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1. Introduction
This document describes the architectures of the solutions BUMBLE proposed for the Eclipse
technology space. These architectures can be separated into two target platforms: the architecture for
the Eclipse Rich Client Platform (RCP) and the architecture for client-server-based solutions that use
underlying Eclipse technology. Chapter 2 introduces these two more specific target platforms and
explains how the BUMBLE use cases and the requirements identified in D2.2 relate to them. Chapter
3 then introduces four use cases in more detail:

● UC1, driven by MDH, is the canonical use case used in BUMBLE to illustrate basic concepts
using simple languages for the modelling of state machines;

● UC2, driven by HCL, focuses on combining textual and graphical modelling of sophisticated
state machines in HCL Rtist;

● UC3, driven by Volvo, addresses blended modelling for vehicular architectures using
EAST-ADL; and

● UC6, driven by Saab, aims to allow blended editing and consistency checking of SysML
models and related program code.

The table below shows additional use cases that also use the Eclipse technology space. However, in
this first version of this deliverable, we focus on the four use cases above as representative examples.
All three use cases only focus on the Eclipse technology space and do not also consider JetBrains
MPS as underlying DSML core technology. Examples for use cases that do consider MPS are
provided in D3.2. Furthermore, two of the three examples do not only require solutions that work within
the Eclipse RCP, but also require client-server solutions in order to allow blended modelling in editors
such as VS Code and Eclipse Theia that rely on language servers as the backing for the editors.

Use
Case

Description Lead
Partner

MPS EMF Includes
client/server

aspects

UC1 Software Open-Source Blended
Modeling

MDH X X

UC2 Combined Textual and Graphical
Modeling of State Machines in HCL
RTist

HCL X X

UC3 Vehicular Architectural Modeling in
EAST-ADL

Volvo X X

UC5 Reactive and Incremental
Transformations across DSMLs

MVG X X

UC6 Blended Editing and Consistency
Checking of SysML Models and
Related Program Code

Saab X

UC10 Development Process of Low-Level
Software

Unibap X
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UC11 Multi-Aspect Modeling for Highly
Configurable Automotive Test Beds
Ready for Smart Engineering
Demands

AVL X X

2. The Eclipse Technology Space as Base DSML Technology
Within the Eclipse technology space, a number of common concepts are used as introduced in
Section 2.1. The concrete solution based on these common concepts can then either be realised in
the Eclipse Rich Client Platform (RCP) as discussed in Section 2.2 or based on a client-/server
architectural style as discussed in Section 2.3. We also show how the existing technologies support
the main BUMBLE requirements in Section 2.4 and which extensions are necessary.

2.1. Architecture Overview
Independent of the architectural style, the architecture for the Eclipse technology space follows a
model-view-controller pattern in which a model source holds information about the models that are
viewed or edited and graphical and textual editors provide the controllers and view. Depending on the
target platform and the concrete view, there can also be a translation layer between the model and the
view and controller parts. This is explained in more detail in the two subsequent sections for each of
the architectural styles. This abstract architecture is shown in Figure 1.

Figure 1. An abstract view of the architecture within the Eclipse technology space with different
technologies depending on the chosen architectural style (Eclipse RCP or client/server).

In the Eclipse world, the base technology to represent, query, and modify any model at runtime is the
Eclipse Modelling Framework (EMF)1. It is based on a highly generic meta-model (Ecore) that can be
used to specify domain-specific modelling languages. The Unified Modelling Language (UML)

1 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/
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implementation used in Eclipse and in editors like Eclipse Papyrus is, e.g., specified based on Ecore.
That means that the M2 meta-model provided by Ecore is used to specify the M1 meta-model for UML
which is in turn used to create M0 model instances. An M0 model instance is always represented as
an EMF model tree with a clearly defined root note. EMF ensures that a model tree conforms to its M1
meta-model. Therefore, the single source of truth that the EMF model tree represents always
conforms to the meta-model.

The EMF model tree is stored in memory. Eclipse offers a resource set and editing domain mechanism
that provides scoping for EMF model trees. It is therefore possible to load the same model in different
scopes and manipulate it independently. Synchronisation happens on save and reload, whereas
blended modelling editors should synchronise on any change of the model in any representation.
Conversely, if two editors use the same editing domain, they can access a model within the same
scope. That means that a change made by one editor can be immediately picked up by the other
editor -- at least, if the view is updated accordingly. Simply put, if one editor changes the EMF model
tree (i.e., the single source of truth), the other editor can "see" these changes immediately.
Publish-subscribe is usually used to implement such an update mechanism.

EMF also provides a transaction concept that enables a limited form of concurrent editing. Write
accesses to the EMF model tree can be wrapped in a transaction that protects the model tree from
concurrent writes. Resolving these conflicts is, however, left to the editors that triggered the change.

It is possible to load multiple M0 model instances based on different M1 meta-models at the same time
with EMF. These model instances can then cross-reference each other. EMF ensures the integrity of
these references.

In many cases, EMF model trees can be accessed directly, e.g., by graphical editors. The editor can
retrieve the EMF model tree of a resource (usually a file) directly from EMF. Depending on the
concrete file format, EMF has built-in deserialisation capabilities (e.g., for XMI files). In some cases,
however, an additional translation layer is needed. The most prominent example of this are textual
editors that work with a specific notation different from XMI. In this case, a parser needs to deserialise
the text file into an EMF model tree. A common technology used for this purpose is the language
engineering framework Xtext2. In the context of client-server solutions, additional translations need to
be made to serialise the contents of the EMF model tree for transfer over HTTP.

2.2. Eclipse RCP

The Eclipse Rich Client Platform is the foundation of the Eclipse IDE and other, specialised tool
workbenches. It uses a plugin architecture based on the OSGi standard to provide a modular
environment in which features can be added dynamically as plugins, also called bundles. Popular
modelling tools for the Eclipse RCP include Eclipse Papyrus and Polarsys Capella. These tools are
based on more foundational technologies such as EMF mentioned above as well as GMF and Sirius
as technologies that support the implementation of graphical editors. The latter technologies are
specific to the Eclipse RCP and tightly coupled with the underlying abstractions for graphical user
interfaces.

The advantage of RCP solutions is that the end user receives an application that has all relevant
features bundled and can therefore be used out of the box. The developer can create these "products''
based on any set of compatible features. Eclipse provides a system called P2 that ensures that the
installed features and all pre-requisites work as expected.

2 https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/
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2.3. Client-/Server Architectural Styles based on Eclipse Technologies

The Eclipse ecosystem has also brought forward a number of technologies that are independent of
Eclipse RCP or have, over time, found a new life outside of the confines of the rich client platform. In
particular, Eclipse Theia is a web-based IDE, similar to VS.code, that can run in the browser. Like
VS.code, Eclipse Theia uses Language Servers as the foundation of its editors. There are also
solutions that enable using EMF outside of the Eclipse IDE.

Importantly, however, technologies like EMF.cloud3 allow the use of Eclipse modelling technologies in
such an environment. This increases interoperability with existing modelling environments, provides a
transition path for organisations that want to get away from the Eclipse RCP, and makes the powerful
tools that are already available in the Eclipse ecosystem available to client-/server solutions.

In terms of the architecture in Figure 1, the client-/server architectural style requires a more involved
translation layer. That is, while all editors in the RCP can share an in-memory representation of the
viewed or edited model and access it via the EMF API, a client-/server solution requires translating the
model into a representation that can be transferred over the network in both directions. The Language
Server Protocol (LSP) has been designed to facilitate this exchange of information. Clients and
servers implement it to exchange information about a model and enable features such as syntax
highlighting and code completion. The Eclipse Graphical Language Server Protocol (GLSP)4 extends
this mechanism to also accommodate graphical editors on the client side. Some viewers or editors
also use JSON as an exchange format, e.g., the tree view in VS.code.

2.4. Existing Support with respect to BUMBLE Features
In the following, we briefly describe the current capabilities of the Eclipse Technology Space for the
five high-level BUMBLE features identified in Deliverable D2.2. As appropriate, we will reference the
core requirements as well as the relevant use cases. Furthermore, we exemplarily illustrate some of
the current capabilities throughout the following subsections by referencing Figure 2. An overview of
the current capabilities is provided in Table 1. The BUMBLE Core Requirements (BCx) w.r.t. the
BUMBLE features are specified in D2.2 as follows:

● BC1: It must be possible to define multiple concrete syntaxes / representations for a single
DSML model definition, including relevant views or editors conforming to the concrete
syntaxes / representations.

● BC2: A DSML user must be able to select a preferred concrete syntax / representation for a
DSML model instance. A DSML developer must define a default concrete syntax /
representation.

● BC3: In case multiple syntaxes exist for a (single element of a) DSML model definition, all
concrete syntaxes / representations must be updated in accordance with any changes that
have been performed by means of using one of those syntaxes.

● BC4: In case multiple syntaxes exist for a (single element of a) DSML model definition, it must
be possible that certain elements may not be relevant or visible in one or more specific
abstract and concrete syntaxes. Semantics of (an element of) a DSML model definition that is
considered in multiple abstract and concrete syntaxes must (be enforced to) be/remain the
same.

4 https://www.eclipse.org/glsp/
3 https://www.eclipse.org/emfcloud/

https://www.eclipse.org/glsp/
https://www.eclipse.org/emfcloud/
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Table 1. Overview of the support for the five main BUMBLE features in the Eclipse Technology
Space.

BUMBLE Feature Out-of-the-Box Support in the Eclipse Technology Space

Blended Syntaxes &
Modelling (B)

The Eclipse RCP partially supports BC1 and BC2 with its facilities to
generate editors for DSMLs, but there is no existing technology that
directly supports BC3 and BC4 without further development since
changes in one editor are not synchronised continuously to another.
The client-/server architectural style does not provide editor generators
or other blended modelling capabilities and thus does not fulfill any of
the requirements.

Collaborative
Modelling (C)

The Eclipse RCP is single-user oriented, but provides some extensions
to support certain forms of collaboration. While there are projects that
provide support for collaborative programming (e.g., the Saros project5)
no such support currently exists for any of the common model editors.
Eclipse Connected Data Objects (CDO)6 supports persisting changes
to a database and propagating these changes to different clients, but is
implemented on the level of the abstract syntax (EMF). Even the
client-/server architectural style does not support such collaboration out
of the box. While the underlying technologies are in theory capable of
multi-user support, they only support single user access at this point7.

Evolution (E) Evolution of the meta-model is partially supported by a number of
model transformation tools that allow automatic transformation of
models to accommodate changes in the meta-model.

Traceability (T) Traceability across models is supported out of the box if such
references are defined in the meta-models. For the Eclipse RCP, more
capable solutions are available in fulfillment of BC6, but the
client-/server architectural style lacks capable traceability tools.

Model
Non-Conformance (N)

Non-conformance is relevant for textual editing of models. Since all
technologies for textual editing of models in the Eclipse technology
space are parser-based, non-conformance needs to be resolved
manually by the user.

2.4.1. Blended Syntaxes & Modelling (B)

As demonstrated in UC1, Eclipse RCP technologies provide some support for blended modelling
out-of-the-box. Apart from the graphical editor presented in UC1, Eclipse also has different views and

7 https://eclipsesource.com/blogs/2021/02/25/the-emf-cloud-model-server/
6 https://www.eclipse.org/cdo/
5 https://www.saros-project.org/

https://eclipsesource.com/blogs/2021/02/25/the-emf-cloud-model-server/
https://www.eclipse.org/cdo/
https://www.saros-project.org/
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editors that access the same underlying model, e.g., the outline view and the properties editor. In
many cases, changes in these views and editors are directly reflected in the model and vice versa. For
instance, the properties editor allows changing attribute values in a UML class in Papyrus. The outline
view allows calling refactoring commands for methods in a Java file. Any change that is made is
reflected in the model. On the other hand, updates in the model are also visible in these views, e.g.,
when the code structure changes, the outline view changes accordingly. Listeners allow propagating
these changes, as illustrated in the top of Figure 2. In addition, there is powerful support for defining
modelling syntaxes and generating editors for them. For example, Figure 2 illustrates the definition of
both a textual and graphical concrete syntax specification based on one metamodel as well as their
instantiation based on one model. Together, these capabilities partially address BC1 and BC2.
Considering the client-/server architectural style, even though language servers and other
technologies exist, they are less mature than their counterparts on the Eclipse RCP side and, e.g., do
not yet support generating graphical editors for DSMLs. For this architectural style, BC1 and BC2 are
thus not fulfilled.

Figure 2. Functional principles of the Eclipse RCP architectural style regarding the BUMBLE
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features (B), (C), and (N) [figure partially based on Nachreiner et al.8]

Within the Eclipse RCP, different views can access the same underlying model (e.g., an editor and the
outline view, cf. Figure 2), but this is not blended modelling where different concrete syntaxes are
involved. The same is true for the client-/server architectural style. The editor presented in UC1
synchronises the views on save, but not continuously in the spirit of BC3 and BC4. Likewise, there are
currently no existing blended solutions for the client-/server architectural style, even though the
foundational technologies exist. Thus, BC3 and BC4 are not fulfilled.

2.4.2. Collaborative Modelling (C)

The BUMBLE core requirement BC5 addressing this feature states: “It should be possible to support
real-time collaboration between multiple DSML users. This means that - independent of which
concrete syntax the DSML users have chosen - changes by an individual DSML user are instantly
visible to all other DSML users that have viewing/reading and/or editing/writing rights to the considered
(collection of) DSML model instance(s).” (cf. Deliverable D2.2)

The built-in capabilities of the technologies for Eclipse RCP do not provide collaborative modelling
capabilities that go beyond collaboration via version control. For example, consider Modeler A and
Modeler B in Figure 2 editing in two different editors: Despite the figure indicating a synchronization via
the model, the editors of the Eclipse RCP are not intended to provide such collaborative real-time
modeling. While the SAROS project9 offers a collaborative code editor, it is limited to text files. The
CDO Model Repository does offer multi-user access to EMF models along with change propagation
and transactional access. However, CDO operates on the EMF level (i.e., on the abstract syntax level)
and therefore needs to be connected to a translation layer as illustrated in Figure 1 to support blended
modelling. BC5 is therefore partially addressed in the Eclipse RCP.

In principle, client-/server solutions support accessing the same model by different clients. However, in
practice, current solutions in the Eclipse technology space are not capable of dealing with concurrent
modifications of the same model by different clients out-of-the-box since they are missing the
necessary conflict resolution mechanisms. Therefore, BC5 is only partially fulfilled for the client-/server
architectural style.

An overview of existing technologies for collaborative modelling and their capabilities and
shortcomings as relevant for the BUMBLE project can be found in D5.1.

2.4.3. Evolution (E)

The BUMBLE core requirement BC9 addressing this feature states: “It should be possible to deploy a
new version of a DSML model definition by means of automatically migrating existing instances of that
DSML model definition. In conjunction with that, cross-references to other DSML model definitions and
instances must be migrated automatically.” (cf. Deliverable D2.2)

There are a number of model transformation technologies that can be used to automatically migrate
models to new versions of a meta-model (e.g., Eclipse QVTO, Eclipse Henshin). If the meta-model
evolution is itself expressed as a model transformation, it is even possible to derive the

9 https://www.saros-project.org/

8 L. Nachreiner; A. Raschke; M. Stegmaier; M. Tichy: CouchEdit: A Relaxed Conformance Editing
Approach. In 2nd Modelling Language Engineering and Execution Workshop, 2020

https://www.saros-project.org/
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transformations of the models automatically from these higher-order transformations. While EMF as
the underlying technology for both architectural styles in the Eclipse technology space does not
support model non-conformance out of the box, these transformation capabilities can still partially
address the requirement expressed in BC9.

2.4.4. Traceability (T)

The BUMBLE core requirement BC6 addressing this feature states: “It should not be impossible to
integrate BUMBLE-based DSML environments in larger (non DSML technology based) applications
that enable (real-time or non real-time) collaboration between users of that larger application context.”
(cf. Deliverable D2.2)

In terms of traceability, EMF as the underlying technology supports references between models it
manages. This applies to both the Eclipse RCP as well as the client-/server architectural styles. EMF
can store and resolve references across models and automatically loads referenced models when
necessary. Changes in the models that affect the cross-referenced models are automatically resolved.
However, support for this kind of traceability is dependent on the meta-models explicitly defining such
cross-references.

If it is necessary to trace across the boundaries of EMF (e.g., from a model to a source code file) or to
establish relationships between models whose meta-models do not provide cross-references,
additional technologies are necessary. Tools like Yakindu Traceability10 or Eclipse Capra11 can be used
to establish traceability in the Eclipse RCP. However, such technologies are currently not available for
the client-/server architectural style.

In terms of traceability across model versions, EMF offers a number of tools for diffing and merging of
models in the Eclipse RCP. Notably, EMF Compare12 provides these capabilities for the Eclipse RCP.
However, no such tools are available for the client-/server architectural style.

Overall, BC6 is thus partially addressed in the Eclipse RCP architectural style and not addressed in
the client-/server architectural style.

2.4.5. Model Non-conformance (N)

EMF as the underlying technology for model handling in the Eclipse technology space does not
support non-conforming models out of the box. The standard tree-based or graphical editors that are
provided by Eclipse and common technologies like Eclipse GMF or Eclipse Sirius do not allow creating
non-conformant models either since they limit the users' ability to create model elements to what the
meta-model explicitly allows. Sometimes, a concrete syntax specification and a graphical editor even
add additional constraints to forbid certain undesired modeling states. In Figure 2, this is reflected in
the bottom left-hand part by the guard “[if constraints fulfilled]” on the “edits” flow, where the
constraints refer to the constraints of both the abstract syntax metamodel and the concrete syntax
metamodel.

This strict conformance to the meta-model is no longer given in text-based editing of models. There,
the user can freely enter text. If these textual editors are based on Eclipse Xtext, the underlying parser
will fail to construct the abstract syntax tree for the model and therefore not construct a suitable
in-memory representation (cf. guard “[if parseable]” of the “transformed to” flow in the upper right-hand

12 https://www.eclipse.org/emf/compare/
11 https://eclipse.org/capra
10 https://www.itemis.com/en/yakindu/traceability/

https://www.eclipse.org/emf/compare/
https://eclipse.org/capra
https://www.itemis.com/en/yakindu/traceability/
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side part of Figure 2). Instead, the user will see error messages which need to be resolved manually. If
the text needs to be transformed into a valid model before saving (e.g., because the textual
representation is only an intermittent format and the model is serialised differently as in UC3), the user
will not be able to save their changes before resolving the errors.

This is a limitation of parser-based approaches as further elaborated in Deliverable D3.2. Section 3.1
also discusses this limitation in the context of UC1. We have no current plans to address this limitation
for the Eclipse technology space.

3. BUMBLE Extensions to the Eclipse Technology Space
In the following, we describe the architectures of three use cases:

1. UC1: The Canonical State Machine Use Case
2. UC2: Combined Textual and Graphical Modeling of State Machines in HCL RTist
3. UC3: Vehicular Architectural Modeling in EAST-ADL

These descriptions show how the Eclipse Technology Space is used and extended within the
BUMBLE project. The use cases cover both architectural styles and make use of many common
frameworks in the Eclipse ecosystem. For each use case, we also provide a discussion of how they
relate to the high-level core requirements.

3.1. Architectural Description of UC1 (Canonical State Machine Use Case)
This use case covers a public show case for the BUMBLE technologies. It provides blended modelling
for a canonical state machine DSML. The focus is not on the expressiveness of the state machines,
but rather on providing a vendor-neutral common baseline that showcases the possibility to generate
at least two model specific notations, one graphical and one textual, and related editors.
The following describes a prototypical implementation of this scenario with unmodified, out-of-the-box
Eclipse technologies for the Eclipse RCP architectural style. In particular, this prototype highlights the
shortcomings of the existing solutions and justifies the need for additional effort in BUMBLE.

3.1.1. Eclipse Xtext and Eclipse Sirius

Eclipse Xtext and Eclipse Sirius, are two open-source frameworks for the development of textual and
graphical model editors respectively. They are both based on the Eclipse Modeling Framework (EMF),
which allows for an out-of-the-box synchronization between these two frameworks. In this work, we
describe the process of integrating these two frameworks, the capabilities, and drawbacks. Figure 3
provides an overview of how the synchronization takes place.

Both Xtext and Sirius contain a ResourceSet. A ResourceSet is a collection of Resources, where the
latter represent an in-memory model of the physical file system (i.e., the text file). An Xtext
ResourceSet contains the Xtext Resource, which includes a parser, linker and serializer that supports
loading the model from the text file (i.e.,parsing) and saving the model in the text file (i.e., serializing).
A Sirius ResourceSet contains two resources; a SemanticResource which in our case is an
XtextResource, and a DiagramResource that contains all the graphical information such as shape,
size, colour, position etc. The diagram elements reference their semantic counterparts and to
synchronize between the two, Sirius uses the CanonicalEditPolicy that automatically updates the
Diagram Resource upon changes in the Xtext Resource that is located in the Sirius ResourceSet.
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It is important to highlight that the Xtext Resource located in the Xtext ResourceSet and the Xtext
Resource located in the Sirius ResourceSet, are two separated resources. If the user makes changes
in the Xtext editor, these changes are reflected only in the in-memory model (i.e., Xtext Resource in
the Xtext ResourceSet). However, if the user decides to save these changes, the text file will be
modified. When the Xtext Resource in the Sirius ResourceSet loads from the text file, the
CanonicalEditPolicy updates the Diagram Resource.

Figure 3: Out-of-the-box synchronization for Xtext and Sirius

3.1.2. Implementation

This prototype is based on a domain model that describes basic concepts about State Machines. The
workflow of defining our prototype is as follows.

We start off by defining a grammar in Xtext that is used to describe State Machines. This grammar
defines four concepts used to describe state machines; StateMachine (root element), InitialState,
FinalState, State, and Transitions, and is detailed in Listing 1.

StateMachine:
'InitialState' initialstate = InitialState

'FinalState' finalstate = FinalState
('IntermediateState' '{' states+=State ( "," states+=State)* '}' )*
'Transitions' '{' transitions+=Transitions ( "," transitions+=Transitions)* '}' ;

InitialState:
name = ID ;

FinalState:
name = ID ;

State:
name = ID
'InAction' InAction = STRING
'OutAction' OutAction = STRING ;

Transitions:
name = ID
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'Condition' condition = STRING
'Action' action = STRING
('EnterState' enterstate=[State])?
('InitialStateTransition' initialstatetransition=[InitialState])?
('ExitState' exitstate=[State])?
('FinalStateTransition' finalstatetransition=[FinalState])? ;

Listing 1: Xtext grammar describing State Machines

After defining the grammar, we generate the Xtext artifacts. From this process, among others, we
obtain the generated Ecore metamodel of the defined grammar and we register it in the Package
Registry.  The generated Ecore metamodel is detailed in Figure 4.

Figure 4: Generated Ecore metamodel

In a new runtime instance, using Sirius perspective, we create a new Viewpoint Specification Project,
and add a new representation to the viewpoint. The representation can either be a diagram
description, an edition table description, a cross table description, a tree description, or a sequence
diagram description, but in our prototype we use the diagram description. After defining the diagram
description, in the MANIFEST.MF file, we add the plug-in that defines the StateMachine metamodel
and associate the metamodel to the diagram representation. This enables the graphical representation
of instances of StateMachine by the diagram. In the Domain Class property of the diagram, we specify
the root element and then in the default layer we start adding new diagram elements that correspond
to model elements. More specifically, we define node elements used to display the State, InitialState
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and FinalState and element-based edges to display the Transitions. Moreover, we specify the style for
each diagram element, in order to define the way they are graphically represented in the diagram.
However, the current implementation can only display an existing model. In order to enable the
creation of new model elements from the graphical editor using a palette, we create a new section and
add Node Creation and Edge Creation elements to it. In addition we define the action that will be
executed by each element.

To finalize our prototype, we create a new Project, including an Xtext file that details a TrafficLight
model, and a .aird file where we add this model and create a new representation for it. Figure 5
provides an overview of the two editors side-by-side.

Figure 5: Prototype of integrating Xtext and Sirius

3.1.3. Relation to BUMBLE Features

The integration of Xtext and Sirius is relatively easy to achieve by following the aforementioned
workflow. For a single model, the user can instantiate both graphical and textual editors and switch
between them. Moreover, the changes done in one editor, are propagated to the other upon save.
However, this out-of-the box synchronization has the following downsides to it.

Synchronization on-demand

The synchronization between the two representations happens on demand and not on-the-fly, thus to
propagate changes from one editor to the other the user needs to first save these changes. A possible
solution would be for Sirius and Xtext to share the same resource, but the latter leads to further issues.
A change in the textual editor results in Xtext removing the old AST and inserting a new one, based on
the changes. Being that the AST/resource that is shared between Xtext and Sirius, serves as the
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semantic model for Sirius, when the AST is removed, the CanonicalEditPolicy updates the diagram
model and removes the notational elements. When the new AST is inserted, the diagram model is
recreated based on a default mapping, but all user customizations are lost.

Propagating changes with syntax errors

When using the textual editor, the user might write an expression that leads to syntax errors and save
the file. Upon saving these file changes in the textual editor, the diagram in the graphical editor gets
refreshed, and the elements defined after the syntax error are no longer available in the diagram.
Figure 6 details the elements present in the textual and graphical editor before a syntax error.

Figure 6: State of the editors before the syntax error

Figure 7 details the syntax error in the textual editor, and the remaining elements in the graphical
editor after saving the file changes in the textual editor and refreshing the graphical editor.

Figure 7: State of the editors after the syntax error with an automatic refresh strategy

As it can be seen, all the elements defined after the syntax error (i.e., State “green” and Transition
“yellowTogreen”), are no longer present in the graphical editor. Even if the user was to undo the
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changes, or fix the syntax errors, the diagram information cannot be recovered. A possible solution to
this is changing the refresh strategy. At this point, the diagram gets refreshed upon saving the model
in the textual editor. However, if we uncheck this option, and save the model in the textual editor that
has syntax errors, we do not lose the elements in the graphical editor, but instead get a warning
regarding the elements that will be lost if we decide to manually refresh the diagram. This provides the
opportunity to fix the errors before refreshing the diagram and risk losing the notational information.

Figure 8: State of the editors after the syntax error without an automatic refresh strategy

Concurrent dirty states

A possible scenario is to modify elements in both graphical and textual editors without saving the
changes in either of them. Being that both editors use their own memory instance of the model unless
they try to save the changes, we encounter no issues.

However, if we first try to save the changes in the graphical editor and click on the textual editor to
refresh, we get a warning that the file has been changed (from the graphical editor). The textual editor
is now aware of that, because the file changes have been saved. If we decide to ignore the file
changes, and then try to save the modified elements in the textual editor, we get an update conflict
because the file has been changed on the file system (save operation in the graphical editor) and we
can either choose to overwrite it or not. A similar thing happens if we try to save the changes in the
textual editor first. To summarize, the user is always forced to choose to save the changes made on
one editor only, losing the ones made on the other one. In the future, we will investigate whether other
EMF persistency solutions like CDO can mitigate this issue.

Possible solutions would be to have on-the-fly synchronization or in the case of on-demand
synchronization to restrict the user from making changes to one editor if there are unsaved changes in
the other editor.

3.2. Architectural Description of UC2 (Combined Textual and Graphical
Modeling of State Machines in HCL RTist)

The picture below shows the functional principle for the use case implementation in HCL RTist:
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Figure 9: Functional principle of the support for textual state machines in HCL RTist

3.2.1. Parsing with Xtext

A textual syntax for state machines has been implemented (shown in the above picture as the
StateMachine.srt text file). The grammar for this syntax is defined using Xtext. While Xtext can
automatically generate an EMF model to use as meta model for the defined syntax, this approach
cannot be used for this use case since the requirement is to integrate the solution into the existing
HCL RTist modeling tool which uses the standard UML meta model. Fortunately, Xtext also allows to
use any existing EMF meta model by importing it into the grammar definition:

grammar com.hcl.xtools.dsl.statemachine.StatemachineRT with

org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/uml2/5.0.0/UML" as uml

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

The mapping from the concrete state machine syntax to the abstract syntax (i.e. the UML meta model)
can in most cases be expressed directly in the Xtext parser rules. For example:

StateMachine returns uml::StateMachine:

"statemachine" (name=NAME)? "{"

region+=Region

"}" ";"

;

Here “name” and “region” are features on the UML StateMachine meta class that we can use for
storing necessary data while parsing.

But in some cases the mapping isn’t that straight-forward. For example:

InitialTransition returns uml::Transition:

((name=NAME | ownedComment+=RedefineOrExclude

redefinedTransition=[uml::Transition|NAME]) ":")? "initial" "->"

target=[uml::Vertex|QNAME_OR_HISTORY]
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(effect=Effect)?

";"

;

In the syntax there is not enough information for setting up the “source” feature which is mandatory for
all UML transitions. Fortunately Xtext is very configurable and allows us to write our own Java code for
controlling how to create the proper UML representation from the textual state machine syntax. We
have used these two customization features:

1. Store information as comments while parsing (see “ownedComment” in the example above).
Then in the Xtext AST factory we convert such comments into the proper UML representation.

2. Use custom code in the Xtext Linker for creating additional information based on resolved
links in the parse model. For the above example we can identify the initial transition based on
the fact that “target” is bound, but “source” is not. We can then create an Initial pseudo state
and use that as the source of the transition, to ensure the created model conforms to UML
rules.

3.2.2. Model merge

The abstract parse model is managed by the Xtext parser and cannot be directly inserted into the main
HCL RTist model. It is necessary to clone the parse model, and merge the clone into the main model.
The trigger for doing this is based on an Xtext model listener. It gets called whenever the textual state
machine is modified.

The merge itself is based on a name and structure based comparison between the cloned parse
model and the existing HCL RTist model. The HCL RTist model is then updated according to the
changes detected in the parse model.

3.2.3. Managing model references

There are three kinds of model references, shown in the picture above as R1, R2 and R3.

● R1 Reference within the parse model
For example, the reference to state “s1” from the initial transition.

● R2 Reference from the parse model to the HCL RTist model
For example, the reference to port “timing” from the triggered transition.

● R3 Reference from the HCL RTist model to the parse model
For example, a dependency (not shown in the picture) from package “CPPModel” to state
“s2”.

References of the kind R1 and R2 are set-up by the Xtext linker based on names used in the textual
syntax. An Xtext scope provider has been implemented to perform this linking according to desired
name resolution rules. In many cases (especially for references of kind R2) it is necessary for the
scope provider to use the HCL RTist model element that is the context for the textual state machine (a
capsule). This is accomplished by treating the state machine text file (.srt) as a fragment file. A
fragment file is referenced in another (parent) model file, and it’s hence possible to find out to which
part of an HCL RTist model a certain textual state machine belongs.

References of the kind R3 require that the Xtext parse model element have stable and predictable
EMF URIs. This is not the case by default, where elements may get new URIs each time the text is
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parsed. To address this, an Xtext fragment provider (IFragmentProvider) has been implemented. The
fragment is the last part of the element URI, and by default this part of the URI is not stable. The
implemented fragment provider ensures that fragments are based on fully qualified names, which is
the most stable way of identifying an element in a textual syntax. References of the kind R3 will hence
use a fully qualified name to reference elements inside the textual state machine. As long as such
elements are not renamed, and none of its container elements also are not renamed, the reference will
not become broken, even after reparsing the text.

3.2.4. Synchronization between model notations

The textual representation of a state machine is another model notation that needs to be updated if the
state machine model changes. This works in a very similar way to how the graphical notation (i.e. a
statechart diagram) gets updated. The textual state machine editor uses a resource change adapter to
intercept notifications when the state machine model changes, and triggers a serialization of the state
machine to get a new textual representation.

Note that the mapping between concrete syntax and abstract syntax is always ambiguous in the sense
that multiple concrete syntaxes yield the same abstract syntax representation. For example,
comments and whitespace in the concrete syntax are not present in the abstract syntax. This means
that serialization will “normalize” the syntax, i.e. the abstract syntax is mapped into one particular
concrete syntax that is equivalent, but usually not identical, to the original concrete syntax typed by the
user.

3.2.5. Eclipse plugin architecture

The picture below shows the new Eclipse plugins developed for supporting textual state machines in
HCL RTist, and the open-source and commercial plugins they depend on.
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Figure 10: Eclipse plugins with some key classes

In the picture some key classes that implement the functionality described above are mentioned:
● StateMachineMergeUtil

Merges the Xtext parse model into the HCL RTist model. See Model merge.
● StateMachineRTAstFactory and StateMachineRTLinker

Modifies and augments the Xtext parse model so it becomes a valid UML model. See Parsing
with Xtext.

● QualifiedNameFragmentProvider
Ensures that Xtext parse model elements get stable and predictable EMF URIs based on their
qualified names. See Managing model references.

3.2.6. Relation to BUMBLE Features

The features described above are all related to the BUMBLE feature “Blended Syntaxes & Modelling
(B)”. The Xtext generated editor essentially becomes another view on the model, in a similar way to
how other Eclipse views (such as Project Explorer, Properties view, diagrams etc) are. Just like other
views it allows a subset of the model to be viewed and edited (the subset defined by the implemented
syntax).

The main difference with this textual view is that it internally uses a different model (the parse model
created by Xtext), but that thanks to the implemented Xtext customizations this model is made
compatible and compliant with the UML model so that the user gets the feeling of working with a single
model through multiple views and notations.

3.3. Architectural Description of UC3 (Vehicular Architectural Modeling in
EAST-ADL)

The Electronics Architecture and Software Technology - Architecture Description Language
(EAST-ADL)13 is a DSML for the specification of automotive embedded systems, which is applied at
AB Volvo. The Eclipse-RCP-based tool suite EATOP14,15 provides tree and form editors to enable the
tool-based specification of EAST-ADL models based on EMF. Furthermore, a graphical notation similar
to class diagrams exists that is able to depict the hierarchies of EAST-ADL models. In the BUMBLE
Use Case 3 and w.r.t. BUMBLE feature (B), we want to complement these existing editors with a
textual notation and a seamless switching and synchronization between the textual representation and
the tree-/form-based editors, that is, blended EAST-ADL modeling.

Besides the editors, EATOP provides the (de-)serialization from/into a special persistence format
called EAXML. EAXML is a customized variant of the conventional EMF persistence format XMI and,
beyond custom XML tags, preserves the order of the persisted elements according to their tree-based
representation (cf. technical requirement C3.6 in BUMBLE deliverable D2.2).

3.3.1. Architectural Description for the Eclipse RCP

Figure 11 depicts, among other things, selected EATOP plugins that are relevant to the activities for
the BUMBLE Use Case 3 w.r.t. the BUMBLE feature (B). The EATOP tree- and form-based editors are
represented by the plugins o.e.examples.[editor/explorer/actions]. The customized

15 https://bitbucket.org/east-adl/east-adl/
14 https://www.eclipse.org/eatop/
13 http://www.east-adl.info/

https://bitbucket.org/east-adl/east-adl/src/Revison/
https://www.eclipse.org/eatop/
http://www.east-adl.info/index.html
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(de-)serialization from/into EAXML is represented by the plugin o.e.eatop.serialization. The
plugins o.e.eatop.geastadl and o.e.eatop.eastadl22 provide the actual DSML metamodels
geastadl.ecore and eastadl22.ecore, respectively. These metamodels describe the language
concepts of EAST-ADL in the version 2.2.

Figure 11: Architecture for the textual editor for EAST-ADL models and its relationships to EATOP

In the first stage, the University of Gothenburg (GU) conceived a textual notation for EAST-ADL in
collaboration with AB Volvo. For this purpose, we proposed different variants of the language and
refined it in multiple stages to one variant that was favored by Volvo’s engineers. In the second stage,
we implemented a textual editor for this notation based on Xtext. Xtext generates different plugins that
make up the Eclipse-based textual editor for EAST-ADL, namely o.e.eatop.eastadl.simplified,
o.e.eatop.eastadl.simplified.ide, and o.e.eatop.eastadl.simplified.ui as depicted in
Figure 11. Furthermore, Xtext allows the generation of grammars based on existing Ecore
metamodels, which we exploited for our use case. In Figure 11, the resulting generated grammar
EastAdlSimplified.xtext as part of the plugin o.e.eatop.eastadl.simplified imports the
EAST-ADL language concepts from eastadl22.ecore and associates them with a textual concrete
syntax. We call the textual EAST-ADL notation that can be specified with our textual editor EATXT.

Beyond the pure generation of these plugins, we had to customize certain features in the plugin
o.e.eatop.eastadl.simplified due to several reasons:

1. We had to adapt the grammar as part of EastAdlSimplified.xtext to achieve the textual
notation as favored by Volvo. Particularly, Volvo opted for a whitespace-aware language
similar to Python, which is in terms of the grammar very different to default grammars of Xtext,
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which apply Java-like brackets for the representation of hierarchical structures. In the case
that changes in the EAST-ADL metamodel eastadl22.ecore occur, we automated these
adaptations with a post-processing plugin (cf. Section 3.3.3).

2. By default, Xtext assumes that for any metamodel/grammar that there is a mandatory attribute
name which is used as the unique identifier of all the model elements. However, in EAST-ADL,
there is an optional name attribute but a different mandatory and uniquely identifying attribute
called shortName. Thus, we had to make the Xtext framework aware of this attribute instead
of the default behavior, which we do in the class EastAdlQualifiedShortnameProvider (cf.
Figure 11).

3. As the whitespace-aware language feature of our textual EAST-ADL notation is no default
Xtext behavior, Xtext’s default error messages for potential parsing errors are typically not very
meaningful to the user of the editor. Furthermore, the EAST-ADL metamodel restricts certain
String attributes to be in a certain format w.r.t. regular expressions. If the user of the textual
notation does not adhere to such a format, the error message of the underlying metamodel is
not meaningfully translated to the resulting Xtext error message. To provide meaningful error
messages to the user in such cases, we customize the corresponding error messages in the
class EastAdlSimplifiedSyntaxErrorMessageProvider (cf. Figure 11).

4. As EAST-ADL uses the attribute shortName and not the attribute name as a unique model
element identifier (see above), we also had to adapt the default Xtext behavior regarding
scoping for cross-references between model elements of an EAST-ADL model (e.g.,
references to types). In this context, we let Xtext’s auto-completion feature let propose the
shortNames of other model elements, which we implemented in the class
EastAdlSimplifiedScopeProvider (cf. Figure 11).

In future work, we plan to achieve blending between our text editor and the other EATOP editors via a
synchronization in the EAXML persistence format.

3.3.2. Client-/Server-based Approach

In addition to the activities related to the Eclipse RCP, we plan to implement and evaluate an approach
based on a client/server architectural style. In this context, frameworks based on the language server
protocol (LSP) provide a modern approach to decouple language design from editor development,
Particularly, the application of web-based technologies in modern cloud IDEs like VS Code and
Eclipse Theia promises a user-friendly editor experience and might enable blended modelling in a
more lightweight manner than for the Eclipse RCP.

Figure 12 depicts our overall vision of a client-/server-based approach to BUMBLE use case 3. The
idea behind this vision is to use a language model server based on EMF.cloud (cf. Section 3.1) and to
combine it with different client frameworks that each fit the different EATOP editor kinds best.
EMF.cloud-based model servers provide an API to make, amongst other things, EMF-based models
accessible to web-based client editors. In doing so, we plan to feed selected portions of an overall
EAST-ADL model via this API to the different web-based clients that render their respective parts and
enable the editing of these parts. These different client editors shall be integrated into one cloud IDE,
and the model server is responsible for the editing logic. This will constitute a blended EAST-ADL
modelling IDE.



26

BUMBLE

Figure 12: Vision of blended EAST-ADL modeling based on different LSP frameworks

For bringing the form-based EATOP property editor and the EATOP tree editor (cf. last section) to a
cloud IDE, the framework JSON Forms16 is the most appropriate as it is specifically designed for
form-based editing but also enables the development of tree editors. For addressing graphical editors
the Graphical Language Server Platform (GLSP) (cf. Section 2.3) and the underlying SVG-based
rendering engine Sprotty17 are most appropriate. For bringing textual editors like EATXT to a cloud
IDE, Xtext itself already provides its own language server implementation based on LSP.

From this vision, we realized the client-/server-based approach for EATXT until now. Figure 13
describes this realization. On the server side, we provide the Java class RunServer that spawns an
instance of the class LanguageServerImpl provided by the plugin o.e.xtext.ide. On the client side,
we developed the VS Code extension (being fully compatible also to Eclipse Theia)
east-adl-simplified-vscode. Beyond the EATXT language configuration, we provide the
TypeScript module Extension. This module spawns an instance of the module LanguageClient
(provided by the VS Code package vscode-languageclient) when an EATXT file is opened in the
runtime workspace of VS Code.

17 https://projects.eclipse.org/projects/ecd.sprotty
16 https://jsonforms.io/

https://projects.eclipse.org/projects/ecd.sprotty
https://jsonforms.io/
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Figure 13: Architecture for bringing the EATXT editor to VS Code and Eclipse Theia via LSP

In future work, we plan to implement and evaluate blending between the EATXT editor and the other
EATOP editors yet to be implemented in cloud IDEs via a synchronization on the model server, which
notifies all clients about model changes.

3.3.3. EATXT Grammar Post-Processing for the Case of Metamodel Evolution

In case that a metamodel (like the one for EAST-ADL, cf. left-hand side of Figure 14) evolves, the
artifacts that depend on it (like our EATXT grammar, cf. center of Figure 14) have to be changed as
well. The EATXT language design as coordinated with Volvo requires many adaptations to the
grammar that is initially generated by the Xtext framework from the EAST-ADL metamodel (cf. Section
3.3.1). To efficiently incorporate these adaptations to the grammar in case the EAST-ADL metamodel
evolves, we developed a post-processing plugin that automates these grammar adaptations.

Figure 14: Architecture for the post-processing of the EATXT grammar

We call this post-processing plugin o.e.eatop.eastadl.grammaroptimization (cf. right-hand side
of Figure 14). The plugin uses Regular Expressions to find parts of the grammar that is initially
generated by Xtext and to replace these parts with the corresponding parts of our modified grammar.
In this context, the grammar is accessed by the plugin via the relative workspace structure so that no
actual dependency between the plugins exists. We opted for post-processing the grammar instead of
directly modifying the Xtext grammar generator as the latter approach would have led to code that
would be very specific to each Xtext version and thereby would have to be changed on every Xtext
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version increment. In contrast, the application of conventional Regular Expressions guarantees the
stability of our code.

We describe the functional principle of the plugin in the BUMBLE Deliverable D3.4.

3.3.4. Relation to BUMBLE Features

Blended Syntaxes & Modelling (B)

As a prerequisite to achieve this BUMBLE feature, we developed a new textual syntax and editor
called EATXT, which complements the existing EAST-ADL tree-/form-based notations and their
EATOP editors. The EATXT editor can be applied both within the Eclipse RCP and as part of a
client-/server-based architectural style. The latter enables to edit EATXT files in cloud IDEs like VS
Code and Eclipse Theia.

In order to extend the BUMBLE Use Case 3 in such a way that it supports blended EAST-ADL
modelling, we are currently working on both the Eclipse RCP and the client-/server-based architectural
style. One the one hand, in the Eclipse RCP architectural style that the EATOP tool suite uses (cf.
Section 3.3.1), we want to achieve blending between the EATXT editor and the other EATOP editors
through a synchronization in the EAXML persistence format. However, with this architectural style, we
will probably have the same issues as the ones that we discovered in the canonical use case 1 (cf.
Section 3.1.3). On the other hand, in the client/server architectural style (cf. Section 3.3.2), we plan to
implement and evaluate blending between the EATXT editor and the other EATOP editors via a
synchronization on the model server, which notifies all clients about model changes. However, as a
prerequisite for this purpose, we still have to bring the tree- and form-based EATOP editors to a cloud
IDE with the mentioned LSP-based frameworks.

Evolution (E)

As mentioned above, our design of the grammar for EATXT deviates strongly from the grammar that
Xtext initially generates from the EAST-ADL metamodel. Thus, together with the actual design of the
EATXT grammar, we directly co-conceived and co-implemented an automatic grammar
post-processing to efficiently cope with potential EAST-ADL metamodel evolutions.

3.4. Architectural Description of UC6 (Blended Editing and Consistency
Checking of SysML Models and Related Program Code)

At Saab the SysML is the modelling language chosen for designing complex system architectures and
designing system behaviour. There are a number of different tools that provide a graphical interface for
viewing and creating models in SysML.

A system model is created to describe the decomposition of the system into so-called “system
components” that are then assigned to software or hardware components. Moreover, the intended
functionality of those components are modelled via behavioural diagrams (e.g., state machines) and
internal block diagrams. The software components are implemented in various ways, among which
C++ is one.

3.4.1. Model and code matcher

We have setup a bridge between C++ code and and the XML description of the system described in
SysML. A matcher tool implemented in Java indexes both the code and the SysML model and finds
probable links between them. These links can be improved by adding additional heuristics for guiding
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the tool in creating links. Links can also be invalidated. The matcher tool indexes can be stored
persistently. The matcher has been deliberately IDE agostic to be able to augment with several
different models and modeling tools.

The Matcher assumes that there is architectural rules in both models (SysML and C++) that can be
matched. It creates two tuples for matching. From the SysML model elements it creates a tuple for
each model element € consisting of €:<structure S€, element type €T, element name €N and element
stereotype €T>. For each code element C it creates a tuple C<Structure SC, code type CT and code
name CN>. The matcher has a set of conditions <c1,c2,c3>. These conditions are related to structure,
type and name.

The first condition c1 compares the structure SC and S€ to make sure that both elements belongs to the
same architectural entity. The structure is defined as the relation between hierarchy in the model, and
repository and directory structure in the code,

The second condition c2 compares the pair <€T,€S> with the code type CT to make sure that the correct
level of design is compared, E.g., in SysML both a component and an interface may be of the type
“block”, however they are stereotyped differently.

The third condition c3 compares the names CN and €N. Because names are sometimes abbreviated, or
harmonized in either model or code, a dictionary is used for widening the name comparison. Some
abbreviations can be rule based, others need to be explicit.

If all three conditions are fulfilled the matcher will create a trace between the model and the code, The
traces (links) that are created are bi-directional and will be used in several different ways. The first
step has been to indicate the consistency of each system component. Basic KPIs, showing the
percentage of consistency between the model and code are presented in an html page.

Further work is done in order to use the links to blend the SysML diagrams from the SysML tool of
choice (currently Rhapsody) together with the Software IDE (currently Jetbrains CLion). The selected
code should show the appropriate SysML diagram is the CLion IDE. To show the Rhapsody diagrams
in CLion, we are planning on running Rhapsody in headless state, and dynamically retrieve diagrams
based on the links created by the matcher.

By blending the notations and showing the links continuously it is easier for both software engineers,
and systems engineers to understand the gaps in the consistency between the model and its
implementation that emerge throughout the evolution of the system.

FIgure 15 shows the overall architecture of the matcher, CLion and Rhapsody.
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Figure 15. Overall architecture of the matcher, CLion and Rhapsody

3.4.2. Relation to BUMBLE Features

Blended Syntaxes & Modelling (B)

As discussed the Blending will be performed by showing SysML diagrams in the code IDE or vice
versa. While working with code the linked SysML diagrams should be shown.

Traceability (T)

The main purpose of the proposed solution with a matcher is to automatically create links between
models based on heuristics. In our (Saab) case we have created a set of rules and conditions based
on our architectural guidelines.

Evolution (E)

It is obvious that the links help in understanding the evolution of the system. The regression of the
links them-selves may also be used for creating information of “evolution-rate”. As elements emerge or
disappear in the system model (matched or not) is an indication of how fast the system model is
evolving, and vice versa.


