ... 23

3

BUMBLE
Deliverable 3.2

Page 3 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

Acronyms

AST Abstract Syntax Tree

B Blended Syntaxes & Modelling

BCx.y BUMBLE Common Core Requirement x.y

BTx.y BUMBLE Common Technical Requirement x.y

C Collaborative Modelling

Cx.y (Use Case) Core Requirement x.y

D Deliverable

E Evolution

EMF Eclipse Modelling Framework

GLSP Graphical Language Server Protocol

GUI Graphical User Interface

JVM Java Virtual Machine

LSP Language Server Protocol

ME Modelling Environment

N Model Non-Conformance

T Traceability

Tx.y (Use Case) Technical Requirement x.y

DSML Domain-Specific Modelling Language

IDE Integrated Development Environment

MPS Meta-Programming System

MVC Model-View-Controller

UC Use Case

VCS Version Control System

4

BUMBLE
Deliverable 3.2

Page 4 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

1. Introduction

This document describes the MPS-based architecture platforms for the BUMBLE technologies in

the various BUMBLE use cases that rely on exploiting Jetbrains MPS as core DSML techno logy.

Chaper 2 describes (some of) the basic principles and existing features of the Jetbrains MPS

technology to enable evaluating to what degree BUMBLE has to extend this base technology in

order to satisfy the various requirements identified in Deliverable D2.2. An architectural view on the

identified required extensions is described in Chapter 3 taking the context of the different use cases

into account.

Table 1 lists the BUMBLE Use Cases that consider Jetbrains MPS as the core DSML technology.

It also indicates whether Jetbrains MPS is the only considered core DSML technology. This

deliverable focuses on describing the architectures for the use cases that only consider MPS as

core DSML technology. The architecture for these use cases is covered in Deliverable D3.3, while

Deliverable D5.1 focuses specifically on architectures for real-time collaboration across language

workbenches where one of these language workbenches is Jetbrains MPS. As a result, Chapter 3

of this deliverable focuses on architecture-related considerations for UC4, UC7 and UC12.

Table 1. BUMBLE Use Cases that exploit Jetbrains MPS.

Use

Case
Description

Lead

Partner
MPS EMF

UC1 Software Open-Source Blended Modeling MDH X X

UC4 Cross-Disciplinary Coupling of Models Canon X

UC5 Reactive and Incremental Transformations across DSMLs MVG X X

UC7 Multi- and Cross-Disciplinary Modeling Workbench Sioux X

UC12 Agile V-model System Architecture Pictor X

5

BUMBLE
Deliverable 3.2

Page 5 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

2. Jetbrains MPS as Base DSML Technology

MPS (Meta Programming System) is an open-source language workbench developed by JetBrains

over the past 15+ years. It is exploited in academia and industry to implement domain -specific

languages for real-world applications [1]. A distinguishing feature with other language workbenches

is the concept of projectional editing. It supports almost unlimited language extension and

composition possibilities [2] as well as a flexible mix of a wide range of textual, tabular,

mathematical, and graphical notations [3]. Hence, it forms a perfect core DSML technology for the

BUMBLE project.

2.1. Architecture Overview

MPS relies on (a variant of) the fundamental principle of a Model-View-Controller (MVC)

architecture [4], which was first exploited in Smalltalk in the late 1970s [5] and recognized as a

generic programming paradigm in the late 1980s [6]. The MVC paradigm allows for one or more

views on any specific model element. While views can simply be representing a model element to

a user in a certain non-editable form using any kind of syntax, such a view can also allow

modification (in which case the view is usually called an editor). The crux of the MVC paradigm is

that all views are automatically updated when the content of the represented model element

changes, independent on which editor the modification was initiated from. This is generally realised

by using some form of a publish-subscribe mechanism implemented in the Controller aspect of the

MVC paradigm. Since there are many different ways to concretely implement such a publish-

subscribe mechanism, many concrete MVC architecture variants exist. Abstracting from the

Controller aspect, Figure 1 highlights the basic idea of how the MVC paradigm works. Note that, in

general, the view from which a modification is initiated is also subscribed to published updates,

where the Controller aspect prevents infinite looping (i.e., a request to change the value of the

model element to the value it already has is simply ignored).

It is easy to understand from Figure 1 that different views may or may not use different syntaxes to

represent a model element. Moreover, different views may in principle serve multiple users at the

same time instead of just a single user (as is traditionally the case when exploiting the Integrated

Development Environment (IDE) of MPS). Moreover, the MVC paradigm allows to physically

distribute where the model and views (and controller) reside. Hence, it matches well with a client -

server approach, where the model resides at the server side and the views a t the (multiple) client

side(s).

Nowadays, many programming languages and IDEs support the development of user interfaces

based on (variants of) the MVC paradigm. In particular, web applications exploit the MVC paradigm

given the nature of potentially having multiple browser instances (views) open (by a single or

multiple users) on the same content (model). Think of Google Docs as an example where multiple

users can view and edit the same content. Most frameworks for web applications adopt the MVC

paradigm. A key ingredient of frameworks supporting the MVC paradigm are the facilities provided

for the Controller aspect. This means that such frameworks generally minimize the amount of code

that needs to be written to realise the Controller aspect (think for example also of undo-facilities).

In the context of MPS, this allows DSML developers to focus on creating the DSML model and

views.

6

BUMBLE
Deliverable 3.2

Page 6 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

DSML User

View 1
(Projection)

Concrete Syntax A

View 2
(Projection)

Concrete Syntax B

View 3
(Projection)

Concrete Syntax B

View n
(Projection)

Concrete Syntax Z

DSML Persistence External Tool External Tool

Transform
DSML Model Instance
(Abstract Syntax Tree)

Validate

Figure 1. High-level impression of the Model-View(-Controller) paradigm underlying MPS. Red items

are provided as part of MPS while a DSML developer may require creation of relevant specifications

for the blue items depending on needs for a DSML context. Synchronization between views is

exemplified with the modify - update sequence, where update of the view from which the modification

originates does not imply further change. Depending on needs for a DSML context, transformations

can be initiated explicitly or implicitly (e.g., via modify actions) by the DSML user from any view.

In MPS, views are called projections, which explains the term projectional editing. Exploitation of

projectional editing in the context of DSMLs also implies a different user experience compared to

approaches that primarily rely on a parser-based approach as in many other language

workbenches. While projectional editing relies on modifying an Abstract Syntax Tree (AST) via

projections (see Figure 1), parser-based approaches rely on (re-)constructing an underlying AST

based on (re-)parsing a modified concrete syntax. To exemplify this, copy & paste actions from

external tools (such as an ordinary text editor) into MPS do not work by default (as a DSML user

might expect). A DSML developer can provide a means to support such actions, but this requires

extra development effort compared to language workbenches relying on a parser -based approach

where such copy & paste action matches naturally. The atypical user experience explains the steep

learning curve often expressed when adopting MPS.

BUMBLE relies on the possibility of combining the MVC paradigm as implemented in MPS with the

idea of having multiple concurrent users (instead of just one), possibly accessing the very same

model from a different environment (such as a web-based front-end), while exploiting any of the

available concrete syntaxes. Based on the requirements reported in D2.2, not all use cases require

the full capabilities of this and the different use cases do have somewhat different requirements to

realize this combination. Hence, this deliverable describes specific architectural considerations for

each use case.

7

BUMBLE
Deliverable 3.2

Page 7 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

2.2. Existing Support with respect to BUMBLE Features

This section evaluates to what extent MPS as core DSML technology satisfies the requirements

identified in D2.2 and where extensions are needed by reviewing each of the key BUMBLE features.

Table 2 gives a high-level summary of the evaluation results as described in this section.

Table 2. Summary of BUMBLE features supported by MPS out-of-the-box.

BUMBLE Feature Out-of-the-Box Support in MPS

Blended Syntaxes

& Modelling (B)

Yes, with textual, tabular, symbolic and basic graphical concrete

syntaxes. Further concrete syntaxes are supported with plugins

Collaborative

Modelling (C)

Yes for off-line collaboration supporting various version control systems

(extendable with plugins). No for real-time collaboration

Evolution (E) Yes for version control of DSML definitions and instances. Yes for co-

evolution of DSML instances when their DSML definition changes

Traceability (T) Yes with respect to version control and in terms of hyper-link like cross

referencing between multiple projections of a model element

Model Non-

Conformance (N)

Projectional editing automatically disables/prevents non-conformance.

Non-conformance may however prevail for interactions with

external tools, in which case the DSML user has to resolve issues

manually

2.2.1. Blended Syntaxes & Modelling (B)

As discussed in Section 2.1, MPS supports multiple concrete syntaxes out-of-the-box. A DSML

model instance resembles an Abstract Syntax Tree (AST) that conforms to the definition of the

DSML model. This AST is modifiable by any projection that may exploit different concrete syntaxes.

MPS supports textual, tabular and symbolic (mathematical) and basic graphical syntaxes such as

tree-alike and box-edge alike diagrams out-of-the-box. This can be extended by using plugins. An

example of such a plugin is the Diagrams plugin [7] by Itemis, which allows for the creation of more

sophisticated graphical editors. Since editors are defined on individual model elements, their

composition conform the AST allows mixing syntaxes in the composite projections that are

eventually shown to DSML users. The combination of these facilities exactly realize the BUMBLE

feature of blended syntaxes & modelling, thereby satisfying core requirements BC1 and BC3 and

the semantic aspect of core requirement BC4 identified in Deliverable D2.2. An example from UC4

is shown in Figure 2.

By default, MPS provides a reflective editor for a DSML definition, which will represent an AST

conforming to that DSML definition in a simple textual form. A basic editor with a slightly more

compact syntax can be generated automatically as well. When multiple editors are defined, the

DSML developer can specify which one to use by default. DSML users can always select a different

concrete syntax if desired. It is even possible to display multiple projections at the same time (where

synchronization between changes to the AST and all relevant projections becomes visible). With

8

BUMBLE
Deliverable 3.2

Page 8 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

the ability to define the composition of editors on model elements separate from the composition of

model elements according to the AST, it is possible to not represent model elements in a composite

projection. Having these facilities in MPS out-of-the-box completes satisfying core requirements

BC2 and BC4 in D2.2.

Figure 2. Example of blended syntaxes & modelling in MPS (From UC4).

By fully satisfying core requirements BC1, BC2, BC3 and BC4 identified in Deliverable D2.2, the

existing facilities provided by MPS do not require extension in the BUMBLE project. The use cases

can simply exploit these out-of-the-box facilities to realize their specific requirements. This includes

the development and use of plugins when further concrete syntaxes are needed to realise a use

case.

Technical requirements BT1 - BT10 in Deliverable D2.2 are also all satisfied out-of-the box by MPS.

With respect to BT7, cross-referencing between model elements is always at the level of the AST

and not at the level of any concrete syntax. Concerning BT9 and BT10, it is noted that validation

occurs also at the level of the AST and not at the level of any concrete syntax, see also Figure 1.

Notifications on validation errors are displayed in any projection that does not hide the relevant

model elements.

2.2.2. Collaborative Modelling (C)

The BUMBLE feature of collaborative modelling considers two variants, namely off -line

collaboration by exploiting a Version Control System (VCS) and real-time collaboration between

multiple users. In this section, we focus on real-time collaboration. Off-line collaboration is

considered in Section 2.2.3.

9

BUMBLE
Deliverable 3.2

Page 9 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

The IDE that comes with MPS is a desktop application intended to serve a single user at any time.

In other words, real-time collaboration between multiple users is not supported out-of-the-box.

Hence, core requirement BC5 and technical requirements BT14 and BT16 are not satisfied without

extension by the BUMBLE project. Extensions for real-time collaboration should also consider the

requirements on access control in Deliverable D2.2. As discussed in Section 2.1, MPS is however

amenable to extending towards supporting real-time collaboration without changes to the

fundamental MVC paradigm, which (to some extent) satisfies core requirement BC6 in Deliverable

D2.2. Section 3.1 evaluates possible existing alternative approaches that could be used to extend

MPS with real-time collaboration as part of the BUMBLE activities initiated for the various use cases

requiring this.

2.2.3. Evolution (E)

BUMBLE considers two aspects of evolution: version control of DSML instances and DSML

definitions, where the evolution of DSML definitions may imply breaking conformance of existing

DSML instances to an updated DSML definition. We first discuss relevant aspects of version control.

The IDE for MPS integrates version control out-of-the-box. Supported VCSs include git, svn,

mercurial and perforce. Further VCSs can be supported by means of plugins. By relying on

traditional VCSs, MPS provides traditional version control facilities including access control,

traceability, branching, diffing and merging. A key feature of MPS is that diffing and merging facilities

are provided at the level of the AST and all accompanying editors, validation rules and other typical

features of DSML technologies. Differences can be viewed at the level of a concrete syntax of

choice (depending on what editors have been defined) as illustrated in Figure 3. This is independent

of how a DSML is persisted in the version controlled files. These facilities satisfy requirements BC7,

BC8, BT19, BT20 and BT24 in Deliverable D2.2.

Figure 3. Example of diffing in MPS for a DSML with graphical syntax (From UC4).

Considering evolution of DSML definitions in relation to core requirement BC9 in Deliverable D2.2,

the IDE of MPS provides extensive facilities to allow DSML developers to create automated

migration of DSML instances that would no longer conform to an updated DSML definition. Although

non-conformance may occur, MPS cannot guarantee correct working of relevant DSML facilities in

such cases (see also Section 2.2.5) and hence, migration facilities are crucial in MPS. MPS provides

migration facilities to a DSML developer that allows implementing migration processes. This means

10

BUMBLE
Deliverable 3.2

Page 10 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

that core requirement BC9 and technical requirements BT21 are satisfied out-of-the-box. A DSML

user opening a DSML instance that has not yet been migrated to conform to the corresponding

updated DSML definition, will be notified about this (thereby satisfying technical requirement BT22

in Deliverable D2.2). In case of a migration need, DSML users can inspect the migration effect to

understand the implied differences, which satisfies technical requirement BT23 in Deliverable D2.2.

In some situations, automated migration may not be fully successful in which case the DSML user

is informed and has to take (manual) action to resolve remaining issues. MPS provides a means to

inspect such remaining issues, but in case such a situation occurs, it actually reflects improper

development / testing of the migration process by the DSML developer. In practice, the DSML user

might also be able to request the DSML developer for assistance in case such migration issues

would occur (not via MPS but via alternative support facilities that should be provided).

Since MPS satisfies all core and technical requirements regarding evolution described in

Deliverable D2.2, no extensions are needed by the BUMBLE project. It is however expected that

the combination of described facilities for evolution with the need for real -time collaboration in

certain use cases may require extensions for which no concrete requirements have been identified

yet. These may arise in subsequent versions of Deliverable D2.2 and if so, they will be considered

in the next version of this deliverable.

2.2.4. Traceability (T)

Different forms of traceability exist. Deliverable D2.2 does not specify requirements that are specific

to traceability alone. Traceability-requirements are always defined in the context of other

requirements.

Traceability in the context of version control is supported out-of-the-box in MPS by relying on

facilities of traditional VCSs together with the ability to inspect change histories. This means that

DSML users and DSML developers can trace what modifications were made when and by whom.

Hence, all traceability-related requirements identified in D2.2, except for the context of real -time

collaboration, are satisfied by MPS out-of-the-box.

Another form of traceability is the ability to trace from projections in which a model element is used

to the source where that specific model element is defined. Because such a model element is not

necessarily editable in all projections, it is desirable to be able to trace to its definition. MPS provides

hyperlink-like tracing within and across DSLs during model creation, see also Figure 4. In addition,

MPS provides a means to execute all kinds of search queries to find model elements.

Figure 4.Example of traceability between DSL elements in different projections (From UC4).

11

BUMBLE
Deliverable 3.2

Page 11 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

2.2.5. Model Non-Conformance (N)

Deliverable D2.2 does not specify common requirements on support for model non-conformance.

Nevertheless, it is good to clarify that MPS basically disallows and disables non-conformance of

any concrete syntax for an AST due to the nature of projectional editing. This may sound like a

limitation but it is actually an advantage. The main advantage is that all inputs to the model are

syntactically correct by definition. In case a need arises for capturing information in a DSML that is

not supported by its DSML definition, it means that the DSML definition must be extended. Given

testability and continuous integration capabilities of MPS DSMLs, the lead time of extension is very

short in practice, which makes this way of working quite feasible in many practical contexts.

In MPS, model non-conformance only plays a role in the context of interactions with external tools.

For example, a copy & paste action from an external tool into the language workbench may result

in inconsistencies with the DSML definition which subsequently have to be resolved by the DSML

user. It is possible to define parsers for this scenario in MPS and this may result in errors that will

have to be resolved. With respect to importing from external tools, see Figure 1, MPS provides the

ability to exploit the base language (a Java variant) to create parsers where responsibility to ensure

model conformance is put on the DSML developer creating the parser. There is no out -of-the-box

facility to generate a correct-by-construction parser, for example based on a grammar specification

(like the approach of XText). It is however possible to create such a facility as a plugin, e.g., by

using ANTLR-grammar based parsing. This could also serve the sketched copy & paste scenario.

Individual use cases do require interaction with other tools by parsing files and hence such a facility

could be useful. There is however no common requirement identified for this in deliverable D2.2.

As described above, model non-conformance can actually occur in MPS in the context of

interactions with external tools. We briefly describe some examples of possible causes for non-

conformance that may occur. Consider the flexibility one has for values of identifiers to distinguish

items of the same kind (think of giving names to classes in an object-oriented programming

language). The use of equally valued identifiers for different items of the same kind poses a problem

for parsers as they cannot distinguish between these items when they are referred to by other items

(think of instances of those classes) without help of the user. If such a situation would arise (e.g.

class A and class B are listed in sequence and then the order of A and B is swapped around in the

program listing), parsers may make an arbitrary choice and/or give an error. Another cause of non-

conformance may originate from lexers not being able to determine the boundary of tokens when

the value of identifiers includes white-spaces or other characters that are part of the concrete

syntax. On the other hand, these problems do not exist in an approach where the persistence of a

model is completely independent from the way the model is presented to a user in some view /

projection as shown in Figure 1 (one could consider persistence as a special view / projection that

is not used to interact with the user). In case resolving potential non-conformance cannot be

automated in lexers/parsers when creating or modifying DSML instances in MPS by importing

specifications in some concrete context (including the copy & paste scenario), a DSML user will

have to resolve the non-conformance issues manually. When considering the other direction, i.e.,

export of a DSML instance in MPS to an external tool, generators require of course to also resolve

the mentioned issues if the external tool does not support the described flexibility (e.g., by

generating valid identifier values instead of copying those provided by the user).

12

BUMBLE
Deliverable 3.2

Page 12 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

3. BUMBLE Extensions to Jetbrains MPS

Based on the evaluation of MPS in Chapter 2 in view of the requirements in Deliverable D2.2, this

chapter presents possible solution directions and the concrete architectural and technology choices

that have been made for the various use cases. We focus on three topics:

• Real-time collaboration (core requirement BC5 in Deliverable D2.2)

• Contextual integration (core requirement BC6 in Deliverable D2.2)

• Aspects of model life-cycle management (core requirements BC10-BC13 in Deliverable D2.2)

We remark that each of these topics is relevant for UC4, UC7 and UC12. The requirements in D2.2

imply however different technology choices for UC4, UC7 and UC12 as elaborated in this chapter.

Although UC12 does not express requirements on real-time collaboration and contextual

integration, Deliverable D2.2 lists core requirement C12.7 to need access via a web-page. Web-

access is not supported out-of-the-box but a solution direction could well be to exploit a web-based

extension for real-time collaboration. Technical requirements T12.1 and T12.2 in Deliverable D2.2

originate from the initial intention to select Eclipse as core DSML technology, which has however

been revised after Deliverable D2.2 was submitted. Support for importing EMF models into MPS

does exist, although this may not be sufficient in practice. Our assumption at the time of writing the

first version of this deliverable is that UC12 will be able to rely on MPS as-is (i.e., without extensions

to the existing architecture of MPS).

3.1. Real-Time Collaboration

This section describes architectural considerations to realize core requirement BC5 identified in

D2.2 for MPS. Section 3.1.1 gives an overview of relevant existing technologies that could be

exploited to realize core requirement BC5. The technology choice for UC4 is elaborated in Section

3.1.2. The technology choice for realizing real-time collaboration in UC7 strongly relates to realizing

requirement BC6 (contextual integration) and hence, the architecture for UC7 is described in

Section 3.2.2.

3.1.1. Overview of Existing Technologies for Real-Time Collaboration

As part of the BUMBLE activities, we have performed an investigation of available libraries and

frameworks in the context of collaborative software engineering without focusing on specific DSML

technology contexts. The technologies have been classified according to the features (see Table 3)

related to their technical details (dependencies, network architecture and editor type), functionalities

provided (diff/merge, offline support, language support, extensibility, data storage and workspace

awareness) and applicability in real-world scenario (license requirements and availability of

commercial support).

Table 3. Features selected for the classification of collaboration technologies.

Feature Explanation Possible Values

Dependancies Libraries or other frameworks required for

the technology to work

Free-text

Editor Type Type of editor provided by the approach

for editing the software artifacts

C(ode-editor), R(ich-text), P(lain-

text), W(eb-editor)

13

BUMBLE
Deliverable 3.2

Page 13 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

Feature Explanation Possible Values

Network

Architecture

The way in which the technology

organizes the network devices and

services to connect collaboration parties

C(entralized) → there is a single

server that contains all the

updates made by the clients

P2P → clients communicates

directly each other

M(ixed) → clients exchange

messages/editing operations

directly with each other, but

there is a central server (e.g.

used as common repository)

Diff / Merge Support for diffing and merging Y(es), N(o)

Offline

Support

Are the changes made offline to an

artefact preserved and uploaded later?

Y(es), N(o)

Language

Support

If the approach is tailored to support

collaboration modeling with some specific

language(s) or it provides some

mechanism to import/define user-defined

languages

Free-text

Extensibility If the used approach can be extended

with more functionalities (as plugins)

Y(es), N(o)

Data Storage Does the technology offer an online

storage from where the latest updated

document can be retrieved later?

Y(es), N(o)

Workspace

Awareness

Awareness support to other users

operations while they are working on the

same artifact/project

Y(es), N(o)

License Under which license is the technology

copyrighted?

Free-text

Commercial

Support

Do commercial parties exist that provide

support for the technology?

Y(es), N(o)

Table 4 provides an overview of the evaluated technologies (with a weblink), where an entry ‘?’

denotes that we have not been able to identify the appropriate value for the involved technology .

Out of the 22 technologies presented in Table 4, ProseMirror, Mondo, AtoMPM and Flame provide

dedicated collaboration over models. To summarize the findings of the table, we observed that most

of the technologies provide code or textual editors. This shows collaboration is more prevalent

during the development/coding phase of software engineering. Centralized network architecture is

more prevalent. Out of 22 technologies, seven provide diff/merge to facilitate the versioning of

collaborative software artefacts. It is encouraging that attention has been paid to offline support for

14

BUMBLE
Deliverable 3.2

Page 14 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

collaboration with 8/22 technologies already providing this feature. The ability to customize and

extend the existing technologies is required so that collaborating engineers can tailor the existing

technologies to their needs or use these libraries/frameworks inside their own tools. Half of the

studied technologies (11/22) provide this feature. Further, twelve technologies provide data storage

support and ten keep users aware of each other’s actions in the workspace.

Table 4. Libraries/Frameworks for collaborative software engineering.

T
e

c
h

n
o

lo
g

y

D
e

p
e

n
d

e
n

c
ie

s

E
d

it
o

r
T

y
p

e

N
e

tw
o

rk

A
rc

h
it
e

c
tu

re

D
if
f

/
M

e
rg

e

O
ff

li
n

e
 S

u
p

p
o

rt

L
a

n
g

u
a

g
e

 S
u

p
p

o
rt

E
s
te

n
s
ib

il
it
y

D
a

ta
 S

to
ra

g
e

W
o

rk
s
p

a
c
e

A
w

a
re

n
e

s
s

L
ic

e
n

s
e

C
o

m
m

e
rc

ia
l

S
u

p
p

o
rt

DerbyJS
node.js

MongoDB
- ? N Y node.js Y Y N MIT N

ShareDB node.js - C N Y node.js ? Y Y MIT N

Convergence docker C,P,R C N Y
Javascript

Scala
Y Y Y MIT Y

Meteor node.js ? C N N Javascript Y Y N MIT Y

Ace Editor None C ? N N
45

Languages
Y N Y ? Y

Slate Yarn R ? N N
Language

Agnostic
Y Y ? MIT ?

socket.io None - C N Y

Java, C++,

Swift,

Dart,

Python,

.NET,

Rust,

Golang

? N Y MIT Y

CollaborativeJS

npm or

bower or

Yarn

- C N Y Javascript N ? N MIT N

RethinkDB

gcc or

clang,

protocol

buffers,

jemalloc,

ncurses,

boost,

python 2,

libcurl,

libcrypto,

libssl-dev

-

Cloud

(Own or

Internet)

N N

Ruby,

Python,

Java,

Javascript,

node.js,

C# / .NET,

Go, PHP

N Y N
Apache

2.0
Y

ProseMirror npm R C Y N
Language

Agnostic
Y N ? MIT Y

https://www.derbyjs.com/
https://github.com/share/sharedb
https://convergence.io/
https://www.meteor.com/
https://ace.c9.io/
https://docs.slatejs.org/
https://socket.io/
https://github.com/collaborativejs/collaborative-js
https://rethinkdb.com/
https://prosemirror.net/

15

BUMBLE
Deliverable 3.2

Page 15 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

T
e

c
h

n
o

lo
g

y

D
e

p
e

n
d

e
n

c
ie

s

E
d

it
o

r
T

y
p

e

N
e

tw
o

rk

A
rc

h
it
e

c
tu

re

D
if
f

/
M

e
rg

e

O
ff

li
n

e
 S

u
p

p
o

rt

L
a

n
g

u
a

g
e

 S
u

p
p

o
rt

E
s
te

n
s
ib

il
it
y

D
a

ta
 S

to
ra

g
e

W
o

rk
s
p

a
c
e

A
w

a
re

n
e

s
s

L
ic

e
n

s
e

C
o

m
m

e
rc

ia
l

S
u

p
p

o
rt

Automerge ? -
Network

Agnostic
Y Y

Language

Agnostic
?

Stores

Change

History

N MIT Y

yjs None R P2P N Y
Language

Agnostic
? N N MIT Y

Fluid node.js - Distributed N Y
Javascript,

TypeScript
N Y N MIT N

WebEditKit

MPS,

MPSServer

Plugin

Projectional ? N N
Language

Agnostic
N N ?

Apache

2.0
Y

TogetherJs
JS Library,

HTML
W C N N JavaScript Y N Y

Monzilla

2.0
Y

Mondo None Graphical C Y Y
Language

Agnostic
Y Y Y EPL 2.0 N

Collaboro

JRE 1.6 or

newer,

Eclipse 3.6

or newer,

EMF 3.7 or

newer,

Eclipse

Graphviz

Tabular C Y N
Language

Agnostic
Y Y Y EPL 1.0 N

AtoMPM

Python,

python-

igraph,

phython-

socketio,

node.js

Graphical C Y N
Language

Agnostic
Y Y Y

LGPL

3.0
N

Flame ? Graphical C Y N XTEAM Y Y Y MIT N

Modelix

MPS,

docker,

gradle

- C N N
Language

Agnostic
N Y Y

Apache

2.0
Y

Jetbrains RD

.NET

framework

or gradle

6.2.2, or

git, cmake,

Vistual

Studio

2015+ or

clang 6.0+

- ? N N Kotlin, C# N N ?
Apache

2.0
Y

https://github.com/automerge/automerge
http://y-js.org/
https://bestofjs.org/projects/fluid
https://github.com/Strumenta/webeditkit
https://togetherjs.com/
http://mondo-project.github.io/
https://github.com/SOM-Research/collaboro
https://atompm.github.io/#home
https://www.flamedesign.org/
https://github.com/modelix/modelix
https://github.com/JetBrains/rd

16

BUMBLE
Deliverable 3.2

Page 16 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

T
e

c
h

n
o

lo
g

y

D
e

p
e

n
d

e
n

c
ie

s

E
d

it
o

r
T

y
p

e

N
e

tw
o

rk

A
rc

h
it
e

c
tu

re

D
if
f

/
M

e
rg

e

O
ff

li
n

e
 S

u
p

p
o

rt

L
a

n
g

u
a

g
e

 S
u

p
p

o
rt

E
s
te

n
s
ib

il
it
y

D
a

ta
 S

to
ra

g
e

W
o

rk
s
p

a
c
e

A
w

a
re

n
e

s
s

L
ic

e
n

s
e

C
o

m
m

e
rc

ia
l

S
u

p
p

o
rt

(Distributed)

DClare
Maven - - N - - N N N

LGPL

3.0
Y

Saros Eclipse P P2P N N Java N N Y GPL 2.0 Y

Considering the BUMBLE use cases, Modelix, Jetbrains/rd and (Distributed) DClare are considered

as most promising technologies and WebEditkit appears to be a potential candidate to realise real -

time collaboration in case of using MPS as core DSML technology:

• Modelix is a real-time collaboration extension to Jetbrains MPS developed by Itemis. It

consists of a collection of cooperating docker images and a plugin for the IDE that comes with

MPS. It offers DSML users the ability to collaborate on MPS projects in real -time. Modelix is

still in relatively early stages of development, but far enough to be installed and experimented

with. Modelix has been selected to realize the requirements on real -time collaboration in UC4

(MPS only) and UC1 (EMF and MPS). Section 3.1.2 describes the architecture of Modelix in

the context of UC4. UC1 exploits Modelix to realize real-time collaboration across language

workbenches, which covers the work on Parsafix and its generalization. An architecture

description regarding real-time collaboration in this context is provided in Deliverable D5.1.

• Jetbrains RD is a Reactive Distributed communication framework for .NET, Kotlin and C++.

Inspired by the JetBrains Rider IDE, the framework contains several libraries for single process

usage and cross-process communication. For instance, the library Lifetimes provides

concurrency and reactive programming, RdFramework is a networking library for reactive

distributed communication, RdFramework.Reflection is a plugin used for defining models

(using C#) and RdGen generates stub classes by Kotlin DSL models. Jetbrains RD has not

only been selected to address the requirement of real-time collaboration in UC7 but also

specifically to address the requirements regarding contextual integration between MPS with

Supermodels as explained in Section 3.2.2.

• (Distributed) DClare is being developed by the Modeling Value Group B.V. DClare is a general

purpose declarative language based on Java. The aim of DClare is to unlock multi -processor

capabilities and reduce program threading. The DClare concepts have been inspired by Object

Oriented Programming, functional programming, Object Oriented Modeling and Spreadsheets.

Currently, functionality is being added to DClare to synchronize changing models between

multiple modeling-environments across the internet. The DClare-based solution will not contain

a central repository. The first integration of this functionality will be part of DclareForMPS,

enabling multi-user editing of models in MPS. Support for (bidirectional) transformations

between different languages in Dclare is also being added. Enhancement of (Distributed)

DClare is the core of UC5 (covering both EMF and MPS) and is reported on in Deliverables

D3.3, D3.7, D4.2 and D5.1.

https://github.com/ModelingValueGroup/dclare
https://github.com/ModelingValueGroup/dclare
https://www.saros-project.org/

17

BUMBLE
Deliverable 3.2

Page 17 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

• WebEditkit is a typescript framework for creating projectional editors, running in browsers,

which interact with JetBrains MPS. The editors are then able to get information from

MPSServer and present it, react to changes from MPSServer and communicate changes

performed by the user to MPSServer. The ultimate goal of WebEditkit is to make all internal

MPS APIs available remotely. It brings the MPS to the web in an effort to better facilitate the

integration of MPS with other systems, easier installation and more usability for users. For

WebEditkit, MPS needs to be used together with the MPSServer plugin. WebEditkit will be one

of the potential target collaboration technologies to be integrated into the generic collaboration

solution whose architecture is discussed in Deliverable D5.1.

Apart from the collaboration technologies discussed above that will be experimented with in the

BUMBLE project, the Graphical Language Server Protocol (GLSP) will be used as a communication

protocol to realize real-time collaboration between client and server in WP5 (discussed in

Deliverable D5.1). GLSP defines a Language Server Protocol (LSP) for diagrams and integrates

well with existing tool chain and business logic.

3.1.2. Architecture Description for UC4 (Cross-disciplinary Coupling of Models)

MPS comes with a high-end IDE that is well suited for the development and exploitation of DSMLs

in an industrial context. This IDE is a stand-alone single-user desktop application. Its users include

DSML developers creating DSML definitions with accompanying functionalities and DSML users

that create and exploit instances of such DSML definitions. The appearance of the IDE can be

customized to ease usage for DSML users (e.g., as a Rich Client Platform). This helps in reducing

the learning curve that is often experienced and in only covering the specific functionality relevant

for DSML users.

DSMLs at Canon Production Printing often represent domain-specific interfaces between models

from different engineering disciplines. This is also the case for the DSMLs in UC4. Such interfaces

would benefit from the ability to collaboratively update DSML instances in a similar fashion as

Google Docs and Microsoft Office 365 support for office documents. Real -time collaborative

modeling would benefit from a web-based front-end for, in particular, DSML users. A server-based

deployment would also ease version control for DSML users unfamiliar with traditional software

technologies such as git, svn etc and terminology for version control. In addition, it eases updating

any involved tools in case of DSML (co-)evolution. This includes, for example, tools for automated

code generation, build, and test tool chains, as well as visualization and underlying analysis

engines.

Canon Production Printing has selected Modelix by itemis as means to realize real-time

collaborative blended domain-specific modeling. Modelix exposes the views and editing capabilities

of a DSML model that is defined in the IDE that comes with MPS [8] inside a web-page. Figure 5

shows a high-level overview of the combination of the desktop IDE of Jetbrains MPS and Modelix

[9]. It relies on the DSML model instance being accessible on a central server. The DSML model

instance can be accessed with the existing IDE, using the Modelix plugin for Jetbrains MPS. The

DSML model instance can, at the same time, also be accessed via a web-based front-end in a

DSML user’s web browser. The idea is that execution of DSML facilities such as model

transformations and code generation run on the server, while viewing and editing models should be

as simple as opening a webpage. This is relevant since engineers of all engineering disciplines are

expected to exploit the DSMLs for which tooling is realized using MPS. However, engineers with

little or no affinity for software development have many difficulties in adopting the IDE, even as

DSML users. The exploitation of Modelix allows for highly customized web-based Graphical User

18

BUMBLE
Deliverable 3.2

Page 18 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

Interfaces (GUI) with a domain-specific look-and-feel that is much closer to that of domain-specific

tools currently used.

Generic technology

Deployed on Server

DSL Viewer/Editor
(Jetbrains MPS)

DSL Viewer/Editor
(Web-Browser)

Model Client UI Client

UI Server

Model Client

Model Server

Deployed on Workstation Deployed on Workstation

DSL Model Instance

Modelix

MPS

Legend

Generic technology

Figure 5. Architecture for UC4 combining MPS and Modelix.

The approach of Modelix shown in Figure 5 has the major benefit that existing DSMLs defined with

MPS can be used in a real-time collaborative way without requiring the DSMLs to be redeveloped

in a different technology such as Javascript. In addition, the existing IDE can still be used by DSML

users that are already familiar with it as it integrates seamlessly. These considerations led to

choosing Modelix to realize core requirement BC5 in Deliverable D2.2 the context of UC4 (i.e., core

requirement C4.12).

3.2. Contextual Integration

It is deemed beneficial to integrate a DSML model with its context, so that changes in the DSML

model lead to immediate feedback and updated data in the context. This section describes the

architectural considerations for contextual integration in UC4 and UC7 to satisfy core requirement

BC6 identified in Deliverable D2.2 (i.e., core requirements C4.23, C4.26 and C7.1).

3.2.1. Architectural Description for UC4 (Cross-disciplinary Coupling of Models)

Contextual integration with external tools is a key ingredient of UC4. However, there are no specific

extensions needed to the core DSML technology of MPS when it comes to coupling of models in

various external tools. It is considered sufficient to exploit the created import (parser) and export

(generator) facilities as expressed in the architectural overview of MPS in Figure 1. On the other

hand, Canon Production Printing has various existing development environments that could benefit

from exploiting DSML technology. Such environments may rely on custom Graphical User

Interfaces (GUI) for which it is often not easy or even infeasible to (completely or partly) replace

them in a gradual or disruptive step by the IDE for MPS. Such situations would benefit from the

ability to integrate the DSML technologies provided by MPS into the existing development

environments as DSML widgets.

Besides the GUIs made available to print professionals (customers of Canon Production Printing)

as part of the Professional Digital Printer product families, several tools to develop and maintain

19

BUMBLE
Deliverable 3.2

Page 19 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

these product families are also being created for use within Canon Production Printing. Application

of DSML technology to formalize the domain-specific knowledge underlying both such Graphical

User Interfaces has major benefits. However, existing DSML technology does not (yet) provide the

customization flexibility that traditional software technology provides to develop GUIs. Canon

Production Printing envisions the use of itemis’ Modelix to create DSML widgets as part of GUI

applications realized with traditional web technology such as Google’s Angular [10].

MPS and Angular use a similar component-based approach to compose complex views on related

data items from simple views on individual data items. Moreover, the MVC paradigm can be realized

fairly easily in Angular. In the Angular context, the controller concept of a MVC paradigm, which is

responsible for converting (raw) data into a form that can be displayed to users via a view, is often

denoted as ViewModel. Given the similarities, Canon Production Printing envisions that Angular

applications could be partly DSLified with Modelix-based components, bringing together the

strengths of MPS’s DSML technology and the customization flexibility of Angular. This would allow

combining the DSML definition with accessible simulation, analys is, and visualization

environments. Hence, the chosen combination of in particular the MPS and Modelix technologies

in the context of UC4 is expected to also enable satisfying core requirements C4.23 and C4.26

identified in Deliverable D2.2.

3.2.2. Architectural Description for UC7 (Multi- and Cross-Disciplinary Modeling

Workbench)

Sioux developed an in-house Modeling Environment (ME) named Supermodels. Supermodels ME

provides facilities to create and use graphical DSMLs (with diagrammatic notations) in high fide lity

editors. Next to that we use MPS mostly for non-graphical DSMLs that benefit from the MPS facilities

described in Section 2.2. We apply both Supermodels and MPS DSMLs to describe different

aspects of a system. Those different aspects concern different engineering disciplines yet they are

related to each other.

Figure 6. Architecture for UC7 combining Supermodels and MPS.

UC7 is about creating a blended ME that combines the strengths of Supermodels and MPS. It’s

tentatively called SuperME. The high-level overview of the chosen architecture is shown in Figure

6. As depicted, it combines Supermodels and MPS into SuperME and thus satisfies core

requirement C7.1 identified in Deliverable D2.2. Supermodels and MPS are not just mechanically

combined, they are deeply integrated. In relation to each other it was chosen that Supermodels

takes the role of frontend and MPS takes the role of backend. In that way we combine the stronger

20

BUMBLE
Deliverable 3.2

Page 20 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

modeling foundation of MPS with the high fidelity diagrammatic editors of Supermodels (see Figure

7).

Figure 7. Supermodels high fidelity diagramatic editor for state machines DSML.

Obviously Supermodels and MPS need to exchange some data. We chose to integrate the two MEs

at the abstract model level meaning that the data exchanged is ASTs. MPS provides a model server

that makes the ASTs accessible to a model client in Supermodels for both querying and

modification. This allows for Supermodels editors to show and modify the AST and thus to behave

like an MPS projectional editor. This also allows for Supermodels generators and model checkers

to query (read-only) the AST. The fact that Supermodels has access to the models on AST level

makes it possible to preserve existing Supermodels DSMLs. That means we can reuse existing

DSMLs editors, generators and model checkers thus satisfying core requirement C7.8 identified in

Deliverable D2.2. We can also combine them with existing (and new) MPS DSMLs. In this way, the

chosen architecture supports the satisfaction of core requirements C7.2, C7.3, C7.4, C7.5, C7.9,

C7.10 in Deliverable D2.2.

JetBrains RD was selected as an interfacing technology that allows interprocess communication

between MPS (JVM process) and Supermodels (.NET process). JetBrains RD fits well in SuperME

architecture since it provides a server and a client that share data in a common predefined structure,

i.e. the instances of the data structure at both sides are kept automatically synchronized in rea l-

time. This capability is applied to synchronise model ASTs between model server in MPS and model

client in Supermodels. That enables the fulfillment of technical requirements T7.1, T7.3, T7.4, T7.9.

JetBrains RD also allows for remote procedure calls between server and client which is used to

propagate user actions like file opening/saving, generation triggering, model checks triggering etc.

Тhat enables the satisfaction of technical requirements T7.5, T7.6, T7.10

21

BUMBLE
Deliverable 3.2

Page 21 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

It’s worth mentioning that the model server and model client are generic, i.e. not DSML specific

which makes them applicable in a context broader than SuperME and BUMBLE. The model server

is packaged as an MPS plugin and is developed in Kotlin. The model client is developed in C# but

it’s possible to develop one in C++.

Further, the model storage responsibility was allocated solely to MPS. That means that models

expressed in Supermodels DSMLs must be hosted on MPS and accessed via the model server. So

the structural aspect of Supermodels DSMLs must be implemented in MPS but all the other DSML

aspects can be reused.

Having Supermodels and MPS models stored at one place (namely the MPS model repository)

allows us to exploit the MPS facility of hyperlink-like traceability (see Section 2.2.4) within and

across DSMLs. So we can link between models from both Supermodels and MPS thus the relations

between the different aspects of a system can be expressed explicit ly which creates the possibility

to monitor and/or maintain the consistency between them. As mentioned in Section 2.2.3 the MPS

facilities provided out-of the box satisfy core requirements C7.6 and C7.7 identified in Deliverable

D2.2.

3.3. Model Life-Cycle Management

3.3.1. Architectural Description for UC4 (Cross-disciplinary Coupling of Models)

Figure 8. Screenshot of Modelix for UC4.

For UC4, Canon Production Printing intends to realize a low threshold online collaborative modeling

environment with Modelix. At the moment of writing this first version of this deliverable, a first

instance of Modelix has been realised. A screenshot is shown in Figure 8. Users should then be

22

BUMBLE
Deliverable 3.2

Page 22 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

able to log in using their existing user account, for example using OAUTH single-sign-on

authentication, see core requirement C4.1 in Deliverable D2.2. The screenshot in Figure 8 shows

the identity of logged in users at the top. In the collaborative modeling environment for UC4, the

modeling capabilities will be exposed through Modelix. The artifacts that can be generated from the

models, should then become downloadable from the environment to the user’s local workstation

(core requirements C4.6 and C4.7 in Deliverable D2.2. These aspects are still to be realized at the

moment of writing this deliverable.

There is also a need to bound the actions and visibility of model (elements) to particular users, to

ensure some level of consistency of the models. A snapshot of (the results of) the models needs to

be picked up by downstream development environments. Therefore, models (and/or generated

artifacts) need to be coupled to a remote version control mechanism (such as Git). The combination

of real-time collaboration and off-line version control will be investigated further in the next phase

of BUMBLE.

3.3.2. Architectural Description for UC7 (Multi- and Cross-Disciplinary Modeling

Workbench)

For UC7, Sioux intends to exploit existing MPS facilities for Model Life-Cycle Management

described in Sections 2.2.3 and 2.2.4. The added value is that through SuperME those capabilities

will be made available to existing Supermodels DSMLs. No MPS extension will be developed: all

requirements in Deliverable D2.2 related to Model-Life-Cycle Management in UC7 are satisfied out-

of-the-box.

23

BUMBLE
Deliverable 3.2

Page 23 of 23 Deliverable D3.2v1 Architecture Description for BUMBLE MPS Platform

4. References

[1] Bucchiarone, A., Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Domain-Specific Languages in

Practice with Jetbrains MPS. Springer (2021), ISBN 978-3-030-73758-0

[2] Voelter, M.: Language and IDE modularization and composition with MPS. In: Generative and

transformational techniques in software engineering IV, pp. 383–430. Springer (2013)

[3] Voelter, M., Lisson, S.: Supporting diverse notations in MPS’ projectional editor.

GEMOC@MoDELS 2014, pp. 7–16

[4] Gamma E., Vlissides J., Helm R., Johnson R.: Design Patterns: Elements of Reusable Object -

Oriented Software. Baker & Taylor, ISBN 9780201633610

[5] Kay A., Ingalls D., Goldberg A.: Smalltalk, see https://en.wikipedia.org/wiki/Smalltalk

[6] Krasner, Glenn E.; Pope, Stephen T.: A cookbook for using the model–view controller user

interface paradigm in Smalltalk-80. The Journal of Object Technology. SIGS Publications. 1

(3): 26–49, 1988

[7] Diagrams Plugin, https://jetbrains.github.io/MPS-

extensions/extensions/diagrams/#diagrams, Itemis

[8] Birken, K.: MPS Applications in the Browser: Cloud MPS. https://blogs.itemis.com/en/mps-

applications-in-the-browser-cloud-mps, 2020

[9] Lißon, S.: A Next Generation Language Workbench Native to the Web and Cloud.

https://github.com/modelix/modelix, 2020

[10] Google: An Application Design Framework and Development Platform for Creating Efficient

and Sophisticated Single-Page Web-Apps (2010–2020). URL https://angular.io

