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Summary 

This deliverable reports the XIVT developments and achievements on security testing of variant 

and configurable systems. The first part contains an overview of the state-of-the-art in security 

testing with respect to those aspects which are most relevant to the techniques investigated 

within the XIVT project. The second part gives an overview of the security testing methods and 

tools developed in XIVT. Some of these methods are associated with specific use cases, others 

are agnostic to them. 
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1. Introduction 

Security testing is one of the most important tasks in a software product’s life cycle. More and 

more software-enabled products are being connected to one another and to the internet, or 

have other interfaces which make them vulnerable to malevolent attacks. Intruders not only 

include pranksters and hackers, but also organized criminals from international gangs. 

Therefore, it is essential to test connected software properly not only for functionality, but also 

for security. This is especially important when dealing with safety-critical products, which could 

endanger the well-being of humans. In particular, cyber-physical systems are software-based 

systems interacting with a physical environment, e.g., connected and autonomous vehicles. 

Many industrial cyber-physical systems are safety-critical. We refer to software security, when it 

comes to cyber-physical systems as cybersecurity. 

This deliverable presents the methods and tools for cybersecurity which were developed in the 

XIVT project. The following Section 2 gives an overview of the state of the art with respect to 

these methods and tools. Section 3 presents the techniques that have been developed or 

enhanced within XIVT. Furthermore, it reports on experimental results obtained with the XIVT 

use cases. Section 4 concludes the deliverable. 

2. State of the Art in Security Testing 

This section presents the state of the art in cybersecurity. It does not intend to cover all potential 

issues in software security (for a comprehensive survey, consider the textbook by  Gary R. 

McGraw or the one by Claudia Eckert): Neither is this deliverable a comprehensive survey of 

the recent software security literature. We rather focus on techniques which have been 

investigated within the XIVT project. This includes methods to detect and identify anomalies and 

vulnerabilities in software, different methods for test generation, and methods to repair 

vulnerable code. 

Some methods for security analysis require access to the program’s source code (“white-box”) 

to identify vulnerabilities and correct them. Often this is not possible, in particular if the software 

developers and the product manufacturer belong to different organizations. Other methods do 

not require to access the source code (“black-box”). Such techniques can detect software faults, 

but they can not localize the problem in the code. Thus, the product manufacturer has to contact 

the software developers and wait for a patch to repair the code, or build other mechanisms to 

protect the product. Subsequently, we will identify methods as white-box or black-box whenever 

appropriate. 

2.1 Anomaly Detection 

Anomaly detection is a black-box method for identifying outlier behavior in software systems. In 

the XIVT project, we have applied anomaly detection to address the problem of cybersecurity in 

connected autonomous vehicles (CAVs). Cybersecurity can be defined as the strategies, 

practices, and techniques to mitigate security risks and ensure that a given system is protected 

against unauthorized and malicious actions. We use anomaly detection to identify cybersecurity 

threats or attacks in CAVs as it is imperative that manufacturers ensure vehicles are both safe 
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and secure. Ensuring safety and security of self-driving or autonomous vehicles is essential 

because a vehicle malfunction can lead to the injury or death of the driver, passengers, or others 

outside of the vehicle. The potential for injury or death necessitates that the developers of CAVs 

ensure these systems work safely and are protected against malicious attacks before deploying 

them to users on public roads. 

An intrusion detection system (IDS) is studied by [Don21] to detect anomalies in the Controller 

Area Network (CAN)-Bus traffic. They analyzed message identifier sequences for the CAN-Bus 

data collected from a heavy-duty truck. However, their work was a lightweight solution in terms 

of its hardware requirements and might not be very effective as a stand-alone tool. It is 

suggested to be used in conjunction with other anomaly (CAN) detection methods. In [Zho19a], 

they proposed an approach that fuses a deep neural network and a triplet loss network for CAN-

Bus message anomaly detection. They showed the effectiveness of their approach by 

comparing the results with two other approaches as a reference. Although they were able to 

improve the performance of the proposed method, the time consumption keeps increasing with 

the increase of the hidden layers. A multi-labeled hierarchical classification (MLHC) learning 

model for the classification of attacks is proposed by [Par20]. It is based on a machine-learning 

algorithm to detect anomaly behaviors of the in-vehicle network. It can classify both the type 

and existence or absence of attacks applicable in interior communication environments of high-

speed vehicles. However, their approach is developed for sequential message injection attacks 

which prevent fast data processing. A deep learning technique based on time series prediction 

for anomaly detection is proposed by [Qin21]. They used the long short-term memory (LSTM) 

concept with deep learning to enhance the cybersecurity of the intelligent connected vehicle. 

This approach can detect abnormal messages on the CAN-Bus and prevent some types of 

attacks such as malicious tampering. However, there was a critical issue with this method as it 

was not scalable to a large number of vehicles. An Anomaly Detection Framework for CAN-Bus 

is proposed by [Lin20] which is based on Deep Learning. The proposed approach covers three 

different types of message-injected attacks namely Denial of Service (DoS), fuzzy, and 

impersonation attacks in the CAN traffic. However, their work had a low detection rate when 

compared to other ML algorithms. 

2.2 Penetration Testing 

Modern cyber-physical systems, e.g., cars or industrial production lines, are complex and 

interconnected. The increased connectivity makes a vehicle more vulnerable to cyberattacks. 

Penetration testing is a black-box cybersecurity testing method which helps to detect 

vulnerabilities before hackers can. 

A proper testing framework is crucial to safeguard the vehicle from potential cyber-attacks. 

Automotive penetration testing emulates an attack on an automotive system to expose and 

mitigate cybersecurity vulnerabilities that had not been considered during design. In an 

automotive system, penetration testing is usually conducted by a group of security testers who 

are very knowledgeable about the system or by an outside team who have limited knowledge 

about the design and analyze the security poster from a new angle. Since pen-testers need to 

think like a hacker, penetration testing is also known as “ethical hacking”.  

Modern-day vehicles are equipped with around 150 ECUs. These ECUs are distributed all 

around the vehicle and communicate with each other via in-vehicle communication networks 

such as a CAN. However, the CAN-Bus is primarily designed to ensure reliable communication. 
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Therefore, the existing built-in security features of the CAN-Bus cannot prevent the CAN 

network from cyberattacks. Modern-day vehicles are equipped with an infotainment system that 

displays a lot of valuable information and access to the internet. Due to convenience, 

infotainment systems are allowed to communicate with other devices in the car through CAN-

Buses. A malicious third party website can load malicious code into the infotainment system 

and, after that, gain control over the vehicle system with the help of CAN-network. In recent 

years, a handful of research works have been conducted on the vulnerabilities of automotive 

infotainment systems. Compromising an infotainment system could lead to an attack against the 

critical ECU’s in the car, such as the brakes and engine [Keu18]. It was shown that attackers 

could remotely intrude into the system through the Wi-Fi interface and get the root privilege of 

the IVI system. Once the attacker gains access to the system with root privileges, the attacker 

is allowed to modify the system settings and extract user information [Smi16]. An in-depth 

discussion on the vulnerabilities posed by apps can be found on the Google play store [Man18], 

which can be downloaded and installed onto Android devices such as the automotive 

infotainment system. 

2.3 Fault Injection 

Fault injection is an acknowledged black-box technique to assess the quality of test suites. 

Given a (software) product and a test suite, faults are deliberately injected, and it is measured 

how many of these faults are detected by the test suite. Thus, this methods allows to determine 

the inherent fault-detection capabilities of a test suite, complementing other quality measures of 

a test suite such as code or requirements coverage, size and complexity of test cases, etc. 

In software testing, faults are injected into the source or object code. Typical operations are 

changing a constant or an operator (e.g., 1 to 2, + to -, or ++ to - -), deleting or changing the 

order of statements, or exchanging one subroutine call by another one. When applying such 

mutation operators, it may be the case that the effects of several alterations counterbalance 

each other; e.g., changing - by + and 3 by 1 in the code fragment (y = x - 1; y = y + 3) does not 

yield any visible effect on the behavior of the program. Such dead mutants are a problem, since 

the test suite has no chance to detect them, while they still decrease the mutation score of the 

test suite. Other topics to considerate when setting up a fault injection initiative are the selection 

of mutation operators, the section of software elements to mutate, and the reporting of errors 

detected by the test suite. A survey of software fault injection techniques can be found in [NDM 

16]. For model-based software development, faults are not injected into the (generated) source 

code, but into the models from which the software is derived. Methods for testing model-based 

product lines, on which the XIVT work builds, have been investigated in [LS 2017]. 

2.4 Fuzzing and Attack Injection 

Fuzzing is an established black-box security testing technique to identify zero-day-vulnerabilities 

by stimulating the interface of the SUT with unexpected and invalid inputs [Ta18]. The 

importance of fuzzing in finding new bugs and vulnerabilities in software is clearly stated in 

[Fio20]. Whilst earlier approaches generated values either completely randomly or by employing 

different amounts of knowledge on the input types in a black-box manner, more recent grey-box 

approaches rely on genetic algorithms where the inputs are generated on binary level without 

any type information, and tests for further mutation are selected by their ability to increase the 
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code coverage. A survey on fuzzing techniques can be found in [Ma19]. A comprehensive lists 

of the identified challenges haven been published by Böhme et al. [BCR21].  

One of the challenges of these black-box fuzzing approaches is discovering hard to reach code 

fragments that are hidden by complex conditions to detect vulnerabilities deeply nested in the 

code. White-box fuzzing approaches employ symbolic execution to effectively cover those 

execute paths that are hard to reach by black-box and grey-box approaches but suffers from 

scalability issues. Combining white-box approaches with information on datatypes, e.g., data 

structures or grammars, have recently been identified as a promising direction [BCR21].  

 

There are several fuzzers in the literature for different programming language, but mainly for 

C/C++ programs (e.g., [AFL17], [Che18], [Kyr20], [Hol13], [Fio20], [AMN20]), where AFL 

[AFL17] is the most popular one. Hawkeye [Che18] combines static analysis and dynamic 

fuzzing for finding C/C++ vulnerabilities. VUzzer [Hal13] is a fuzzer that implements a feedback 

loop to help generate new inputs from old ones, with its two main components being a static 

analyser and a dynamic fuzzing loop. S. Karamcheti et al. [Kar18] show that sampling 

distributions over mutational operators can improve the performance of AFL. They also 

introduce Thompson Sampling, which is a bandit-based optimization to improve the mutator 

distribution adaptively. They focus on improving greybox fuzzing by studying the selection of the 

most promising parent test case to mutate. LibFuzzer is a coverage-guided, evolutionary fuzzing 

engine to test C/C++ software [LF18]. Another such fuzzer is honggfuzz [HF18], a security 

oriented, feedback-driven, evolutionary fuzzer. Alexandre et al. [Reb14] presented a way to 

optimize test case selection in order to increase coverage of the software under test. Grieco et 

al. [Gri16] developed VDiscover, a tool to predict if a test case is likely to discover software 

vulnerabilities by using lightweight static and dynamic features implemented via machine 

learning techniques. Klees et al. [Klee18] propose some guidelines to better test and evaluate 

fuzzing algorithms. 

Injection attacks exploit a variety of vulnerabilities in CAN buses as it lacks encryption and 

authentication. [Jed21] proposed a mechanism for message injection attack detection, to detect 

and predict malicious message injections into a CAN-Bus. They used Messages-Sequence 

Graphs (MSGs) to detect message injection, modeling sequences of CAN messages in a time 

window. All of the data sets being used in this study are related to one driver and one vehicle. 

To evaluate the effectiveness of the proposed approach, a set of various vehicles and drivers 

would be needed. 

A spoofing attack using a bus-off attack against an ECU is implemented in [Ieh18], which 

prevents ECU from getting access to the CAN-Bus. They conducted the attack in the laboratory 

in a simulated environment consisting of the attack hardware and ECU, and 100% ceased the 

transmission of the targeted ECU over the CAN-Bus. At the same time, they transmitted the 

spoofing messages over the CAN-Bus and the messages were not detected by the authorized 

transmitting and receiving ECUs. However, they did not propose any mechanism to prevent 

such attacks. 

Several other works have been proposed based on long short-term memory (LSTM) ([Hos20] 

and [Thi21]) to identify the relationship between messages traversing in the CAN-Bus. However, 

these models are complex and cause high overheads on the ECUs. For example, a long short-

term memory (LSTM)-based intrusion detection system is developed by [Hos20] for In-Vehicle 

CAN-Bus communications. Through injecting DoS, Fuzzing, and Spoofing into the attack-free 

dataset, they were able to develop an attack data set to implement the proposed approach. 
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2.5 Vulnerability Detection and Identification 

This section summarizes the main related work in the areas of static analysis and machine 

learning for the detection and identification of vulnerabilities in source code of programs. 

 

Static Analysis 

Static analysis tools work by examining the source code (white-box) and looking for flaws 

without executing it and producing alerts about possible flaws (e.g., [Fon14], [Jon06], [Sha01], 

[47], [Dah14], [Med16], [Bac17]). This requires a human auditor to then evaluate its validity and 

confirm the vulnerability, which often requires high efforts with respect to a given project budget 

and schedule. 

Many of these tools perform taint analysis, tracking user inputs to determine if they reach a 

sensitive sink (i.e., a function that could be exploited). CQUAL [Sha01] and Splint [Eva02] were 

the first to implement this technique (both for the C language), using two qualifiers – tainted and 

untainted – to manually annotate certain parts of the program (e.g., function parameters or 

return values) where untrusted / trusted data may flow. User inputs were followed through the 

code to find out if tainted data would arrive to a parameter labeled as untainted. If this 

happened, an alarm would be raised. Static analysis tools tend to generate many false positives 

and false negatives due to the complexity of coding knowledge about vulnerabilities. WAP 

[Med16] also does taint analysis, but aims at reducing the number of false positives by resorting 

to data mining, besides also correcting automatically the located bugs.  

Flynn et al. [Fly18] developed and tested several classification models that predict if static 

analysis alerts are true positives or false positives, using a novel combination of multiple static 

analysis tools, features obtained from generated alerts, code base metrics and archived audit 

determinations. The main purpose of the authors was to create models that could automatically 

classify alerts as expected-true-positive, expected-false-positive, or indeterminate, based on 

user-specified confidence levels. 

Boudjema et al. [Bou17] presented a tool based on static analysis methods, more specifically, 

abstract interpretation extended with security vulnerability checks to automatically detect 

security problems in C applications. They verify security properties by analyzing the language 

specification and documentation of the main language libraries. To locate vulnerabilities, they 

define properties related to different classes of problems, namely format string, command 

execution, and buffer and memory vulnerabilities. They present a detailed description of the 

properties and possible attacks that can be performed to exploit the vulnerabilities addressed. 

Although some of the proposed properties do not have many test cases, they have shown that it 

is possible to detect vulnerabilities in an automated way through the described properties with 

an acceptable number of false positives and false negatives. 

Yamaguchi et al. [Yam14] presented a method for a more precise static analysis that explores a 

data structure called code property graph. They combine different source code representation 

graphs, such as abstract syntax trees (AST), control flow graphs (CFG), and program 

dependence graphs (PDG), in a single graph, and then query the graph to extract data flows 

and analyze them in order to discover vulnerabilities. 

 

Machine Learning 

Machine learning has been used to measure the quality of software by collecting a series of 

attributes that reveal the presence of software defects [Ari10], [Les08]. Other approaches resort 

to machine learning to predict if there are vulnerabilities in a program [Neu07], [Wal09], [Per15], 
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which is different from identifying the bugs precisely. To support the predictions they employ 

various features, such as past vulnerabilities and function calls [Neu07], or a combination of 

code-metric analysis with meta-data gathered from application repositories [Per15]. 

In particular, PhpMinerI and PhpMinerII predict the presence of vulnerabilities in PHP programs 

[Shar12], [Shar12a], [Sha13]. The tools are first trained with a set of annotated slices that end at 

a sensitive sink (but do not necessarily start at an entry point), and then they are ready to 

identify slices with errors. WAP is different because it uses machine learning and data mining to 

predict if a vulnerability detected by taint analysis is actually a real bug or a false alarm [Med16]. 

PhpMiner and WAP tools employ standard classifiers (e.g., Logistic Regression or a Multi-Layer 

Perceptron). 

There are a few static analysis tools that implement machine learning techniques. Chucky 

[Yam13] discovers vulnerabilities by identifying missing checks in C language software. The tool 

does taint analysis to locate the checks between entry points and sensitive sinks, applies text 

mining to discover the neighbors of these checks, and then builds a model to see if there are 

checks that might be absent. Soska et al. aim to predict whether a website will become 

malicious in the future, before it is actually compromised [Sos14]. Scandariato et al. [Sca14] 

performs text mining to predict vulnerable software components in Android applications. SuSi 

[Ras14] employs machine learning to classify sources and sinks in the code of Android API. 

Recently, deep learning has started to be applied in the vulnerability detection field [Gri16], 

[Rus18], [Rab18], [Zho19], [Fan19], [FMAN20], essentially in finding C/C++ bugs [Rab18], 

[Zho19]. VulDeePecker [20] resorts to code gadgets to represent parts of C programs and then 

transforms them into vectors. A neural network system then determines if the target program is 

vulnerable due to buffer or resource management errors. 

Russell et al. [Rus18] developed a vulnerability detection tool for C/C++ based on features 

learning from a dataset and artificial neural network. There are very few models for finding faults 

in web applications [Fan19], [FMAN20], [Rab20], which follow a somewhat similar approach as 

those for finding C/C++ bugs. 

Yamaguchi et al. [Yam11] proposed a method for assisted discovery of vulnerabilities in source 

code. Their goal was to create a method to make manual auditing more effective, helping and 

guiding the inspection of the source code. To do this, the method places the code in a vector 

space, so that typical API usage patterns can be determined automatically. To capture API 

usage patterns and to transfer these known vulnerability patterns to other pieces of code they 

combined static code analysis and machine learning techniques. These patterns implicitly 

capture the semantics of the code and allow extrapolating known vulnerabilities, identifying 

potentially vulnerable code with similar characteristics. This extrapolation process serves as a 

guide for the analyst and facilitates the inspection of the source code. Many vulnerabilities can 

be captured by API usage. However, there also exist cases where the code structure is more 

relevant for auditing. 

Deep learning requires big datasets for training the models and is not able to locate and explain 

detected vulnerabilities. This is due to its black-box nature which hides its internal logic and 

makes it difficult to understand the classification operation [Shw17]. To attain that, Devign 

[Zho19] combines traditional graph code representations (e.g., AST and CFG) and Natural 

Code Sequence in a same graph. However, the approach creates an overly complicated 

representation of the code though. Moreover, its code and dataset are unavailable to the public 

and the results are questionable, considering the outdated tools they compare the model with. 
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2.6 Automatic Program Repair and Patching 

Automatic program repair (APR) techniques lie in two families: software repair and software 

healing [24,29]. APR is mainly for C programs. There are a few SATs for WebApps that employ 

APR [Sha12], [Hua04], [Mor20], [Med16]. WAP [Med16] corrects the code by inserting fixes on 

it. However, it has limitations because it can produce syntactically invalid new code that cannot 

be executed. [Mor20] showed that there is not a single solution to correct any kind of 

vulnerability, even within a vulnerability class. 

Klieber et al. [Kli21] presented a technique to repair a C program at the source code level 

against potential violations of spatial memory safety. It differs from other traditional program 

repair techniques by focusing on preventing a security vulnerability from being exploited by an 

attacker. Although many techniques already existing that can harden software against memory 

related vulnerabilities, many of those create dependencies on the compilers making it difficult to 

inspect of fine-tune the repair itself. 

The analysis and transformation needed to repair a vulnerability at the source code level is most 

easily done at an intermediate representation. Existing approaches, however, have fundamental 

limitations when it  comes to translating changes back to source code. This is why the technique 

presented by the authors tackles this challenge by first translating the intermediate 

representation to an abstract syntax tree level. They use a carefully designed set of 

transformation rules and repair transformations, where changes can then be translated back to 

source code level with the help of a modified clang. This approach was implemented in a tool 

called ACR and tested against programs with spatial memory bugs from the SPEC CPU2006 

benchmarks and the Software Verification Competition. It shows good results but at the cost of 

a performance overhead. 

Sawadogo et al. [Saw20] proposed an approach to catch security patches as part of an 

automatic monitoring service of code repositories. This work was motivated by the delay 

between the release of a security patch and its application. To differentiate between security 

patches and others, they used commit log and code analysis to collect data for the binary 

classification task. After that, they carried out a feature engineering step in which they reduced 

the volume of data collected only to the essential and transformed this data into numerical 

vectors to use in the learning algorithms. They opted for the use of a co-training algorithm 

because of the lack of labeled data. This proved to be the best option once the proposed 

approach demonstrated high precision and recall and constituted a significant improvement 

over the state-of-the-art. 

Chen et al. [Che19] explored and developed an approach to code correction for automatically 

generate patches for security vulnerabilities. To achieve this objective, they used a sequence-

to-sequence machine learning technique with Byte Pair Encoding that learns the mapping 

between two token sequences of source code. They used data collected from GitHub commits 

that presented the vulnerable and corrected code to create the training dataset. They chose C 

functions from this datase that the seq2seq algorithm could use and divided them by different 

sizes. Their results showed that the seq2seq algorithm performance is low, fixing general 

vulnerabilities. It depends significantly on the size of the inputs used in the tests. However, they 

proved that it is possible to fix vulnerabilities in an automated way. 

Vasic et al. [Vas19] presented an approach that jointly learns to localize and repair bugs. The 

model classifies the program as faulty or correct, locates the bug when the program is faulty, 

and applies a fix to it. To solve the problem of classification, location, and repair, they used a 

multiheaded pointer network architecture, where one pointer head points to the faulty location 

and another to the location where the correction should be made. They compared a pointer 
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network on top of a neural network to a graph neural network and observed that their solution 

achieved better results. Also, they compared the joint model with an enumerative approach. The 

results showed that the model outperformed the enumerative approach by using a model that 

can predict a fix given the location of a bug. They concluded that the solution, despite its 

limitations, can perform well compared to some other approaches for similar purposes. 

Bader et al. [Bad19] presented Getafix, an approach that aims at producing human-like 

corrections and, at the same time, being able to propose corrections in time proportional to what 

it would take to obtain static analysis results. The approach first divides a certain set of example 

corrections into ASTs. Then it extracts correction patterns from these ASTs, based on a new 

hierarchical clustering technique that produces a hierarchy of correction patterns ranging from 

very general to very specific corrections. Finally, given a bug to correct, Getafix finds 

appropriate correction patterns, classifies all candidate corrections, and suggests the main 

solutions for the developer. As a check during the third step, Getafix validates each suggestion 

through a static analyzer to ensure that the correction removes the warning. Getafix implements 

a simple but effective classification technique that uses the context of a code change to select 

the most appropriate fix for a given bug. The idea is that the tool learns from previously created 

corrections how to create new ones. The results showed that the tool can perform well. It 

accurately predicts fixes for several bugs, reducing the time developers spend to fix recurring 

bugs. 

Schulte et al. [Sch13] proposed a technique for repairing binary programs directly, using 

evolutionary computation algorithms. The authors focused their efforts on embedded and 

mobile systems, because such systems have high resource constraints and tight coupling with 

its execution environment. This makes existing techniques and tools insufficient. They were able 

to demonstrate that assembly and binary repairing was capable of producing the same level of 

results as source-statement level repairs, but in a more efficient way. This shows that not only it 

was faster in suggesting repairs, but also needed much less disk and memory requirements. 

3. Methods of Security Testing used in XIVT 

This section presents the tools and evaluations conducted within the XIVT project with 

cybersecurity methods for variants and configurable systems. The methods investigated resort 

to different black-box vulnerability and fault detection techniques: anomaly detection, attack and 

fault injection, fuzzing, and penetration testing. Furthermore, we also investigated white-box 

methods for vulnerability identification in source code, namely static analysis, and for automatic 

program repairing. 

3.1 Anomaly Detection for CAV 

QA Consultants have developed work on anomaly detection in CAVs which focuses on the 

analysis of messages sent over the CAN-Bus [Bun20]. CAN is a bus protocol with an event-

triggered scheme that allows messages to be sent between a vehicle’s electronic control units 

(ECUs). Each CAN message format is composed of a set of fields including a base ID and a 

data payload.  

Before developing an anomaly detection method, we conducted more than 50 experiments to 

determine the capability of different machine learning algorithms with different feature sets to 

detect different types of known cyber-attacks, including denial of service (DoS) and fuzzing. For 
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these initial experiments we utilized an existing publicly available dataset from the Hacking and 

Countermeasure Research Lab in South Korea [HCRL22]. For a sample of the results from 

these experiments see the table below, which compares the effectiveness of different features 

used with different machine learning algorithms to detect a fuzzing attack.  

  

Next, we further explored the ability of the highest performing machine learning algorithms and 
the highest performing feature sets to detect multiple kinds of attacks as well as hybrid attacks 
simultaneously and then selected the best of these machine learning models as the basis for 
our generalized anomaly detection. To assess the efficacy of the approach on detecting 
previously unknown attacks we evaluated the technique on a new attack that targeted the 
Advanced Driver Assistant System (ADAS), described in the XIVT Pedestrian Detection System 
use case from Expleo. 

3.2 Set of Penetration Testing for CAN-Bus and CAV 

As a part of the XIVT project, and in collaboration with QA Consultants, Ontario Tech University 

(Ontario Tech) performed a set of penetration testing exercises on a number of automotive 

infotainment systems. The goal of these tests was to determine whether unauthorized access 

could be obtained, whether privileges could be escalated, and whether the CAN-Bus could be 

read or written to. The attack goal was first to attempt to access the infotainment systems 

remotely over wireless protocols, and in the case of failure move to physical intrusion. This plan 

would discover the highest risk attack vectors first, followed by testing whether CAN-Bus access 

was possible regardless of how the intruder got initial access to the system.  

To gain insight into how security is addressed within infotainment systems, we acquired a variety 

of both OEM and aftermarket systems from various vendors. The following systems were used 

for testing: 

• Pioneer AHV-2400NEX 

• Pioneer MVH-2400NEX 

• JVC KW-M740BT 

• Auto Pumpkin Android System 

• Chevrolet MyLink from 2017 Cruze 

• Hyundai BlueLink from 2018 Sante Fe 

• Kia UVO from 2019 Forte 
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Following the pen-testing methodology, we first looked to enumerate the system, gathering 

information and identifying any wireless services and open ports, and then attempted to exploit 

any exposed services. We were unable to access any system remotely through wireless 

protocols, although we attempted attacks over WiFi and Bluetooth. Once it was determined that 

remote access was not possible, we attempted to access the systems through physical access. 

Although a lesser risk, physical attacks can still enable future remote access by backdooring the 

system. If CAN access is achieved, an attacker could potentially control the vehicle after a short 

period of physical access. Physical root access to the Hyundai and Kia systems was gained 

through debugging pins on the bottom of the unit which provide user-level interactive shell access. 

Using trial and error we were able to discover the correct pins and baud rate needed for the serial 

shell. Through further enumeration on the system, we were able to find a “Set User ID” (SUIT) 

binary. SUID binaries can be run by unprivileged users but with the permissions of the user with 

a privileged user ID. We were able to find a su binary which provided a root shell without asking 

for a password. This application typically is used to elevate user privileges or run privileged 

commands, but asks for the privileged users password; in this case it did not. However, the 

security of the system locked down CAN access and only provided read-only access to the file 

system, thereby preventing such attacks from being successful. 

3.3 Attack Injection for CAN-Bus 

As described in the previous subsection, QA Consultants started by focusing on the attack 

injection to the CAN-Bus to learn about the implication and mitigation of these attacks. Then, we 

worked on the three most common types of attacks, Spoof (RPM), Denial-of-service (DoS), and 

fuzzing, which can be performed on the CAN-Bus. In order to implement any of these attacks on 

the CAN-Bus, it was required to establish a communication channel. So, we evaluated several 

tools for communication with the CAN-Bus, including Apollo, BinFI, SAVIOR, PASTA, and 

CANdevStudio. We selected the CANdevStudio solution for communication with the CAN-Bus as 

it benefits from having a low learning curve for the user and was capable of being used with a 

virtual CAN-Bus.Then, we worked on the integration of the virtual CAN with the CARLA Simulator 

and carried out cyber-attacks. Attacks were carried out using CANdestudio to modify the vehicle's 

speed and steering angle and compromise the pedestrian detector's functioning through a virtual 

CAN-Bus. We were able to successfully implement Spoofing, Denial-of-service (DoS), and 

Fuzzing attacks on the CAN-Bus. This helped us to observe the implications of the attacks, which 

can be used to design a better mitigation mechanism in place 

3.4 QATS: Quality Assessment of Test Suites 

FOKUS devised and extended a tool for fault injection and assessment of test suite quality in 

model-based software product line development. Starting from a previous basic research 

prototype described in [LS2017], we developed the QATS tool for quality assessment of test 

suites. QATS allows to define fault injection operators on models in model-based software 

product line engineering. The following figure (abridged from [LS2017]) shows the MB-SPL 

engineering process and the possibilities which QATS offers for fault injection: 
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Fault injection in the feature model can be on two levels: Features can be deleted or modified, 

and relations between features can be altered. Whereas modifications on the first level should 

be detected already at the product building stage, faulty relations (e.g., changing “ feature A 

excludes feature B” to “feature A requires feature B”) might pass the product selection and 

product building stage, and should thus be detected during testing. 

Subsequently, we describe the fault injection capabilities in more detail, following [LS2017].  

For fault injection in the base model, there are several possibilities. We can omit necessary 

elements, add superfluous elements, or change the value of an element’s attribute(s). The 

following mutation operators are supported by QATS for a base model formulated as a UML 

state machine: 

• Delete Transition (DTR) 

• Change Transition Target (CTT) 

• Delete Effect (DEF) 

• Delete Trigger (DTI) 

• Insert Trigger (ITG) 

• Delete Guard (DGD) 

• Change Guard (CGD) 

These operators are selected and implemented automatically by QATS such that they cover 

most of the state machine mutation operators which are found in the literature. 

Mutation operators for the variability model are as follows. 

Delete Mapping (DMP) The deletion of a mapping will permanently enable the mapped 

elements, if they are not associated to other features that constrain their enabledness 

otherwise. In our examples, no invalid mutants were created. However, for product lines that 

make heavy use of mutual exclusion (Xor and excludes) this does not apply. The reason for this 

are competing UML elements like transitions that would otherwise never be part of the same 

product. Multiple enabled and otherwise excluding transitions are possibly introducing non-

determinism or at least unexpected behavior. 
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Delete Mapped Element (DME) This operator deletes a UML element reference from a 

mapping in the variability model. It resembles the case, where a modeler forgot to map a UML 

element that should have been mapped. Similar to the delete mapping operator, this operator 

may yield non-deterministic models, where otherwise excluding transitions are concurrently 

enabled. Product mutants equivalent to the original product model can be derived, if the feature 

associated to the deleted UML reference is part of the product. Again, this is results in structural 

equivalence to the original product. 

Insert Mapped Element (IME) This operator inserts a new UML element reference to the 

mapping. This is the contrary case to the operators defined before, where mappings and UML 

elements were removed. However, inserting additional elements is more difficult than deleting 

them, since a heuristic must be provided for creating such an additional element. We decided to 

copy the first UML element reference from the subsequent mapping. If there are no more 

mappings, we take the first mapping. This operator is not applicable if there is just one mapping 

in the feature mapping model. 

Swap Feature (SWP) Swapping features exchanges the mapped behavior among each other. 

This operator substitutes a mapping’s feature by the following mapping’s feature and vice versa. 

The last feature to swap is exchanged with the very first of the model. Non-deterministic 

behavior and thus invalid models may be designed by this operator. This is due to the fact that 

the mutation operator may exchange a feature from a group of mutually exclusive features by 

an unrestricted feature. In consequence, the previously restricted feature is now independent, 

while the unrestricted feature joins the mutual exclusive group. This may concurrently enable 

transitions which results in non-deterministic behavior. We gain structurally equivalent mutants, 

if the two swapped features are simultaneously activated. 

Change Feature Value (CFV) This operator flips the feature value of a mapping. A modeler 

may have selected the wrong value for this Boolean property of each mapping. The operator 

must not be applied to a mapping, if there is a second mapping with the same feature, but 

different feature value. Otherwise, there will be two mappings for the same feature with the 

same feature value, which is not allowed for our feature mapping models. This operator may 

yield invalid mutants, if it is applied to a mapping that excludes another feature. In that case, two 

otherwise excluding UML elements can be present at the same time, which may result in invalid 

models, e.g. two default values assigned to a single variable or concurrently enabled transitions. 

There are other possible domain model mutation operators, which, however, are of minor 

importance. For example, inserting superfluous mappings does not seem to be necessary: it 

remains unclear which and how many UML elements should be selected for the mapping. In 

most cases, such an operation will lead to invalid mutants. 

Fault injection in the product model is analogous to fault injection in the base model; the same 

technique and operators can be used, since the product model is derived from the base model 

via the materialization process. 

We used QATS in a number of experiments on different academic and industrial examples. In a 

basic mutation experiment, each operator is used for each applicable model element exactly 

once. To get an idea of the complexity, consider the following numbers: For a small academic 

example, which has about 10 features and 44 state chart elements (states and transitions), after 

filtering this yields 152 product line mutants, which are resolved into 574 mutated products. Of 

course, it is possible to generate an arbitrarily higher amount of mutants by repeated application 
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and combination of mutation operators. However, it is doubtful whether this brings about new 

insights. Thus, the test suite needs to be run on 574 products; if the test suite contains, e.g., 

350 test cases and takes, e.g., 3.5 seconds for execution on a product, this results in roughly 30 

minutes CPU time on an average PC for the whole campaign. Smart test case selection and 

test prioritization allows to bring the total number of tests to be executed in this example  down 

to 1855, which are executed in a few seconds. For simulation-based testing, e.g., of industrial 

production cells where there are several collaborating robots, test execution times can be much 

higher; therefore, test selection and test prioritization plays a much bigger role. 

3.5 DeltaFuzzer - Targeted Fuzzer 

FCUL has been developing within the XIVT project the tool DeltaFuzzer. This is a grey box 

fuzzer based on the AFL fuzzer to detect several classes of vulnerabilities potentially present in 

software constructed in C/C++. It is the first fuzzer which implements a Targeted Fuzzer 

Approach that makes the fuzzer focus on the (novel) parts that needed to be tested and reuses 

knowledge acquired in previous testing campaigns. The tool is an evolution of PandoraFuzzer 

which reuses the results of testing session between variants that share same software 

functionalities [AMN20]. PandoraFuzzer first retrieves information about the structure of the 

software under test (SUT), identifying basic blocks uniquely. Next, it generates test cases for 

running them in the SUT, deciding which blocks are targeted. It then determines which tests are 

able to cause SUT failures and saves them. Afterwards, the tool calculates which saved test 

cases are interesting, i.e., capable of uncovering new paths and causing a SUT failure. These 

test cases can then be reused to generate other test cased. 

The following two figures depict the architecture of DeltaFuzzer and the front-end of the tool, 

respectively. After the source code of the software under test (SUT) is instrumented, the tool 

generates a test case (randomly or through a mutation strategy of existing test cases) for 

running it in the SUT and collects various metrics. Next, it determines if the program suffered a 

failure. If this is the case, it determines the relevant test case. If the test case is “interesting”, 

i.e., if it is capable of uncovering new execution paths and causing a SUT failure, it is saved and 

used later on to generate other test cases. 
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Earlier experiments with a few target libraries provided results that suggest DeltaFuzzer is able 

to reach most of the selected targets achieving a coverage that is higher than the traditional 

fuzzer solutions (e.g., AFL), with a coverage increment of 30%. Also, the initial experiments 

showed that it could find vulnerabilities in relatively complex software. 

3.6 Deep Learning Model for Detecting Vulnerabilities in Web 

Application Variants 

FCUL within XIVT also developed a Deep Learning (DL) model capable of classifying code 

excerpts of web application variants as vulnerable (or not) to SQL Injection. The model uses an 

intermediate language to represent the excerpts and interpret them as text, resorting to well-

studied Natural Language Processing (NLP) techniques. The three figures on the next page 

illustrate (a) an excerpt of PHP code, (b) its representation in PHP intermediate language, and 

(c) the numeric vector produced from (b) which will feed the DL model.   
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The DL network is composed of a minimum of five layers that work sequentially. It produces a 

final output, between 0 and 1, indicating the probability of the excerpt being vulnerable. It 

receives as input a numeric vector that goes sequentially through the Embedding, LSTM, 

Dropout, and two Dense layers, suffering successive transformations and producing the final 

output. The next figure presents a high level view of the DL model we use.  

We conducted experiments on four datasets of intermediate language with different excerpt 

representations. All datasets led to models with good performance, in which accuracy scored, 

on average, more than 60%. Based on these results, we can state that our DL model can help 

back-end programmers discover SQL Injection vulnerabilities in an early stage of the project, 

avoiding attacks that would eventually cost a lot to repair their damage [FMAN20].  

 

3.7 CorCA: Correction of C Automatically 

FCUL within XIVT has developing CorCA (CORrection of C Automatically), a tool that identifies 

and fixes buffer overflows vulnerabilities in source code of C/C++ programs and verifies the 

effectiveness and correctness of the corrected (fixed) code in an automated manner.  

CorCA has the goal of managing the following challenges: (1) how to find and remove 

vulnerabilities; (2) what is the right secure code needed to remove them; (3) where to insert this 

code; (4) how to keep the correct behavior of the application, after applying the code correction. 

The tool, to address these challenges, employs static analysis to find diverse types of buffer 

overflows (BO) vulnerabilities, attack injection technique to confirm the BO found and validate 
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the fixed code, and fix the code automatically with fixes generated dynamically. The tool uses 

different forms to remove vulnerabilities for those cases that secure functions do not resolve.   

The next figure illustrates an overview of the CorCA’s architecture. Next, we present the 

modules that it comprises. 

 

 

C/C++ Program - The C/C++ program files that we want to test and correct, which can contain 

one or more vulnerabilities. 

BO Finder - This module is responsible for identifying possible candidate vulnerabilities in the 

received program. It uses static analysis techniques to collect information about potential 

vulnerabilities and their location in the program, namely the respective line number in the file. 

Using this information, it generates slices of the vulnerable code from the entry point to the 

sensitive sink. 

Executable Generator - This module receives the vulnerable slices of code from the previous 

module. To generate an executable file for each candidate vulnerability found, it uses the slice 

received and adds from the program files other instructions needed to obtain a file which can be 

compiled. Then, the compiled code is instrumented, generating an executable that is forwarded 

to the Validator. 

Validator - This module uses fuzzing techniques for validating the code received from the 

Executable Generator in two distinct phases. Validation is performed in the first phase to exploit 

the candidate vulnerabilities found by the BO Finder and generate thus the exploits for them. 

For those vulnerabilities it cannot exploit, they are marked as possible false positives. The 

remaining ones, i.e., the exploitable vulnerabilities, are signaled as such, and their exploits are 

stored for the second phase. The second phase uses the previously generated exploits to verify 

if the fixes applied are effective and safe. Also, it mutates the exploits to check if there are new 

exploits that can break the fixes, and that the application does not hang. 

Code Corrector - This module analyzes the received code from the Validator (first phase), 

identifies the existing sensitive sinks, and determines the variable sizes of the arguments of the 

sinks. After this analysis, it checks for the possibility of buffer overflows through the size of the 

variables used in the sensitive sinks. If it verifies that such vulnerabilities possibly exists, it uses 

the fix template indicated for that sensitive sink to create a fix and applies it to the code. Also, it 

detects whether the code signaled possible false positive or exploitable vulnerabilities, reporting 

the former and proceeding with code corrections for the latter. In addition, the corrected code 

follows to the Executable Generator to produce its executable and then to the Validator to 
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proceed with the second phase of validation. On this validation phase, if the code is found to be 

correct, as result a new release of the program is produced, with its files containing the 

corrected code, i.e., with the vulnerabilities fixed and corrections validated. 

Vulnerabilities & New Code - The result of the procedure is a new version of the program files 

with the vulnerabilities fixed, and a report describing the vulnerabilities found and fixed. 

 

CorCA was tested with C/C++ code of a software product line from Bombardier Transportation 

(BT), a member of the Alstom Group, and the results showed that the code does not contain BO 

vulnerabilities, i.e., it is safe with respect to this class of vulnerabilities. 

4. Conclusions 

In this report, we summarized the state of the art of various security methods for detection and 

identification of vulnerabilities and program repair. Also, in the second part, we described the 

approaches and tools/mechanisms developed within the XIVT project that implement such 

methods. The XIVT tools employ several security methods to cope with different scenarios. The 

approaches range from source code static analysis to penetration testing, including machine 

learning, anomaly detection, and fault injection for quality assessment of test suites. The 

diversity of techniques reflects the variety of characteristics in the XIVT use cases; to 

adequately deal with this variety required several complementary techniques. Lastly, we 

reported experiences and evaluations which were carried out with the XIVT tools. 
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