

This document by the IML4E project (IML4E – 20219) is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0).

Industrial Machine Learning for
Enterprises

Deliverable D3.1

Baseline methods and techniques for advanced
model engineering

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 2 / 26

Project title: IML4E

Project number: 20219

Call identifier: ITEA AI 2020

Challenge: Safety & Security

Work package: WP3

Deliverable number: D3.1

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2022-01-31

Actual delivery date: 2022-02-04

Responsible partner: University of Helsinki

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 3 / 26

Contributors
Editor(s) Mikko Raatikainen (University of Helsinki)

Contributor(s) Mikko Raatikainen (University of Helsinki), Harry Souris (Silo AI), Juhani Kivimäki
(University of Helsinki), Lalli Myllyaho (University of Helsinki), Ville Kukkonen
(Granlund), Davor Stjelja (Granlund), Gábor Gulyás (Vitarex Studio), Tamás Csarnó
(Vitarex Studio), Dorian Knoblauch, Mariia Kucheiko, Abhishek Shresta (Fraunhofer
FOKUS)

Quality assuror(s) Gábor Gulyás (Vitarex Studio), Tamás Csarnó (Vitarex Studio), Harry Souris (Silo AI)

Version history

Version Date Description

1.0 Feb 3, 2022 Published version

Abstract

The purpose of this document is to provide the baseline for the IML4E project together with other deliverable
D2.1. This document covers MLOps, reuse, AutoML, validation, verification, testing, debugging, maintenance,
and monitoring. The document describes or defines the key concepts and terms in order to form a shared
understanding within the project as well as elaborates the technological landscape with respect to the state
of the art and practice of methods and tools that are of interest for the IML4E project. Finally, a summary as
a technological baseline for IML4E projects is summarized pointing out areas that will be addressed during the
project.

Keywords

MLOps, reuse, AutoML, validation, verification, testing, debugging, maintenance, monitoring

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 4 / 26

Executive Summary
The purpose of this document is to provide the baseline for the IML4E project together with other deliverable
D2.1. This document describes or defines the key concepts and terms in order to form a shared understanding
within the project as well as elaborates the technological landscape with respect to the state of the art and
practice of methods and tools that are of interest for the IML4E project. Finally, a summary as a technological
baseline for IML4E projects is outlined pointing out gaps in state of the art that will be addressed during the
project.

Reuse in ML system differentiates intra-organization reuse within a system’s life-cycle and between different
deployment instances as well as broader extra-organizational reuse in terms of open-source reuse. The IML4E
project will primarily focus on intra-organizational reuse. Additionally, the feasibility to apply AutoML, which
aims to minimize human assistance in ML tooling, will be considered over the course of the project.

The specific focus in the IML4E project will be on various verification and validation activities meaning that the
system is built correctly, and the right system is built, respectively. This covers both the ML model and ML system
viewpoints as well as debugging, testing and continuous validation as activities. The contributions are about
conceptual understanding and advancing solution approaches.

Respectively, another key focus will be in monitoring and management of a deployed ML model and system. This
requires seamless integration as a part of overall MLOps architecture and processes.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 5 / 26

Table of contents

1 INTRODUCTION ... 6

1.1 ROLE OF THIS DOCUMENT ... 6
1.2 INTENDED AUDIENCE ... 6
1.3 DEFINITIONS AND INTERPRETATIONS ... 6
1.4 APPLICABLE DOCUMENTS ... 6

2 BASIC CONCEPTS ... 7
3 TRANSFER LEARNING, MODEL REUSE AND AUTOML .. 9

3.1 TRANSFER LEARNING AND MODEL REUSE .. 9
3.2 AUTOML ... 9

4 MODEL TROUBLESHOOTING, DEBUGGING AND TESTING ... 10
4.1 BASIC CONCEPT .. 10
4.2 ML SYSTEM TROUBLESHOOTING AND MISBEHAVIOUR .. 10
4.3 DEBUGGING ... 11
4.4 BLACK BOX TESTING WITH VALICY .. 12
4.5 ML MODEL VERIFICATION .. 15
4.6 ML SYSTEM VALIDATION .. 16

5 MODEL MONITORING AND MAINTENANCE ... 17
5.1 MODEL MONITORING .. 17
5.2 MODEL MONITORING OF HIGH NUMBER OF DIFFERENT MODELS ... 20
5.3 MODEL MAINTENANCE .. 20

6 CONCLUSIONS AND BASELINE .. 24
REFERENCES ... 25

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 6 / 26

1 Introduction

1.1 Role of this Document
The purpose of this document is to provide the baseline for the IML4E project. The document focuses on ML
model engineering being parallel with the data engineering-focused deliverable “D2.1 Baseline methods and
techniques for data collection, processing, and valorisation”. This document describes or defines the key
concepts and terms in order to form a shared understanding as well as outlines the technological landscape with
respect to the state of the art and practice of methods and tools that are of interest for the IML4E project. Finally,
a summary as a technological baseline for IML4E projects is outlined along with future directions.

1.2 Intended Audience
The intended audience of the present document is composed primarily of the IML4E consortium for the purpose
of capturing the baseline of the project that the project will advance. However, this document is public and can
provide an overview of the current practices to a reader. This document describes technologies for the
technically oriented audience rather than the general public or layman.

1.3 Definitions and Interpretations
The terms used in this document have the same meaning as in the contractual documents referred in [FPP] with
Annexes and [PCA] unless explicitly stated otherwise.

1.4 Applicable Documents
Reference Referred document

[FPP] IML4E – Full Project Proposal 20219

[PCA] IML4E Project Consortium Agreement

[D2.1] Baseline methods and techniques for data collection, processing, and valorisation

Table 1 – Contractual documents.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 7 / 26

2 Basic Concepts
This section provides the definitions and descriptions of the basic concepts related to model engineering. The
reference model (Google 2022a) used in the IML4E project is show in Figure 1.

Artificial Intelligence (AI) consists of all technical aspects that aim to get computers to imitate intelligent
behaviour observed in humans (Russel 2002) including machine learning, natural language processing (NLP),
language synthesis, computer vision, robotics, sensor analysis, optimization, and simulation.

A subclass of AI is Machine Learning (ML) that consists of techniques that enable computers to change their
functionality based on given information (e.g., sensor data or training data), thus improving their behaviour for
a given goal. ML techniques include decision trees, neural networks, support vector machines, and more.
Machine learning can be categorized into supervised, unsupervised and reinforcement learning (Hinton and
Sejnowski, 1999).

Supervised Learning utilizes training data for classification. The training data contains the desired outputs that
are trained to the machine learning solution (Hinton and Sejnowski, 1999). Training data is usually formed
manually by humans, collected automatically from empirical outcomes, such as weather data, or can be
transferred by previously trained networks that could be labelled as teacher networks.

Unsupervised learning uses raw data for classification. The machine learning solution constructs its own outputs
and predictions of classification based on the given input data (Hinton and Sejnowski, 1999).

Reinforcement Learning uses trial and error based on data made on the fly by an oracle, such as a repeatable
simulation or a game, to find the optimal outputs for the machine learning solution (Hinton and Sejnowski, 1999).

Neural Networks (NNs) are a part of ML. NNs are computer programs inspired by biological neural network
processes (Goodfellow et al., 2016) consisting of perceptrons, convolutional neural networks, recurrent neural
networks, Boltzmann machines, deep neural networks, and many more. Basic NNs with one to a few layers of
neurons usually require user assistance in forming classification classes.

Deep Neural Networks (DNNs) are a part of NN (Goodfellow et al., 2016). A DNN is a neural network that consists
of multiple layers providing the DNN with the ability to form new classification classes regardless of human
interference.

For clarity, we make a difference between

• A ML model as depicted above representing a component that has been trained based on data

• A ML system performs a purposeful function in a realistic context and includes a ML model and other

supporting software components.

In practice, a ML system includes one or more ML models as a key part of the ML system.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 8 / 26

Figure 1 – The reference MLOps model in the IML4E project (Google 2022a) (Licenced under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/)

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 9 / 26

3 Transfer Learning, Model Reuse and AutoML

3.1 Transfer Learning and Model Reuse
Transfer learning and model reuse can be divided into internal intra-organization and external extra-organization

approach. This is likewise as software reuse in software product lines and open-source components, respectively.

In the case of intra-organizational reuse, we differentiate inter-product reuse, which is a part of and elaborated

later in the case of model maintenance. Essentially, a model is deployed to a product or system to replace the

existing model, e.g., because of model drift or decay. On the other hand, model reuse can take place between

different deployments. For instance, edge deployment meaning that deployment is made to the customer’s

computing nodes can take advantage of the same model in different deployment scenarios. Edge deployment

conveys many challenges related to non-functional characteristics, such as scalability and privacy.

Traditionally machine learning models have been hidden behind technology industry walls. Recently, however,

we have seen a significant introduction of multiple new open-source machine learning models. These shared off-

the-shelf pre-trained open-source machine learning models, frameworks, and datasets provide competitive state

of the art capabilities in terms of performance, cost-effectiveness, and adaptability in different application

domains when applied to new machine learning tasks. This may provide affordable new avenues for software

engineers, researchers, students, businesses, and private enthusiasts to help reap the benefits of available data

without requiring them to invest work on reinventing the wheel (Zhou 2016). Modular Neural Networks (MNNs)

are another type under the NN category. A MNN is a network, that consists of multiple independent neural

networks (modules) managed by some intermediary (program) that inputs values to each network, and takes

their results (Hrycej, 1992) in some order or structural manner. While our ongoing systematic literature review

(still unpublished work) indicates exponential interests in reuse of open ML models especially in academic

settings, it is opposite in the case MNNs that show quite steady popularity over the years.

3.2 AutoML
The concept of AutoML can be defined in various ways. According to Yao et al. (2018), AutoML is the intersection

of automation and machine learning, seeking to maximize performance of machine learning tools with regards

to different configurations, in such a way that human assistance is minimized. This is done within confinements

of a limited computational budget.

AutoML techniques can be applied to some or all of the components of the machine learning pipeline. These

include data preparation, feature engineering, model generation and model evaluation (He et al. 2021). In data

preparation AutoML tools can be used to collect, clean, augment and label data. Automated feature engineering

seeks to either find the best representative subset of features, construct new features out of the existing ones

or extract features using dimensionality reduction techniques. Model generation begins by selecting a model out

of the space of available model structures. In deep neural networks optimal architecture can be sought using

neural architecture search. After the model and its architecture are selected, the hyperparameter values can be

set using automated hyperparameter tuning. Finally, automated methods can be applied to model evaluation.

There are many existing frameworks for AutoML. Most of these frameworks can be integrated with common

machine learning libraries (sklearn, pytorch, tensorflow) with ease. Some of them can be used to automate only

the hyperparameter tuning phase. Others seek to automate most if not the entire machine learning pipeline.

Some open source AutoML systems are presented and evaluated in published benchmarks (Gijsbers et al., 2019;

Zöller & Huber, 2021). A comprehensive comparison of existing neural architecture search methods can be found

in He et al. (2021). Though AutoML solutions can provide easy to access and fast to implement solutions in

generating machine learning pipelines, they are not yet able to beat human experts in terms of performance

(Zöller & Huber, 2021).

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 10 / 26

4 Model Troubleshooting, Debugging and Testing

4.1 Basic Concept
SWEBOK (Bourque & Fairley, 2014) makes a difference between:

• “Validation is an attempt to ensure that the right product is built—that is, the product fulfills its specific

intended purpose”.

• “Verification is an attempt to ensure that the product is built correctly, in the sense that the output

products of an activity meet the specifications imposed on them in previous activities.”

In other words, a validation process is for assessing whether or not the final product or ML System in the case of

IML4E works as it is supposed to, or whether or not “the right product was built.” This is the typical division

appearing in various engineering disciplines, including software engineering.

It is important to note that what we mean by validation is not the same as what is meant with ML model
validation often in the context of ML. That is, ML model validation often means testing the generalization ability

of a model (Wang et al. 2013). We do not rule out that ML model validation could be used by some as a validation

method for the entire system, but it is not what we strictly mean by validation. In a sense, ML model validation

means practically the same as ML system verification (Zhang et al. 2020, Breck et al. 2017, Myllyaho et al. 2021).

A dependable system delivers correct service consistently, does not suffer from long periods of down-time, and

is easily corrected and altered. Threats to dependability originate from failures, errors, and faults (Avizienis et al.

2004). Failures are deviations from the desired service. Failures result from propagating errors, i.e., incorrect

functioning of the system. Errors are caused by faults that are defects in system's components (software or

hardware).

Dependability can be reached by diminishing these threats (Avizienis et al. 2004). Two means of diminishing

threats are fault prevention and fault tolerance. Fault prevention aims at not introducing faults into systems

involving typically testing, whereas fault tolerance aims at a system design such that occurring errors are stopped

from propagating and causing system failures. In software systems, fault tolerance is achieved by error detection

and error recovery (Knight 2012). As faults are inherently possible or even present in ML models with no 100%

accuracy, preventing ML system failures needs both fault prevention and fault tolerance.

4.2 ML System Troubleshooting and Misbehaviour
ML systems have peculiar characteristics inherited from the included ML models. That is, ML models are

characterized as non-deterministic statistical approximations by their nature and they are bound to function

completely correctly only a certain portion of the time (Ramanathan et al. 2016). Therefore, we focus on only

issues stemming from the ML model rather than the system in general or to software around the ML model

specifically. The figure below is a result of an interview study about fault tolerance (Myllyaho et al. 2022)

depicting the different origins of misbehaviour in a ML system. Poor input means that the input data is somehow

broken or incomplete. Concept drift means that input changes over time to something else than was expected

originally, such as different distribution. Faulty deployment means that the input is broken by the system before

it enters the model, or that the model’s output is broken in the system, for example, by a buggy interface. Buggy

or inaccurate model refers to issue in the ML model itself while misuse of model’s results means that the ML

model is used incorrectly or misunderstood in the ML system.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 11 / 26

Figure 2 – Concepts of misbehaviour and their placement in relation to the system (Myllyaho et al. 2022).

4.3 Debugging
Unlike traditional software, which contains a large amount of code, machine learning tasks use a relatively small

amount of code but a large amount of data. Just like in traditional program development, where developers look

for bugs in the code, machine learning developers look for problems in their data and in their models. Given the

frequency of program errors and the potentially serious consequences, debugging is very important when

developing an ML model. However, there are fewer tools available for debugging and fixing errors in the data

than for traditional code debugging.

Machine learning systems are often used as a black box. This means that while a model can provide accurate

predictions, we cannot necessarily unambiguously explain the logic behind these predictions. Machine learning

models usually do not provide an explanation for their decisions. Because of this, debugging the output of

machine learning models is a difficult task.

Machine learning model debugging aims to find and fix problems in Machine learning systems. In addition to

newer innovations, the common practice borrows from model risk management, traditional model diagnostics,

and software testing. Model debugging attempts to test ML models like code and to probe sophisticated ML

response functions and decision boundaries to detect and correct accuracy, fairness, security, and other

problems in ML systems (Google 2022b).

The following are commonly used debugging techniques:

• Sensitivity analysis, sometimes called “What-if” analysis is a statistical method, which is able to estimate

how sensitive a model is to changes in input parameters from their nominal values. We can simulate

data that represents interesting scenarios, then see what kind of predictions the model makes in those

scenarios. Because it’s difficult to know how a nonlinear ML model will react to new data that it did not

see during training, it can be useful to conduct sensitivity analysis on all of our important ML models

(Kenton 2022).

• Residual analysis is a numeric evaluation method, which measures the difference between the known

true outcome and what a ML model predicted to be true. Residual plots can be very helpful in

determining where the ML model is making a mistake like misclassifying data points. Residuals are

crucial when it comes to evaluating the quality of a model. When residuals are zero, it means that the

model prediction is perfect. More or fewer values mean less accuracy of the model.

• Benchmark models: A benchmark model is the most easy-to-use, stable, reliable, transparent, and

interpretable model that you can compare your model with. A benchmark model can be a simple linear

model, decision tree, or a previously existing and well-understood ML model. It's best practice to

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 12 / 26

compare the newly developed ML model's performance to a known benchmark model. Benchmark

models can be useful debugging tools. You can ask questions like: “what predictions did my ML model

get wrong that my benchmark model got right, and why?”.

• Model assertions help improve or override model predictions in real-time. In the context of machine

learning modelling, a business rule can help the model meet its specified goals by detecting when it fails

predictions or behaves unexpectedly. ML developers can specify constraints on model outputs, e.g., cars

should not disappear and reappear in successive frames of a video. Model assertions can be exact or

“soft,” i.e., probabilistic. Model assertions can be used in ML debugging like in runtime monitoring, in

performing corrective actions, and in collecting “hard examples” to further train models with human

labelling or weak supervision (Kang et al. 2018).

• Metamorphic Testing. The concept of Metamorphic testing (Chen et al. 1998) tries to solve the problem

of testing systems that their output cannot be predefined for a given input. This problem is described

as the test oracle problem (Barr et al 2015). In Metamorphic testing, practitioners define relations

between inputs and outputs. Those defined relations are called Metamorphic relations (Zhang et al.

2019). Once those relations are defined practitioners generate test cases with modifications to the

corresponding inputs and they expect relevant updates in the outputs. If the outputs do not follow the

expected update pattern, then practitioners should mark the testcase as failed. Metamorphic testing

finds usage in machine learning systems, due to the fact that in machine learning system the test oracle

problem is met. Several studies and publications have been conducted the last years on the usage of

Metamorphic testing in ML systems.

4.4 Black Box Testing with VALICY
With the increasing use of AI in applications there is an increasing need for novel validation techniques. For

example, one specific case where existing software development techniques cannot be fully applied anymore is

the autonomous vehicle. Especially, the NCAP approach (Euro NCAP 2022) assumes a definition of edge cases,

i.e., the most critical cases to investigate. But this approach assumes there is an identifiable most critical case

that must be excluded. Criticism of this method comprises the over-focusing on specific presumed “most critical”

conditions to be fulfilled, while other cases might get too little attention. While the existing approach of the V-

model described in ISO 26262 part 6 (ISO 26262-6) is comprehensive for software development in the application

at the moment, there is the need to be able to estimate boundaries of the system in combination with AI as it

introduces additional uncertainty that is not covered by the V model and must be evaluated (Salay et al. 2017).

With regard to this development, the need arises to be able to evaluate critical cases that depend on a multitude

of input parameters and on one or more output target vectors. This is especially important regarding certification

done by a safety audit. To be able to do so, there is an increasing need for virtual validation systems. At Spicetech,

which is an IML4E project member, such a virtual validation tool – VALICY - is introduced and further developed

within this project. VALICY consists of four major components:

• The VALICY core: The VALICY core is a Python-based AI framework that makes use of well-established

machine learning and artificial intelligence libraries like sklearn, KERAS/Tensorflow and XGBoost. There

are three levels in VALICY, a job level with all configurations for the test parameters as well as result

parameters (upper, lower bounds, failure threshold)

• The VALICY database: To organize the data coming from and going to outside applications (black box)

VALICY has an elaborate data model that manages all the job data, data to be validated by the black box

with a proposed result from VALICY and the corresponding black box

• The VALICY API: VALICY has a REST-API based on SWAGGER UI that enables data transfer to and from

VALICY to outside applications

• The VALICY frontend: in order to give a visual representation of the result, VALICY has a visualization

frontend where three or more input parameters can be plotted with different projection techniques to

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 13 / 26

give an easily understandable visual representation of multi-dimensional parameter spaces. For a black

box test configuration, the VALICY API, hosted and described on https://api.valicy.de/docs, has to be

integrated. Spicetech can support the establishment of this integration.

VALICY operates in two modes, a black box testing mode with feedback from the black box and a mode for

evaluation of real test data without timely feedback. The first mode including a coupled black box application

that is continuously provided new parameter combinations to be tested as well as an expected VALICY result to

be compared is mainly focused on in this project.

There are three levels of VALICY, a job level, the instance or AI level, and the run level. While all the major

configurations are done on the job level, i.e., boundaries of the parameters under consideration as well as the

threshold of the result, the instance level executes the predictions and each of these predictions form a run.

After configuration of job details, VALICY starts the virtual validation runs by first iterating through the regular

grid of test parameters (min and max, or more if there are further subdivisions configured) makes guesses

(initially no sophisticated result expectable) for the outcome, makes it available for export and expects feedback

from the external black box application and evaluates if the VALICY proposal for the outcome was true or false.

This is done on the instance level where different AI models are randomly configured with respect to the

hyperparameters. The default mode is three different instance configurations which equals three different AI

models and configurations that are competing for the best result (best prediction of black-box behavior). This is

what we call the instance or AI level

After iterating through the regular grid, VALICY, or more exactly, the instances that could see the feedback from

the black box have a first impression of the decision space and start making its own proposals for parameter

combinations and the expected black box outcome. During each run VALICY aims to come as close to the decision

surface as possible while still making correct predictions. The parameters are used for a black box run and the

results are compared and transferred back to via the API to evaluate instance performance. If an instance

performs well, it can predict a lot of results correctly until the decision surface becomes too complex for the AI

model. When reaching a threshold of a pre-set value (e.g., 4) of wrong predictions in a row is exceeded, VALICY

replaces the AI model with a newly configured model. A new instance trains on all the previously run results and

has to prove its capability of predicting new critical parameter combinations close to the decision surface. This

workflow is visualized in Figure 3.

The open challenges in VALICY are

• The scoring system for the instances and runs. The runs are the results of VALICY and are given a score

that is higher the closer it was to the presumed decision surface. To account for the increasing

complexity to identify critical parameter combinations of failure, there is an exponential decay term

multiplied with the score, analogous to the radioactive decay. This ensures that earlier results are of

less importance than later ones. However, this scoring system is under test, at the moment, and will be

described in detail in a later deliverable.

• Determination of remaining uncertainties. The remaining uncertainties of areas not tested are

estimated using appropriate mathematical functions and are under validation, at the moment. A

detailed description will be presented in the next deliverable.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 14 / 26

Figure 3 – General overview of the VALICY black box testing workflow

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 15 / 26

4.5 ML Model Verification
Whilst testing of ML systems is aiming at finding defects of their implementation, the purpose of verification is

to provide a provable guarantee that the system will not misbehave under a broad range of circumstances. In

contrast to classical software systems, which are verified against their specifications, due to the nature of ML

methods and their unstructured operational environments, creating a specification for them is a tedious task and

is still a subject of active research (Houben et al 2021).

One of the main requirements used in specifications of ML systems is their robustness against the so-called
adversarial examples. Since their discovery in classification tasks of computer vision and NLP (Szegedy et al 2014),

most of research has been focusing on these two domains, with former being much more popular than the latter.

The problem is stated as follows: small and often hardly perceptible perturbations of an initially correctly

classified object (image or text) may lead to its misclassification by the same NN. These perturbations might

originate in sensor’s malfunction, environmental conditions, etc. or they can be crafted on purpose, in which

case they are referred to as adversarial attacks. Researchers have proposed various methods for adversarial

defences and robust training approaches. However, they have usually been broken by yet stronger adversarial
attacks. To make an end to this arms race, part of the research community has focused on formal verification

methods, capable of providing a provable guarantee of a classifier’s robustness. (Huang et al 2020) An algorithm

that takes a NN, an object to classify, and a distance (a.k.a. magnitude of perturbation or robustness radius) as

an input and outputs “not robust” if the NN is not robust to changes of a given object within given distance is

called robustness verification algorithm. A verification algorithm that outputs “not robust” if and only if the NN

is not robust is called complete. (Li et al 2020)

The most of complete verification approaches focus on feed-forward ReLU NNs (Li et al 2020). These types of

NNs can be modelled as Boolean satisfiability problem (SAT), satisfiability modulo theories (SMT), mixed-integer
linear programming (MILP), etc., and solved either by off-the-shelf solvers or by their NNs adapted versions

(Huang et al, 2020). The former two approaches overapproximate a NN and iteratively tighten the approximation

until either the property has been satisfied or discharged. MILP approaches allow to directly model a ReLU NN

without any approximation. Unfortunately, the problem the abovementioned algorithms are attempting to solve

is NP-hard. Thus, even though they use strategies like branch-and-bound to reduce computational complexity by

skipping parts of solution space that cannot be optimal, they do not scale for state-of-the-art NNs. (Li et al, 2020)

In this case verification problem can only be solved with relaxations, meaning the algorithm returns a rather
conservative or pessimistic certification. For the input ranging within the examined radius of perturbations, linear

relaxation methods approximate the output of each neuron by linear lower and upper bounds and propagate

them through the network layer by layer. If the output of the overapproximated model is only the true class of

the examined object, the actual NN is robust. An alternative approach is to relax robustness verification to a

semidefinite programming (SDP) problem, which can be solved in polynomial time. (Li et al, 2020)

The common drawback of these approaches is that they are often too conservative on naturally trained NNs.

Hence, various robust training methods have been suggested to allow resulting NNs to be certified with nontrivial
robustness guarantees. Inspired by adversarial training approaches, which are looking for such parameters of a

NN that minimize maximal loss from misclassification of perturbated objects; robustness training searches for

parameters that maximize the robustness bounds found by verification approaches. Some methods combine this

objective with the regular training loss to balance standard top-1 accuracy and robustness accuracy. (Li et al,

2021)

Even though more suitable for mid-size NNs than complete verification approaches, the relaxation-based

methods fail to deliver tight lower bounds for large NNs. In this case probabilistic verification approaches come

in handy. What distinguishes them from previously discussed deterministic approaches is that they can
mistakenly verify an NN to be robust against certain perturbations of a particular object, while in fact it is not.

The probability of such a mistake is a hyperparameter of this procedure and can be limited to a very low level,

e.g., 0.1% per object. These approaches are model-agnostic and thus scale well. (Li et al, 2021)

In practice, one of the best-performing probabilistic verification methods is randomised smoothing. It uses a NN’s

(a.k.a. base classifier’s in this context) robustness to random noise to create a so-called smoothed classifier,

which in turn is certifiably robust to adversarial perturbations. When queried at image x, the smoothed classifier

returns whichever class the base classifier is most likely to return for random corruptions of x. Since it is

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 16 / 26

impossible for one algorithm (smoothed classifier) to predict the output of another algorithm (base classifier),

smoothed classifiers often use Monte Carlo simulation, a.k.a. random sampling, of the base classifier in

combination with a hypothesis test, to estimate the “winner-class” with the required confidence (e.g., 0,1% error

probability). If the randomized classifier classifies the perturbated objects correctly (I.e., “winner-class” is the

correct class of the non-perturbated object,) robustness radius of the smoothed classifier is calculated based on
the properties of the distribution (e.g., Gaussian, Laplacian, etc.) which has been used to generate random noise.

These approaches can certify state-of-the-art NNs for ImageNet dataset within acceptable time, e.g., that

ResNet-50 is robust on 37% of test images within a L2 radius of 1.0. To give a sense of scale, a perturbation with

this L2 radius could change one pixel by 255, ten pixels by 80, 100 pixels by 25, or 1000 pixels by 8. (Cohen et al.

2019)

4.6 ML System Validation
In terms of validation, it is often more relevant to discuss about ML system validation as noted above rather than

only ML model validation. A systematic literature review (Myllyaho et al. 2021) identifies and synthesizes various

ML system validation methods as summarized in Table 2 below. The validation methods are divided into classes

in which simulation and trial include three and two subclasses, respectively.

Validation method Description

Simulation:

Fully virtual simulation
The deployment environment of the system is replicated with a virtual

simulator

Hardware-in-the-loop simulation A virtual simulator that contains also some non-virtual components

System-In-the-loop simulation

The system in an artificial environment

Trial:

Trial in a real environment
The system is used as it would be used in the final deployment

environment

Trial in a mock environment
The system is used in an environment that replicates an actual

environment

Model-centred validation Validation focusing solely on validating the model

Expert opinion The system is assessed against expert’s opinion

Table 2 – Validation methods for ML systems. Adapted from (Myllyaho et al. 2022).

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 17 / 26

5 Model Monitoring and Maintenance

5.1 Model Monitoring
Model monitoring or continuous validation observes a deployed system and is applied to ensure that the AI

system also works in situations unseen during development or in training data, essentially testing that the AI

system operates as intended, which is the definition of validation (Myllyaho et al. 2020). There is, however, no

established conceptualization and terminology. For instance, Zhang et al. (2020) use the term “online testing”

and Breck et al. (2017) use the term “monitoring testing”, whereas Myllyaho et al. (2021) use the term continuous

validation, which is also adopted here. Continuous validation differs somewhat from the traditional way of seeing
validation as something usually applied to the end product (IEEE 1991). Many AI systems continue to change

their behaviour well after deployment or -- as discussed above -- are difficult to validate to a satisfactory degree

before deployment, thus challenging the idea of an unchangeable end product to a degree. Considering this,

post-deployment methods to ensure desired functionality and requirements are met are reported as continuous

validation. While fault-tolerance measures, and other safety or quality assurance are included in continuous

validation, monitoring is probably the most widely known and used concept of continuous validation.

A taxonomy for continuous validation is presented in Table 3 (Myllyaho et al 2021). The taxonomy is further

developed and refined for model monitoring and fault tolerance and validated in a set of of interviews in

(Myllyaho et al 2022). The table 4 below summarizes the results of the study.

Validation method Description

Output and input restrictions Hard limits given to the system input and output

Failure monitor System’s malfunction detection

Safety channel
Backup component that takes over if the primary components are

compromised

Redundancy Critical components are duplicated in the system

Voting
Different components perform the same task and vote on the action to
be taken

Table 3 – Continuous validation methods for ML systems monitoring in literature. Adapted from (Myllyaho et
al. 2021).

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 18 / 26

Pattern Variant Pros Cons When to use

Input checker
Hard limits

Efficient in enforcing business rules and
preventing poor quality data entering the
model. Computationally light. Low cost.

Requires very special knowledge
of the model. May solve only
small problems.

When accuracy of single outputs is
vital, and holey or out-of-range
inputs cause problems.

Novelty inputs Shows holes in -- and can be later utilized
as -- training data.

Difficult to say when a novel
input is a problem.

When training data is difficult to
gather otherwise.

Input distribution
observer

Indicates changes in operations
environment, and possible need of
retraining.

Does not prevent single errors
from happening.

In naturally evolving or changing
input distributions. When input
sources are prone to problems.

Output checker Hard limits
Efficient in enforcing business and safety
rules, and in spotting broken outputs.
Computationally light. Low cost.

Requires very specific knowledge
of the domain and system.
Careless use leads to limiting
results.

When business rules or safety
regulations dictate a range of
acceptable results, or unacceptable
outputs can otherwise be
recognised for certain.

Output distribution
observer

Indicates changes in operations
environment, and possible need of
retraining.

Does not prevent single errors
from happening.

In naturally evolving or changing
input distributions. When input
sources are prone to problems.

Model observers

Resource
consumption

Could indicate suboptimal development in
a continuously learning model.

Better suited for development
phase and monitoring HW
problems.

When testing the system after
model deployment.

Activation
observers

Has potential in spotting erroneous input-
output pairs.

Knowledge claims based on our
data cannot be made.

Redundant models

Recovery blocks
with divergent
models

Offers potentially effective fall-over
possibilities.

Requires knowledge on when
output is erroneous to be applied
efficiently. Requires several
models. Computationally heavy.

When high dependability is
required, and other fall-over
solutions are too simple for the
problem.

Input switch Allows the best suited model to be used
for each input.

Requires an enormous amount of
knowledge about input space and
used models. Requires several
models.

When inputs can be in several
forms or types, or inputs contain
several sub-problems.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 19 / 26

Multi-armed bandit
Raises tolerance against changes in data
distribution. Allows safer introduction of
new models.

Requires several models.

In naturally evolving or changing
input spaces. If product maturity
has introduced several iterations of
models.

Voting Potential to eliminate surprising input-
output pairs.

Difficult to implement. Requires
several models. Computationally
heavy.

When sufficient data science skills
are present in the project.

Fall-over options

Allow simpler, more predictable outcomes
when errors are detected. Either brings in
the user or developer to solve the problem
or handles situations consistently. Low
cost.

Results may not be as
sophisticated as with finer
solutions or models.

Often, if not always, as the last
resort.

Table 4 – The patterns for fault tolerance (Myllyaho et al. 2022

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 20 / 26

5.2 Model Monitoring of High Number of Different Models
Model monitoring practices and research appear to generally focus on cases involving one or a handful of trained
models. However, there are situations where many models need to be trained and used. Reasons for this may
have to do with either latent variables that are difficult or impossible to capture, or considerations such as data
confidentiality and edge deployments. As a practical example of latent variables, and a running example for the
discussion in this subsection, let us consider predicting the heating energy consumption of a building based on
the time and outdoor temperature. Buildings and their use vary a lot, with latent variables such as occupancy
schedules that may be difficult to capture as inputs but can be learned by models.

For situations involving hundreds or thousands of models, open questions remain about methods and techniques
for model monitoring. Approaches for managing these models could include fostering better understanding of
the deployed models by using so-called model cards (Mitchell et al. 2019) as metadata descriptions for the
models and exploiting the shared qualities of models such as grouping based on metadata or shared inputs. For
example, in the building heating energy prediction example, buildings could be grouped based on their location,
type of heating system, or function. Additionally, input data can be monitored and if a change in distribution
happens, models which share same input can be checked to see if there is a drift.

Model cards (Mitchell et al. 2019) are short documents which provide data on specific trained model. They
summarize the models with attributes such as:

• Model details: Training date, model version, algorithm

• Training and evaluation data: Data on which model was trained and evaluated, sample of data, features

• Metrics: Performance measures during evaluation, thresholds, uncertainty

• Intended use of the model: Purpose and object, constraints in which it works

• Ethical considerations

• Caveats and recommendations

Such model cards can be featured in the model monitoring dashboard and can also be used as a source of model
related metadata needed for further analysis, for example, setting up the thresholds for detecting problems with
a specific model. Comparing the latest error distributions against the known error distributions from the
evaluation phase enables detecting if the models have drifted.

5.3 Model Maintenance
Model maintenance and maintaining ML production systems are challenging undertakings (D. Sculley et al. 2015).
Only lately models have started to operate in production across multiple industries and there is not a
standardized approach on how to maintain such of deployments.

A lot of practitioners base their maintenance operations in the continuously monitoring of the models and on
triggering re-training operations when models are decaying. Specifically, the largest cloud providers in their AI
solutions suggest model re-trainings when drifts are detected and as it is mentioned in a Google’s article (Google
2022a) “.... to maintain your model's accuracy in production, you need to do the following:

• Actively monitor the quality of your model in production

• Frequently retrain your production models

• Continuously experiment with new implementations to produce the model

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 21 / 26

Figure 4 – High level view showing the sequence of different steps that make up an ML pipeline and how those steps are connected.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 22 / 26

However, the challenge still remains on what metrics to use to detect bias and drifts to different machine learning
use cases using different kind of data (tabular vs image data for example) and what should be the corresponding
threshold values for those metrics so as to generate alerts and notifications to the ML monitoring and
maintenance organisation. In addition, to continuously retrain model just because new data arrived may not be
always the optimal scenario (Xin et al. 2021).

Some common metrics enterprises use to identify model decays and trigger more intelligent model updates are:

• Metrics related to the accuracy of the deployed model. For example, organizations are monitoring F-
score in binary classification problems, and they deploy new re-trained versions of models when
accuracy drops under a particular threshold.

• Metrics related with the statistical distance between the production (inference) input data and the data
used in the training phase. By monitoring those metrics organizations monitor for data drifts which
reveal how much outdated the model has become in contrast to the production (real word) data. The
following figure describes a framework on how the statistical distances can be measured.

Figure 5 – Metrics related with the statistical distance between the production (inference) input data and the
data used in the training phase (Lu et al. 2020).

One interesting type of data drift is the concept drift. Concept drift is related with the changes in the statistical
properties of the target variable. In other words, with changes related with the distribution of the predictions.
For example, organizations monitor if over a period of time one target class is met significantly more or less than
what happened in a previous time period the model used to operate. Several statistical approaches and tools
have been used in the area of detecting concept drifts with for example Kolmogorov–Smirnov test to be one of
them.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 23 / 26

In the following architecture steps 5, 6 and 7 are important for setting up the fundamentals of monitoring and
maintaining ML solutions. Pipelines at step 5 should deploy model binary files together with information about
the model version and information regarding the data sets used in training. Pipelines at step 6, 7 should save
model predictions together with the input production data and together with the model and data versions that
were related to the deployed model binary files that did the prediction. If we group all those information, then
we are in position to run a variety of statistical tests and analysis of different performance metrics and hence we
are in position to trigger model retrain operations when they are needed.

Figure 6 – A view of the MLOps architecture.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 24 / 26

6 Conclusions and Baseline
This document has covered the technological landscape of the MLOps activities within IML4E project. In this
section, we provide a summary by identifying the areas in which IML4E aims to primarily make novel
contributions.

With respect to model reuse, the IML4E project aims to specifically address two topics. First, using, documenting,
and storing an ML model for use in the long term, such as relacing the deployed model with another existing
model version. Second, using the same model in different deployment instances, i.e., when the same software
and model is used for several customers or different edge nodes. Both cases require efficient MLOps
management processes for transparency and traceability.

Towards this end, the IML4E will focus on two basic scenarios of ML systems. First, the systems that have their
own model, evolve on their own, and are deployed, e.g., as one digital service to the cloud. Second, systems that
have large number of deployment instances that can be then deployed, e.g., to edge devices, and the instance
have some differences, such as training data used.

Specific focus in the IML4E project will be on various verification and validation activities covering and
differentiating both the ML model and ML system viewpoints. On one hand, the IML4E project aims to extend
the conceptual understanding and characterize the root causes of misbehaviour as well as develop the existing
approaches further and develop novel approaches. A quintessential part of this undertaking will be empirical
testing.

Likewise in the case of monitoring and maintenance, the IML4E project will characterize and develop different
approaches. The specific focus will be on the seamless integration as a part of entire MLOps architecture and
processes. This architecture should enable the storing of the production data together with the related ML
predictions together with the corresponding model and data versions that were used. Storing and grouping that
information enables model performance monitoring both at the time a prediction is taking place but also in a
batch fashion evaluating the model performance and the statistical changes over a period of time.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 25 / 26

References
Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C., 2004. Basic concepts and taxonomy of dependable and
secure computing. IEEE transactions on dependable and secure computing, 1(1), pp.11-33.

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S., 2014. The oracle problem in software testing: A
survey. IEEE transactions on software engineering, 41(5), pp.507-525.

Bourque, P. & Fairley, R. E., ed. 2014, SWEBOK: Guide to the Software Engineering Body of Knowledge , IEEE
Computer Society.

Breck, E., Cai, S., Nielsen, E., Salib, M. and Sculley, D., 2017, December. The ML test score: A rubric for ML
production readiness and technical debt reduction. In 2017 IEEE International Conference on Big Data (Big Data)
(pp. 1123-1132). IEEE.

Chen, T.Y., Cheung, S.C., Yiu, S.M. 1998. Metamorphic testing: A new approach for generating next test cases",
Technical Report HKUST-CS98-01 , Department of Computer Science, The Hong Kong University of Science and
Technology, Hong Kong, arXiv:2002.12543.

Cohen, J., Rosenfeld, E. and Kolter, Z., 2019, May. Certified adversarial robustness via randomized smoothing. In
International Conference on Machine Learning (pp. 1310-1320).

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B. and Vanschoren, J., 2019. An open source AutoML
benchmark. arXiv preprint arXiv:1907.00909.

Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. MIT press.

Google, 2022a, MLOps: Continuous delivery and automation pipelines in machine learning,
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-
learning

Google, 2022b, “Testing and Debugging” https://developers.google.com/machine-learning/testing-debugging

He, X., Zhao, K., Chu, X., 2021. AutoML: A survey of the state-of-the-art. In Knowledge-Based Systems, Volume
212, 2021.

Hinton, G.E. and Sejnowski, T.J. eds., 1999. Unsupervised learning: foundations of neural computation. MIT press.

Houben, S., Abrecht, S., Akila, M., Bär, A., Brockherde, F., Feifel, P., Fingscheidt, T., Gannamaneni, S.S., Ghobadi,
S.E., Hammam, A. and Haselhoff, A., 2021. Inspect, understand, overcome: A survey of practical methods for ai
safety. arXiv preprint arXiv:2104.14235.

Hrycej, T., 1992. Modular learning in neural networks: a modularized approach to neural network classification.
Wiley

Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M. and Yi, X., 2020. A survey of safety and
trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and
interpretability. Computer Science Review, 37, p.100270.

IEEE. 1991. IEEE standard computer dictionary: A compilation of IEEE standardcomputer glossaries, IEEE Std
610

ISO 26262. 2011. Road vehicles — Functional safety — Part 6: Product development at the software level

Kenton, W. 2022, Sensitivity Analysis. https://www.investopedia.com/terms/s/sensitivityanalysis.asp

Kang, D., Raghavan, D., Bailis, P., & Zaharia, M.A. 2018. Model Assertions for Debugging Machine Learning.
Preprint. https://cs.stanford.edu/~matei/papers/2018/mlsys_model_assertions.pdf

Knight, J., 2012. Fundamentals of Dependable Computing. CRC Innovations in Software Engineering and Software
Development: Boca Raton, FL, USA.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 26 / 26

Li, L., Qi, X., Xie, T. and Li, B., 2020. Sok: Certified robustness for deep neural networks. arXiv preprint
arXiv:2009.04131.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J. and Zhang, G., 2018. Learning under concept drift: A review. IEEE
Transactions on Knowledge and Data Engineering, 31(12), pp.2346-2363.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I.D. and Gebru, T.,
2019, January. Model cards for model reporting. In Proceedings of the conference on fairness, accountability,
and transparency.

Myllyaho, L, Raatikainen, M, Männistö, T, Nurminen, J K & Mikkonen, T. 2022, On Misbehaviour and Fault
Tolerance in Machine Learning Systems', The Journal of Systems and Software, vol. 183.

Myllyaho, L, Raatikainen, M, Männistö, T, Mikkonen, T & Nurminen, J K. 2021, 'Systematic literature review of
validation methods for AI systems', The Journal of Systems and Software, vol. 181, 111050.

Ramanathan, A., Pullum, L.L., Hussain, F., Chakrabarty, D. and Jha, S.K., 2016.. Integrating symbolic and statistical
methods for testing intelligent systems: Applications to machine learning and computer vision. In 2016 Design,
Automation & Test in Europe Conference & Exhibition (pp. 786-791). IEEE.

Russell, S. and Norvig, P., 2002. Artificial intelligence: a modern approach.

Salay, R., Queiroz, R. and Czarnecki, K., 2017. An analysis of ISO 26262: Using machine learning safely in
automotive software. arXiv preprint arXiv:1709.02435.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.F. and
Dennison, D., 2015. Hidden technical debt in machine learning systems. Advances in neural information
processing systems, 28, pp.2503-2511.

Szegedy, C. et al. (2014) ‘Intriguing properties of neural networks’, arXiv:1312.6199 [Preprint]. Available at:
http://arxiv.org/abs/1312.6199).

Wang, Y., Xiong, R., Yu, H., Zhang, J. and Liu, Y., 2018. Perception of demonstration for automatic programming
of robotic assembly: framework, algorithm, and validation. IEEE/ASME Transactions on Mechatronics, 23(3),
pp.1059-1070.

Xin, D., Miao, H., Parameswaran, A. and Polyzotis, N., 2021, June. Production Machine Learning Pipelines:
Empirical Analysis and Optimization Opportunities. In Proceedings of the 2021 International Conference on
Management of Data (pp. 2639-2652).

Yao, Q., Wang, M., Chen, Y., Dai, W., Yi-Qi, H., Yu-Feng, L., Wei-Wei, T., Qiang, Y., Yang, Y., 2018. Taking human
out of learning applications: A survey on automated machine learning. https://arxiv.org/abs/1810.13306

Zhang, J.M., Harman, M., Ma, L. and Liu, Y., 2020. Machine learning testing: Survey, landscapes and horizons.
IEEE Transactions on Software Engineering.

Zhou, Z.H., 2016. Learnware: on the future of machine learning. Frontiers Comput. Sci.10(4), 589–590

Zöller, M., Huber, M., 2021. Benchmark and Survey of Automated Machine Learning Frameworks. Journal of
Artificial Intelligence Research 70. pp. 409-472.

