ITEA Office

Q I T E A 3 High Tech Campus 69 - 3 T +31880036136
5656 AG Eindhoven E info@itea3.org
The Netherlands W www.itea3.org

ITEA 3 is a EUREKA strategic ICT cluster programme

BUMBLE Deliverable D3.3 (Version 1)

BUMBLE Methodology

Edited by: BUMBLE Team
Date: November 2021

Project: BUMBLE - Blended Modeling for Enhanced Software and Systems Engineering

, 2
fITEAZ
? BUMBLE

Deliverable 3.3

Contents
1. INTRODUCTION 3
2. ToproLoGgY 4
3. TaxoNomy 7
4, CONCLUSION AND NEXT STEPS 10

Page 2 of 10 Deliverable D3.3 topology and taxonomy

3
fITEAZ
jo BUMBLE

Deliverable 3.3

1. Introduction

The purpose of this deliverable is to provide a technology-independent overview of the BUMBLE
approach to realize blended modeling. It also includes aspects of the collaboration functionality. The
goal is to clarify how all required functionality fits together and to prevent problems because of
misinterpreted terminology.

This document is a start for the deliverable for the task called ‘BUMBLE Methodology’. Any
methodology addresses subjects that need to be defined first. That is why this first deliverable will
focus on the functional parts and terminology. In later versions more will be written about the modeling
process.

This document contains two major parts. The first part is topology. The topology defines the building
blocks of the solutions and how they fit together. The topology is not ment as a technical architecture,
but more as an overview of the functional parts of the solutions. The second part is the taxonomy. The
taxonomy is a definition of the terminology by means of an ontology that depicts the relations between
the different terms.

Page 3 of 10 Deliverable D3.3 topology and taxonomy

4
& ITEAZ
. BUMBLE

Deliverable 3.3

2. Topology

BUMBLE is about blended and collaborative modeling. We follow common terminology and
approaches used in model-driven practices as far as possible. Since it is common to use
modeling for different purposes we distinguish the common meta-levels of models:

e M1 are the actual models that model non-language aspects like printer cars, or
income-tax laws. Here is where the users enjoy the blending and collaboration
functionality.

e M2 are the models that define the languages of the M1 models and the way different
languages blend together.

e M3 are the models that define the modeling-languages in which the M2 models are
written.

Figure 1 shows the topology of an example of the functional parts that blend and synchronize M1
models. Figure 2 shows the topology of an example of the functional parts that define the
languages and their transformations. It also shows how these M2 models relate to the M1
topology. It is shown that the functionality of M1 is derived from the M2 specifications, by means
of generators.

Figure 1 depicts two modeling client environments that are involved in a collaboration session
where their models are immediately synchronized with each other. Furthermore, the modeling
languages (and possibly MDSE technologies) are different from each other. There is also
blending of different concrete syntaxes happening in both client environments. To make this
happen there are several transformations happening, both in the client- as in the server
environments. The synchronization between the different environments is done by two model
distribution services that exchange the mutations for the synchronized models. Mind that remote
synchronization only takes place between models that conform to the same metamodel (are
written in the same language).

Page 4 of 10 Deliverable D3.3 topology and taxonomy

ITEAZ=

6 BUMBLE
Deliverable 3.3

Collaborative MDSE client technologies
Blended _

; . ipSe (GEFIGMFIGratit, KTEXT, Sirus...) —
MOde"ng . MPS (projectianal editars, diagrams...) i mal syntax
Exam ple o \WEB/Browser (projsetional, forms, simutation, ...} 2

(M1)

a———— remote synchronization «...... = conforms to
abstract abstract abstract/abstract
model syntax spec transformation spec
M1 M2 ~af—— aslas transformation = = = —=p maps to abstract synt
concrete concrete ‘abstract/concrete
ki syntax spec transformation spec <dl—P» asics transformation = — — —p maps to concrete synt

Figure 1. M1 topology

The goal of the BUMBLE project is to develop solutions for blending for different MDSE
technologies, and that are usable for all possible modeling languages. MDSE technologies
already have generic functionality to define modeling languages. We need to extend this
functionality to define transformations between those languages. It very much depends on the
MDSE-technology involved if and how this should be realized.

Page 5 of 10 Deliverable D3.3 topology and taxonomy

fITEAZ
6 BUMBLE

Deliverable 3.3

Figure 2 shows that the transformations of the different syntaxes (blending) is realized by an
modeling-environment that is (partly) generated based on language and transformation
specifications. These M2 level models are also modeled in a modeling environment (the yellow
one in figure 2). A generator (the yellow arrow) generates parts of the M1 modeling environment
(the purple part). How and which solutions need to be developed in the BUMBLE project for
defining and executing the transformations is very much dependent on the involved MDSE
technologies (e.g. PMS or EMF).

Blended external metamodeling environment (M2)
Meta
Modeling
M2
" BUMBLE \
diagram) -]
"""""""" 7| language metamodeling | textual syntax
) environment 1
(M2) :
.............. ‘4| transformation
‘specification 2
generator - e
N
............................... ‘| metamodel 1
- et
............... . transformation | transformation
specification 3 i specification 4
-
s -
g, 3 o S
............ > et = i
e metamodel 2 e ed:lgll'::aec
-------- 8) el :
-4———— remote synchronization = «...... » conforms to
abstract abstract abstract/abstract I
model syntax spec transformation spec
M1 M2 -g—p aslas transformation = — = —p= maps to abstract synt
[concrete concrete [absjl_'acﬁ'cq'iweie': J
model syntax spec fransformation spec <—— as/cs transformation — — — —» maps to concrete synt

Figure 2. M2 and M1 relation topology

Page 6 of 10 Deliverable D3.3 topology and taxonomy

ITEAZ=

3. Taxonomy

Figure 3 shows the terms and the relationship between the terms.

>
definedInTermsOf

BUMBLE
Deliverable 3.3

>
providesiMeansForDefining

Concrete

Syntax has Modeling has

o 1 RELIELLI 4

Specification

<
providesMeansForDefining Meta-
1 language 1

Remote

{self,manipulates—>forAll }_ _

(model | model.instanceOf = self basesOn) 1 Synchronization

manipulates

Model
Element

defines

instanceOf

>

«
Concrete conformsTo View/Editor

>
refersTo

»
basesOn

defines
v

Syntax Type

defines
L

Transformation
Specification

Textual
View/Editor

Tree Form
View/Editor View/Editor

Graphical
View/Editor

relates
»>

Type Type

Type Type

Figure 3. taxonomy

Model

relates
[

“A model represents an aspect of a system under development captured in a specific instance of
a [machine-processable] [modeling] language that serves a purpose within the development

lifecycle.”

' J. Holtmann, J.-P. Steghofer, M. Rath, D. Schmelter: Cutting through the Jungle: Disambiguating

Model-based Traceability Terminology. RE 2020: 8-19

Page 7 of 10

Deliverable D3.3 topology and taxonomy

8
& ITEA 3
4 BUMBLE

P
Deliverable 3.3

Modeling Language

A language defines the syntax and static semantics of models. The syntax defines the
concepts and rules to be used and conformed to, for any model to be a well-formed instance
of that modeling language.

Metamodel
A meta-model defines the abstract syntax of a modeling language.

Abstract Syntax

The abstract syntax defines the concepts and rules by which structure models shall be
written in a specific modeling language. The abstract syntax is mainly useful for the static
semantic aspects of the models. The abstract syntax is defined by and has to conform to an
abstract syntax specification (i.e., a metamodel), which is part of a modeling language.

Concrete Syntax Specification
A concrete syntax specification defines a concrete syntax for a modeling language.

Concrete Syntax

The concrete syntax defines how humans read and write models of a specific modeling
language. The concrete syntax is defined by and has to conform to a concrete syntax
specification, which is part of a modeling language.

Metalanguage
A metalanguage is a language that provides means for defining an aspect (metamodel,
concrete syntax specification, static semantics, ...) of a modeling language.

Remote Synchronization

A synchronization mechanism that keeps two or more models of the same language edited
by different editors the same across a network. Changes in one model are propagated to
equivalent changes in the other model.

Transformation

A transformation is a manipulation of a pair of one model and another model or a view that
preserves the relation between them according to a Transformation Specification for the
two syntaxes involved.

Page 8 of 10 Deliverable D3.3 topology and taxonomy

9
& ITEAZ
‘ BUMBLE

/
Deliverable 3.3

Transformation Specification

A transformation specification is a specification that defines the meaning-preserving relation
between two syntaxes. One of the transformed syntaxes must be an abstract syntax and
the other syntax can either be an abstract syntax or a concrete syntax.

View/Editor Type

“A view[/editor] type defines rules according to which views|[/editors] of the respective type
are created™ based on the concrete syntax and thereby its concrete syntax specification
of a modeling language. “It defines the set of metaclasses whose instances a viewl[/editor]
can display [and can be edited].”? A view/editor type can be of graphical, textual, tree-based,
form-based, ... nature.

View/Editor

“A view[/editor] is the actual set of objects and their relations [(i.e., the elements of a model)]
displayed using a certain representation and layout [and providing the allowed editing
commands]. A view[/editor] resembles the application of a view[/editor] type on the [...]
models. A view[/editor] can therefore be considered an instance of a view(/editor] type."

2T. Goldschmidt, S. Becker, E. Burger: Towards a Tool-Oriented Taxonomy of View-Based Modeling.
Modellierung 2012.

Page 9 of 10 Deliverable D3.3 topology and taxonomy

10
fITEAZ
o BUMBLE

Deliverable 3.3

4. Conclusion and next steps

We can conclude that it is possible to define the generic BUMBLE concepts in a
technical-independent manner. We have also clarified that a complete BUMBLE solution can be
created by combining relatively independent ‘partial’ solutions for different aspects.

This is the first version of the BUMBLE methodology deliverable. In the following versions we will

add a more detailed explanation of the concepts depicted in the topology, and a description of the
BUMBLE methodology process.

Page 10 of 10 Deliverable D3.3 topology and taxonomy

