

ITEA 3 Call 4: Smart Engineering

D3.8 Report on methods for security testing

for variant and configurable systems

Project References
PROJECT ACRONYM XIVT
PROJECT TITLE EXCELLENCE IN VARIANT TESTING
PROJECT NUMBER 17039
PROJECT START DATE NOVEMBER 1, 2018 PROJECT DURATION 36 MONTHS
PROJECT MANAGER GUNNAR WIDFORSS, BOMBARDIER TRANSPORTATION, SWEDEN
WEBSITE HTTPS://WWW.XIVT.ORG/

Document References

WORK PACKAGE WP 3: TESTING OF CONFIGURABLE PRODUCTS

TASK T3.4: FUZZING AND SECURITY TESTING IN CONFIGURABLE SYSTEMS

VERSION V 1.0 JAN 31ST, 2022

DELIVERABLE TYPE R (REPORT)

DISSEMINATION LEVEL P (PUBLIC)

https://www.xivt.org/

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 2 V1.0

Summary

This deliverable reports the XIVT developments and achievements on security testing of variant

and configurable systems. The first part contains an overview of the state-of-the-art in security

testing with respect to those aspects which are most relevant to the techniques investigated

within the XIVT project. The second part gives an overview of the security testing methods and

tools developed in XIVT. Some of these methods are associated with specific use cases, others

are agnostic to them.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 3 V1.0

Table of Contents

1. Introduction ... 4

2. State of the Art in Security Testing ... 4

2.1 Anomaly Detection ... 4

2.2 Penetration Testing .. 5

2.3 Fault Injection ... 6

2.4 Fuzzing and Attack Injection ... 6

2.5 Vulnerability Detection and Identification .. 8

2.6 Automatic Program Repair and Patching ...10

3. Methods of Security Testing used in XIVT ..11

3.1 Anomaly Detection for CAV ...11

3.2 Set of Penetration Testing for CAN-Bus and CAV ...12

3.3 Attack Injection for CAN-Bus ...13

3.4 QATS: Quality Assessment of Test Suites ...13

3.5 DeltaFuzzer - Targeted Fuzzer ..16

3.6 Deep Learning Model for Detecting Vulnerabilities in Web Application Variants17

3.7 CorCA: Correction of C Automatically ..19

4. Conclusions ...21

5. References ..21

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 4 V1.0

1. Introduction

Security testing is one of the most important tasks in a software product’s life cycle. More and

more software-enabled products are being connected to one another and to the internet, or

have other interfaces which make them vulnerable to malevolent attacks. Intruders not only

include pranksters and hackers, but also organized criminals from international gangs.

Therefore, it is essential to test connected software properly not only for functionality, but also

for security. This is especially important when dealing with safety-critical products, which could

endanger the well-being of humans. In particular, cyber-physical systems are software-based

systems interacting with a physical environment, e.g., connected and autonomous vehicles.

Many industrial cyber-physical systems are safety-critical. We refer to software security, when it

comes to cyber-physical systems as cybersecurity.

This deliverable presents the methods and tools for cybersecurity which were developed in the

XIVT project. The following Section 2 gives an overview of the state of the art with respect to

these methods and tools. Section 3 presents the techniques that have been developed or

enhanced within XIVT. Furthermore, it reports on experimental results obtained with the XIVT

use cases. Section 4 concludes the deliverable.

2. State of the Art in Security Testing

This section presents the state of the art in cybersecurity. It does not intend to cover all potential

issues in software security (for a comprehensive survey, consider the textbook by Gary R.

McGraw or the one by Claudia Eckert): Neither is this deliverable a comprehensive survey of

the recent software security literature. We rather focus on techniques which have been

investigated within the XIVT project. This includes methods to detect and identify anomalies and

vulnerabilities in software, different methods for test generation, and methods to repair

vulnerable code.

Some methods for security analysis require access to the program’s source code (“white-box”)

to identify vulnerabilities and correct them. Often this is not possible, in particular if the software

developers and the product manufacturer belong to different organizations. Other methods do

not require to access the source code (“black-box”). Such techniques can detect software faults,

but they can not localize the problem in the code. Thus, the product manufacturer has to contact

the software developers and wait for a patch to repair the code, or build other mechanisms to

protect the product. Subsequently, we will identify methods as white-box or black-box whenever

appropriate.

2.1 Anomaly Detection

Anomaly detection is a black-box method for identifying outlier behavior in software systems. In

the XIVT project, we have applied anomaly detection to address the problem of cybersecurity in

connected autonomous vehicles (CAVs). Cybersecurity can be defined as the strategies,

practices, and techniques to mitigate security risks and ensure that a given system is protected

against unauthorized and malicious actions. We use anomaly detection to identify cybersecurity

threats or attacks in CAVs as it is imperative that manufacturers ensure vehicles are both safe

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 5 V1.0

and secure. Ensuring safety and security of self-driving or autonomous vehicles is essential

because a vehicle malfunction can lead to the injury or death of the driver, passengers, or others

outside of the vehicle. The potential for injury or death necessitates that the developers of CAVs

ensure these systems work safely and are protected against malicious attacks before deploying

them to users on public roads.

An intrusion detection system (IDS) is studied by [Don21] to detect anomalies in the Controller

Area Network (CAN)-Bus traffic. They analyzed message identifier sequences for the CAN-Bus

data collected from a heavy-duty truck. However, their work was a lightweight solution in terms

of its hardware requirements and might not be very effective as a stand-alone tool. It is

suggested to be used in conjunction with other anomaly (CAN) detection methods. In [Zho19a],

they proposed an approach that fuses a deep neural network and a triplet loss network for CAN-

Bus message anomaly detection. They showed the effectiveness of their approach by

comparing the results with two other approaches as a reference. Although they were able to

improve the performance of the proposed method, the time consumption keeps increasing with

the increase of the hidden layers. A multi-labeled hierarchical classification (MLHC) learning

model for the classification of attacks is proposed by [Par20]. It is based on a machine-learning

algorithm to detect anomaly behaviors of the in-vehicle network. It can classify both the type

and existence or absence of attacks applicable in interior communication environments of high-

speed vehicles. However, their approach is developed for sequential message injection attacks

which prevent fast data processing. A deep learning technique based on time series prediction

for anomaly detection is proposed by [Qin21]. They used the long short-term memory (LSTM)

concept with deep learning to enhance the cybersecurity of the intelligent connected vehicle.

This approach can detect abnormal messages on the CAN-Bus and prevent some types of

attacks such as malicious tampering. However, there was a critical issue with this method as it

was not scalable to a large number of vehicles. An Anomaly Detection Framework for CAN-Bus

is proposed by [Lin20] which is based on Deep Learning. The proposed approach covers three

different types of message-injected attacks namely Denial of Service (DoS), fuzzy, and

impersonation attacks in the CAN traffic. However, their work had a low detection rate when

compared to other ML algorithms.

2.2 Penetration Testing

Modern cyber-physical systems, e.g., cars or industrial production lines, are complex and

interconnected. The increased connectivity makes a vehicle more vulnerable to cyberattacks.

Penetration testing is a black-box cybersecurity testing method which helps to detect

vulnerabilities before hackers can.

A proper testing framework is crucial to safeguard the vehicle from potential cyber-attacks.

Automotive penetration testing emulates an attack on an automotive system to expose and

mitigate cybersecurity vulnerabilities that had not been considered during design. In an

automotive system, penetration testing is usually conducted by a group of security testers who

are very knowledgeable about the system or by an outside team who have limited knowledge

about the design and analyze the security poster from a new angle. Since pen-testers need to

think like a hacker, penetration testing is also known as “ethical hacking”.

Modern-day vehicles are equipped with around 150 ECUs. These ECUs are distributed all

around the vehicle and communicate with each other via in-vehicle communication networks

such as a CAN. However, the CAN-Bus is primarily designed to ensure reliable communication.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 6 V1.0

Therefore, the existing built-in security features of the CAN-Bus cannot prevent the CAN

network from cyberattacks. Modern-day vehicles are equipped with an infotainment system that

displays a lot of valuable information and access to the internet. Due to convenience,

infotainment systems are allowed to communicate with other devices in the car through CAN-

Buses. A malicious third party website can load malicious code into the infotainment system

and, after that, gain control over the vehicle system with the help of CAN-network. In recent

years, a handful of research works have been conducted on the vulnerabilities of automotive

infotainment systems. Compromising an infotainment system could lead to an attack against the

critical ECU’s in the car, such as the brakes and engine [Keu18]. It was shown that attackers

could remotely intrude into the system through the Wi-Fi interface and get the root privilege of

the IVI system. Once the attacker gains access to the system with root privileges, the attacker

is allowed to modify the system settings and extract user information [Smi16]. An in-depth

discussion on the vulnerabilities posed by apps can be found on the Google play store [Man18],

which can be downloaded and installed onto Android devices such as the automotive

infotainment system.

2.3 Fault Injection

Fault injection is an acknowledged black-box technique to assess the quality of test suites.

Given a (software) product and a test suite, faults are deliberately injected, and it is measured

how many of these faults are detected by the test suite. Thus, this methods allows to determine

the inherent fault-detection capabilities of a test suite, complementing other quality measures of

a test suite such as code or requirements coverage, size and complexity of test cases, etc.

In software testing, faults are injected into the source or object code. Typical operations are

changing a constant or an operator (e.g., 1 to 2, + to -, or ++ to - -), deleting or changing the

order of statements, or exchanging one subroutine call by another one. When applying such

mutation operators, it may be the case that the effects of several alterations counterbalance

each other; e.g., changing - by + and 3 by 1 in the code fragment (y = x - 1; y = y + 3) does not

yield any visible effect on the behavior of the program. Such dead mutants are a problem, since

the test suite has no chance to detect them, while they still decrease the mutation score of the

test suite. Other topics to considerate when setting up a fault injection initiative are the selection

of mutation operators, the section of software elements to mutate, and the reporting of errors

detected by the test suite. A survey of software fault injection techniques can be found in [NDM

16]. For model-based software development, faults are not injected into the (generated) source

code, but into the models from which the software is derived. Methods for testing model-based

product lines, on which the XIVT work builds, have been investigated in [LS 2017].

2.4 Fuzzing and Attack Injection

Fuzzing is an established black-box security testing technique to identify zero-day-vulnerabilities

by stimulating the interface of the SUT with unexpected and invalid inputs [Ta18]. The

importance of fuzzing in finding new bugs and vulnerabilities in software is clearly stated in

[Fio20]. Whilst earlier approaches generated values either completely randomly or by employing

different amounts of knowledge on the input types in a black-box manner, more recent grey-box

approaches rely on genetic algorithms where the inputs are generated on binary level without

any type information, and tests for further mutation are selected by their ability to increase the

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 7 V1.0

code coverage. A survey on fuzzing techniques can be found in [Ma19]. A comprehensive lists

of the identified challenges haven been published by Böhme et al. [BCR21].

One of the challenges of these black-box fuzzing approaches is discovering hard to reach code

fragments that are hidden by complex conditions to detect vulnerabilities deeply nested in the

code. White-box fuzzing approaches employ symbolic execution to effectively cover those

execute paths that are hard to reach by black-box and grey-box approaches but suffers from

scalability issues. Combining white-box approaches with information on datatypes, e.g., data

structures or grammars, have recently been identified as a promising direction [BCR21].

There are several fuzzers in the literature for different programming language, but mainly for

C/C++ programs (e.g., [AFL17], [Che18], [Kyr20], [Hol13], [Fio20], [AMN20]), where AFL

[AFL17] is the most popular one. Hawkeye [Che18] combines static analysis and dynamic

fuzzing for finding C/C++ vulnerabilities. VUzzer [Hal13] is a fuzzer that implements a feedback

loop to help generate new inputs from old ones, with its two main components being a static

analyser and a dynamic fuzzing loop. S. Karamcheti et al. [Kar18] show that sampling

distributions over mutational operators can improve the performance of AFL. They also

introduce Thompson Sampling, which is a bandit-based optimization to improve the mutator

distribution adaptively. They focus on improving greybox fuzzing by studying the selection of the

most promising parent test case to mutate. LibFuzzer is a coverage-guided, evolutionary fuzzing

engine to test C/C++ software [LF18]. Another such fuzzer is honggfuzz [HF18], a security

oriented, feedback-driven, evolutionary fuzzer. Alexandre et al. [Reb14] presented a way to

optimize test case selection in order to increase coverage of the software under test. Grieco et

al. [Gri16] developed VDiscover, a tool to predict if a test case is likely to discover software

vulnerabilities by using lightweight static and dynamic features implemented via machine

learning techniques. Klees et al. [Klee18] propose some guidelines to better test and evaluate

fuzzing algorithms.

Injection attacks exploit a variety of vulnerabilities in CAN buses as it lacks encryption and

authentication. [Jed21] proposed a mechanism for message injection attack detection, to detect

and predict malicious message injections into a CAN-Bus. They used Messages-Sequence

Graphs (MSGs) to detect message injection, modeling sequences of CAN messages in a time

window. All of the data sets being used in this study are related to one driver and one vehicle.

To evaluate the effectiveness of the proposed approach, a set of various vehicles and drivers

would be needed.

A spoofing attack using a bus-off attack against an ECU is implemented in [Ieh18], which

prevents ECU from getting access to the CAN-Bus. They conducted the attack in the laboratory

in a simulated environment consisting of the attack hardware and ECU, and 100% ceased the

transmission of the targeted ECU over the CAN-Bus. At the same time, they transmitted the

spoofing messages over the CAN-Bus and the messages were not detected by the authorized

transmitting and receiving ECUs. However, they did not propose any mechanism to prevent

such attacks.

Several other works have been proposed based on long short-term memory (LSTM) ([Hos20]

and [Thi21]) to identify the relationship between messages traversing in the CAN-Bus. However,

these models are complex and cause high overheads on the ECUs. For example, a long short-

term memory (LSTM)-based intrusion detection system is developed by [Hos20] for In-Vehicle

CAN-Bus communications. Through injecting DoS, Fuzzing, and Spoofing into the attack-free

dataset, they were able to develop an attack data set to implement the proposed approach.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 8 V1.0

2.5 Vulnerability Detection and Identification

This section summarizes the main related work in the areas of static analysis and machine

learning for the detection and identification of vulnerabilities in source code of programs.

Static Analysis

Static analysis tools work by examining the source code (white-box) and looking for flaws

without executing it and producing alerts about possible flaws (e.g., [Fon14], [Jon06], [Sha01],

[47], [Dah14], [Med16], [Bac17]). This requires a human auditor to then evaluate its validity and

confirm the vulnerability, which often requires high efforts with respect to a given project budget

and schedule.

Many of these tools perform taint analysis, tracking user inputs to determine if they reach a

sensitive sink (i.e., a function that could be exploited). CQUAL [Sha01] and Splint [Eva02] were

the first to implement this technique (both for the C language), using two qualifiers – tainted and

untainted – to manually annotate certain parts of the program (e.g., function parameters or

return values) where untrusted / trusted data may flow. User inputs were followed through the

code to find out if tainted data would arrive to a parameter labeled as untainted. If this

happened, an alarm would be raised. Static analysis tools tend to generate many false positives

and false negatives due to the complexity of coding knowledge about vulnerabilities. WAP

[Med16] also does taint analysis, but aims at reducing the number of false positives by resorting

to data mining, besides also correcting automatically the located bugs.

Flynn et al. [Fly18] developed and tested several classification models that predict if static

analysis alerts are true positives or false positives, using a novel combination of multiple static

analysis tools, features obtained from generated alerts, code base metrics and archived audit

determinations. The main purpose of the authors was to create models that could automatically

classify alerts as expected-true-positive, expected-false-positive, or indeterminate, based on

user-specified confidence levels.

Boudjema et al. [Bou17] presented a tool based on static analysis methods, more specifically,

abstract interpretation extended with security vulnerability checks to automatically detect

security problems in C applications. They verify security properties by analyzing the language

specification and documentation of the main language libraries. To locate vulnerabilities, they

define properties related to different classes of problems, namely format string, command

execution, and buffer and memory vulnerabilities. They present a detailed description of the

properties and possible attacks that can be performed to exploit the vulnerabilities addressed.

Although some of the proposed properties do not have many test cases, they have shown that it

is possible to detect vulnerabilities in an automated way through the described properties with

an acceptable number of false positives and false negatives.

Yamaguchi et al. [Yam14] presented a method for a more precise static analysis that explores a

data structure called code property graph. They combine different source code representation

graphs, such as abstract syntax trees (AST), control flow graphs (CFG), and program

dependence graphs (PDG), in a single graph, and then query the graph to extract data flows

and analyze them in order to discover vulnerabilities.

Machine Learning

Machine learning has been used to measure the quality of software by collecting a series of

attributes that reveal the presence of software defects [Ari10], [Les08]. Other approaches resort

to machine learning to predict if there are vulnerabilities in a program [Neu07], [Wal09], [Per15],

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 9 V1.0

which is different from identifying the bugs precisely. To support the predictions they employ

various features, such as past vulnerabilities and function calls [Neu07], or a combination of

code-metric analysis with meta-data gathered from application repositories [Per15].

In particular, PhpMinerI and PhpMinerII predict the presence of vulnerabilities in PHP programs

[Shar12], [Shar12a], [Sha13]. The tools are first trained with a set of annotated slices that end at

a sensitive sink (but do not necessarily start at an entry point), and then they are ready to

identify slices with errors. WAP is different because it uses machine learning and data mining to

predict if a vulnerability detected by taint analysis is actually a real bug or a false alarm [Med16].

PhpMiner and WAP tools employ standard classifiers (e.g., Logistic Regression or a Multi-Layer

Perceptron).

There are a few static analysis tools that implement machine learning techniques. Chucky

[Yam13] discovers vulnerabilities by identifying missing checks in C language software. The tool

does taint analysis to locate the checks between entry points and sensitive sinks, applies text

mining to discover the neighbors of these checks, and then builds a model to see if there are

checks that might be absent. Soska et al. aim to predict whether a website will become

malicious in the future, before it is actually compromised [Sos14]. Scandariato et al. [Sca14]

performs text mining to predict vulnerable software components in Android applications. SuSi

[Ras14] employs machine learning to classify sources and sinks in the code of Android API.

Recently, deep learning has started to be applied in the vulnerability detection field [Gri16],

[Rus18], [Rab18], [Zho19], [Fan19], [FMAN20], essentially in finding C/C++ bugs [Rab18],

[Zho19]. VulDeePecker [20] resorts to code gadgets to represent parts of C programs and then

transforms them into vectors. A neural network system then determines if the target program is

vulnerable due to buffer or resource management errors.

Russell et al. [Rus18] developed a vulnerability detection tool for C/C++ based on features

learning from a dataset and artificial neural network. There are very few models for finding faults

in web applications [Fan19], [FMAN20], [Rab20], which follow a somewhat similar approach as

those for finding C/C++ bugs.

Yamaguchi et al. [Yam11] proposed a method for assisted discovery of vulnerabilities in source

code. Their goal was to create a method to make manual auditing more effective, helping and

guiding the inspection of the source code. To do this, the method places the code in a vector

space, so that typical API usage patterns can be determined automatically. To capture API

usage patterns and to transfer these known vulnerability patterns to other pieces of code they

combined static code analysis and machine learning techniques. These patterns implicitly

capture the semantics of the code and allow extrapolating known vulnerabilities, identifying

potentially vulnerable code with similar characteristics. This extrapolation process serves as a

guide for the analyst and facilitates the inspection of the source code. Many vulnerabilities can

be captured by API usage. However, there also exist cases where the code structure is more

relevant for auditing.

Deep learning requires big datasets for training the models and is not able to locate and explain

detected vulnerabilities. This is due to its black-box nature which hides its internal logic and

makes it difficult to understand the classification operation [Shw17]. To attain that, Devign

[Zho19] combines traditional graph code representations (e.g., AST and CFG) and Natural

Code Sequence in a same graph. However, the approach creates an overly complicated

representation of the code though. Moreover, its code and dataset are unavailable to the public

and the results are questionable, considering the outdated tools they compare the model with.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 10 V1.0

2.6 Automatic Program Repair and Patching

Automatic program repair (APR) techniques lie in two families: software repair and software

healing [24,29]. APR is mainly for C programs. There are a few SATs for WebApps that employ

APR [Sha12], [Hua04], [Mor20], [Med16]. WAP [Med16] corrects the code by inserting fixes on

it. However, it has limitations because it can produce syntactically invalid new code that cannot

be executed. [Mor20] showed that there is not a single solution to correct any kind of

vulnerability, even within a vulnerability class.

Klieber et al. [Kli21] presented a technique to repair a C program at the source code level

against potential violations of spatial memory safety. It differs from other traditional program

repair techniques by focusing on preventing a security vulnerability from being exploited by an

attacker. Although many techniques already existing that can harden software against memory

related vulnerabilities, many of those create dependencies on the compilers making it difficult to

inspect of fine-tune the repair itself.

The analysis and transformation needed to repair a vulnerability at the source code level is most

easily done at an intermediate representation. Existing approaches, however, have fundamental

limitations when it comes to translating changes back to source code. This is why the technique

presented by the authors tackles this challenge by first translating the intermediate

representation to an abstract syntax tree level. They use a carefully designed set of

transformation rules and repair transformations, where changes can then be translated back to

source code level with the help of a modified clang. This approach was implemented in a tool

called ACR and tested against programs with spatial memory bugs from the SPEC CPU2006

benchmarks and the Software Verification Competition. It shows good results but at the cost of

a performance overhead.

Sawadogo et al. [Saw20] proposed an approach to catch security patches as part of an

automatic monitoring service of code repositories. This work was motivated by the delay

between the release of a security patch and its application. To differentiate between security

patches and others, they used commit log and code analysis to collect data for the binary

classification task. After that, they carried out a feature engineering step in which they reduced

the volume of data collected only to the essential and transformed this data into numerical

vectors to use in the learning algorithms. They opted for the use of a co-training algorithm

because of the lack of labeled data. This proved to be the best option once the proposed

approach demonstrated high precision and recall and constituted a significant improvement

over the state-of-the-art.

Chen et al. [Che19] explored and developed an approach to code correction for automatically

generate patches for security vulnerabilities. To achieve this objective, they used a sequence-

to-sequence machine learning technique with Byte Pair Encoding that learns the mapping

between two token sequences of source code. They used data collected from GitHub commits

that presented the vulnerable and corrected code to create the training dataset. They chose C

functions from this datase that the seq2seq algorithm could use and divided them by different

sizes. Their results showed that the seq2seq algorithm performance is low, fixing general

vulnerabilities. It depends significantly on the size of the inputs used in the tests. However, they

proved that it is possible to fix vulnerabilities in an automated way.

Vasic et al. [Vas19] presented an approach that jointly learns to localize and repair bugs. The

model classifies the program as faulty or correct, locates the bug when the program is faulty,

and applies a fix to it. To solve the problem of classification, location, and repair, they used a

multiheaded pointer network architecture, where one pointer head points to the faulty location

and another to the location where the correction should be made. They compared a pointer

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 11 V1.0

network on top of a neural network to a graph neural network and observed that their solution

achieved better results. Also, they compared the joint model with an enumerative approach. The

results showed that the model outperformed the enumerative approach by using a model that

can predict a fix given the location of a bug. They concluded that the solution, despite its

limitations, can perform well compared to some other approaches for similar purposes.

Bader et al. [Bad19] presented Getafix, an approach that aims at producing human-like

corrections and, at the same time, being able to propose corrections in time proportional to what

it would take to obtain static analysis results. The approach first divides a certain set of example

corrections into ASTs. Then it extracts correction patterns from these ASTs, based on a new

hierarchical clustering technique that produces a hierarchy of correction patterns ranging from

very general to very specific corrections. Finally, given a bug to correct, Getafix finds

appropriate correction patterns, classifies all candidate corrections, and suggests the main

solutions for the developer. As a check during the third step, Getafix validates each suggestion

through a static analyzer to ensure that the correction removes the warning. Getafix implements

a simple but effective classification technique that uses the context of a code change to select

the most appropriate fix for a given bug. The idea is that the tool learns from previously created

corrections how to create new ones. The results showed that the tool can perform well. It

accurately predicts fixes for several bugs, reducing the time developers spend to fix recurring

bugs.

Schulte et al. [Sch13] proposed a technique for repairing binary programs directly, using

evolutionary computation algorithms. The authors focused their efforts on embedded and

mobile systems, because such systems have high resource constraints and tight coupling with

its execution environment. This makes existing techniques and tools insufficient. They were able

to demonstrate that assembly and binary repairing was capable of producing the same level of

results as source-statement level repairs, but in a more efficient way. This shows that not only it

was faster in suggesting repairs, but also needed much less disk and memory requirements.

3. Methods of Security Testing used in XIVT

This section presents the tools and evaluations conducted within the XIVT project with

cybersecurity methods for variants and configurable systems. The methods investigated resort

to different black-box vulnerability and fault detection techniques: anomaly detection, attack and

fault injection, fuzzing, and penetration testing. Furthermore, we also investigated white-box

methods for vulnerability identification in source code, namely static analysis, and for automatic

program repairing.

3.1 Anomaly Detection for CAV

QA Consultants have developed work on anomaly detection in CAVs which focuses on the

analysis of messages sent over the CAN-Bus [Bun20]. CAN is a bus protocol with an event-

triggered scheme that allows messages to be sent between a vehicle’s electronic control units

(ECUs). Each CAN message format is composed of a set of fields including a base ID and a

data payload.

Before developing an anomaly detection method, we conducted more than 50 experiments to

determine the capability of different machine learning algorithms with different feature sets to

detect different types of known cyber-attacks, including denial of service (DoS) and fuzzing. For

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 12 V1.0

these initial experiments we utilized an existing publicly available dataset from the Hacking and

Countermeasure Research Lab in South Korea [HCRL22]. For a sample of the results from

these experiments see the table below, which compares the effectiveness of different features

used with different machine learning algorithms to detect a fuzzing attack.

Next, we further explored the ability of the highest performing machine learning algorithms and
the highest performing feature sets to detect multiple kinds of attacks as well as hybrid attacks
simultaneously and then selected the best of these machine learning models as the basis for
our generalized anomaly detection. To assess the efficacy of the approach on detecting
previously unknown attacks we evaluated the technique on a new attack that targeted the
Advanced Driver Assistant System (ADAS), described in the XIVT Pedestrian Detection System
use case from Expleo.

3.2 Set of Penetration Testing for CAN-Bus and CAV

As a part of the XIVT project, and in collaboration with QA Consultants, Ontario Tech University

(Ontario Tech) performed a set of penetration testing exercises on a number of automotive

infotainment systems. The goal of these tests was to determine whether unauthorized access

could be obtained, whether privileges could be escalated, and whether the CAN-Bus could be

read or written to. The attack goal was first to attempt to access the infotainment systems

remotely over wireless protocols, and in the case of failure move to physical intrusion. This plan

would discover the highest risk attack vectors first, followed by testing whether CAN-Bus access

was possible regardless of how the intruder got initial access to the system.

To gain insight into how security is addressed within infotainment systems, we acquired a variety

of both OEM and aftermarket systems from various vendors. The following systems were used

for testing:

• Pioneer AHV-2400NEX

• Pioneer MVH-2400NEX

• JVC KW-M740BT

• Auto Pumpkin Android System

• Chevrolet MyLink from 2017 Cruze

• Hyundai BlueLink from 2018 Sante Fe

• Kia UVO from 2019 Forte

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 13 V1.0

Following the pen-testing methodology, we first looked to enumerate the system, gathering

information and identifying any wireless services and open ports, and then attempted to exploit

any exposed services. We were unable to access any system remotely through wireless

protocols, although we attempted attacks over WiFi and Bluetooth. Once it was determined that

remote access was not possible, we attempted to access the systems through physical access.

Although a lesser risk, physical attacks can still enable future remote access by backdooring the

system. If CAN access is achieved, an attacker could potentially control the vehicle after a short

period of physical access. Physical root access to the Hyundai and Kia systems was gained

through debugging pins on the bottom of the unit which provide user-level interactive shell access.

Using trial and error we were able to discover the correct pins and baud rate needed for the serial

shell. Through further enumeration on the system, we were able to find a “Set User ID” (SUIT)

binary. SUID binaries can be run by unprivileged users but with the permissions of the user with

a privileged user ID. We were able to find a su binary which provided a root shell without asking

for a password. This application typically is used to elevate user privileges or run privileged

commands, but asks for the privileged users password; in this case it did not. However, the

security of the system locked down CAN access and only provided read-only access to the file

system, thereby preventing such attacks from being successful.

3.3 Attack Injection for CAN-Bus

As described in the previous subsection, QA Consultants started by focusing on the attack

injection to the CAN-Bus to learn about the implication and mitigation of these attacks. Then, we

worked on the three most common types of attacks, Spoof (RPM), Denial-of-service (DoS), and

fuzzing, which can be performed on the CAN-Bus. In order to implement any of these attacks on

the CAN-Bus, it was required to establish a communication channel. So, we evaluated several

tools for communication with the CAN-Bus, including Apollo, BinFI, SAVIOR, PASTA, and

CANdevStudio. We selected the CANdevStudio solution for communication with the CAN-Bus as

it benefits from having a low learning curve for the user and was capable of being used with a

virtual CAN-Bus.Then, we worked on the integration of the virtual CAN with the CARLA Simulator

and carried out cyber-attacks. Attacks were carried out using CANdestudio to modify the vehicle's

speed and steering angle and compromise the pedestrian detector's functioning through a virtual

CAN-Bus. We were able to successfully implement Spoofing, Denial-of-service (DoS), and

Fuzzing attacks on the CAN-Bus. This helped us to observe the implications of the attacks, which

can be used to design a better mitigation mechanism in place

3.4 QATS: Quality Assessment of Test Suites

FOKUS devised and extended a tool for fault injection and assessment of test suite quality in

model-based software product line development. Starting from a previous basic research

prototype described in [LS2017], we developed the QATS tool for quality assessment of test

suites. QATS allows to define fault injection operators on models in model-based software

product line engineering. The following figure (abridged from [LS2017]) shows the MB-SPL

engineering process and the possibilities which QATS offers for fault injection:

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 14 V1.0

Fault injection in the feature model can be on two levels: Features can be deleted or modified,

and relations between features can be altered. Whereas modifications on the first level should

be detected already at the product building stage, faulty relations (e.g., changing “ feature A

excludes feature B” to “feature A requires feature B”) might pass the product selection and

product building stage, and should thus be detected during testing.

Subsequently, we describe the fault injection capabilities in more detail, following [LS2017].

For fault injection in the base model, there are several possibilities. We can omit necessary

elements, add superfluous elements, or change the value of an element’s attribute(s). The

following mutation operators are supported by QATS for a base model formulated as a UML

state machine:

• Delete Transition (DTR)

• Change Transition Target (CTT)

• Delete Effect (DEF)

• Delete Trigger (DTI)

• Insert Trigger (ITG)

• Delete Guard (DGD)

• Change Guard (CGD)

These operators are selected and implemented automatically by QATS such that they cover

most of the state machine mutation operators which are found in the literature.

Mutation operators for the variability model are as follows.

Delete Mapping (DMP) The deletion of a mapping will permanently enable the mapped

elements, if they are not associated to other features that constrain their enabledness

otherwise. In our examples, no invalid mutants were created. However, for product lines that

make heavy use of mutual exclusion (Xor and excludes) this does not apply. The reason for this

are competing UML elements like transitions that would otherwise never be part of the same

product. Multiple enabled and otherwise excluding transitions are possibly introducing non-

determinism or at least unexpected behavior.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 15 V1.0

Delete Mapped Element (DME) This operator deletes a UML element reference from a

mapping in the variability model. It resembles the case, where a modeler forgot to map a UML

element that should have been mapped. Similar to the delete mapping operator, this operator

may yield non-deterministic models, where otherwise excluding transitions are concurrently

enabled. Product mutants equivalent to the original product model can be derived, if the feature

associated to the deleted UML reference is part of the product. Again, this is results in structural

equivalence to the original product.

Insert Mapped Element (IME) This operator inserts a new UML element reference to the

mapping. This is the contrary case to the operators defined before, where mappings and UML

elements were removed. However, inserting additional elements is more difficult than deleting

them, since a heuristic must be provided for creating such an additional element. We decided to

copy the first UML element reference from the subsequent mapping. If there are no more

mappings, we take the first mapping. This operator is not applicable if there is just one mapping

in the feature mapping model.

Swap Feature (SWP) Swapping features exchanges the mapped behavior among each other.

This operator substitutes a mapping’s feature by the following mapping’s feature and vice versa.

The last feature to swap is exchanged with the very first of the model. Non-deterministic

behavior and thus invalid models may be designed by this operator. This is due to the fact that

the mutation operator may exchange a feature from a group of mutually exclusive features by

an unrestricted feature. In consequence, the previously restricted feature is now independent,

while the unrestricted feature joins the mutual exclusive group. This may concurrently enable

transitions which results in non-deterministic behavior. We gain structurally equivalent mutants,

if the two swapped features are simultaneously activated.

Change Feature Value (CFV) This operator flips the feature value of a mapping. A modeler

may have selected the wrong value for this Boolean property of each mapping. The operator

must not be applied to a mapping, if there is a second mapping with the same feature, but

different feature value. Otherwise, there will be two mappings for the same feature with the

same feature value, which is not allowed for our feature mapping models. This operator may

yield invalid mutants, if it is applied to a mapping that excludes another feature. In that case, two

otherwise excluding UML elements can be present at the same time, which may result in invalid

models, e.g. two default values assigned to a single variable or concurrently enabled transitions.

There are other possible domain model mutation operators, which, however, are of minor

importance. For example, inserting superfluous mappings does not seem to be necessary: it

remains unclear which and how many UML elements should be selected for the mapping. In

most cases, such an operation will lead to invalid mutants.

Fault injection in the product model is analogous to fault injection in the base model; the same

technique and operators can be used, since the product model is derived from the base model

via the materialization process.

We used QATS in a number of experiments on different academic and industrial examples. In a

basic mutation experiment, each operator is used for each applicable model element exactly

once. To get an idea of the complexity, consider the following numbers: For a small academic

example, which has about 10 features and 44 state chart elements (states and transitions), after

filtering this yields 152 product line mutants, which are resolved into 574 mutated products. Of

course, it is possible to generate an arbitrarily higher amount of mutants by repeated application

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 16 V1.0

and combination of mutation operators. However, it is doubtful whether this brings about new

insights. Thus, the test suite needs to be run on 574 products; if the test suite contains, e.g.,

350 test cases and takes, e.g., 3.5 seconds for execution on a product, this results in roughly 30

minutes CPU time on an average PC for the whole campaign. Smart test case selection and

test prioritization allows to bring the total number of tests to be executed in this example down

to 1855, which are executed in a few seconds. For simulation-based testing, e.g., of industrial

production cells where there are several collaborating robots, test execution times can be much

higher; therefore, test selection and test prioritization plays a much bigger role.

3.5 DeltaFuzzer - Targeted Fuzzer

FCUL has been developing within the XIVT project the tool DeltaFuzzer. This is a grey box

fuzzer based on the AFL fuzzer to detect several classes of vulnerabilities potentially present in

software constructed in C/C++. It is the first fuzzer which implements a Targeted Fuzzer

Approach that makes the fuzzer focus on the (novel) parts that needed to be tested and reuses

knowledge acquired in previous testing campaigns. The tool is an evolution of PandoraFuzzer

which reuses the results of testing session between variants that share same software

functionalities [AMN20]. PandoraFuzzer first retrieves information about the structure of the

software under test (SUT), identifying basic blocks uniquely. Next, it generates test cases for

running them in the SUT, deciding which blocks are targeted. It then determines which tests are

able to cause SUT failures and saves them. Afterwards, the tool calculates which saved test

cases are interesting, i.e., capable of uncovering new paths and causing a SUT failure. These

test cases can then be reused to generate other test cased.

The following two figures depict the architecture of DeltaFuzzer and the front-end of the tool,

respectively. After the source code of the software under test (SUT) is instrumented, the tool

generates a test case (randomly or through a mutation strategy of existing test cases) for

running it in the SUT and collects various metrics. Next, it determines if the program suffered a

failure. If this is the case, it determines the relevant test case. If the test case is “interesting”,

i.e., if it is capable of uncovering new execution paths and causing a SUT failure, it is saved and

used later on to generate other test cases.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 17 V1.0

Earlier experiments with a few target libraries provided results that suggest DeltaFuzzer is able

to reach most of the selected targets achieving a coverage that is higher than the traditional

fuzzer solutions (e.g., AFL), with a coverage increment of 30%. Also, the initial experiments

showed that it could find vulnerabilities in relatively complex software.

3.6 Deep Learning Model for Detecting Vulnerabilities in Web

Application Variants

FCUL within XIVT also developed a Deep Learning (DL) model capable of classifying code

excerpts of web application variants as vulnerable (or not) to SQL Injection. The model uses an

intermediate language to represent the excerpts and interpret them as text, resorting to well-

studied Natural Language Processing (NLP) techniques. The three figures on the next page

illustrate (a) an excerpt of PHP code, (b) its representation in PHP intermediate language, and

(c) the numeric vector produced from (b) which will feed the DL model.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 18 V1.0

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 19 V1.0

The DL network is composed of a minimum of five layers that work sequentially. It produces a

final output, between 0 and 1, indicating the probability of the excerpt being vulnerable. It

receives as input a numeric vector that goes sequentially through the Embedding, LSTM,

Dropout, and two Dense layers, suffering successive transformations and producing the final

output. The next figure presents a high level view of the DL model we use.

We conducted experiments on four datasets of intermediate language with different excerpt

representations. All datasets led to models with good performance, in which accuracy scored,

on average, more than 60%. Based on these results, we can state that our DL model can help

back-end programmers discover SQL Injection vulnerabilities in an early stage of the project,

avoiding attacks that would eventually cost a lot to repair their damage [FMAN20].

3.7 CorCA: Correction of C Automatically

FCUL within XIVT has developing CorCA (CORrection of C Automatically), a tool that identifies

and fixes buffer overflows vulnerabilities in source code of C/C++ programs and verifies the

effectiveness and correctness of the corrected (fixed) code in an automated manner.

CorCA has the goal of managing the following challenges: (1) how to find and remove

vulnerabilities; (2) what is the right secure code needed to remove them; (3) where to insert this

code; (4) how to keep the correct behavior of the application, after applying the code correction.

The tool, to address these challenges, employs static analysis to find diverse types of buffer

overflows (BO) vulnerabilities, attack injection technique to confirm the BO found and validate

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 20 V1.0

the fixed code, and fix the code automatically with fixes generated dynamically. The tool uses

different forms to remove vulnerabilities for those cases that secure functions do not resolve.

The next figure illustrates an overview of the CorCA’s architecture. Next, we present the

modules that it comprises.

C/C++ Program - The C/C++ program files that we want to test and correct, which can contain

one or more vulnerabilities.

BO Finder - This module is responsible for identifying possible candidate vulnerabilities in the

received program. It uses static analysis techniques to collect information about potential

vulnerabilities and their location in the program, namely the respective line number in the file.

Using this information, it generates slices of the vulnerable code from the entry point to the

sensitive sink.

Executable Generator - This module receives the vulnerable slices of code from the previous

module. To generate an executable file for each candidate vulnerability found, it uses the slice

received and adds from the program files other instructions needed to obtain a file which can be

compiled. Then, the compiled code is instrumented, generating an executable that is forwarded

to the Validator.

Validator - This module uses fuzzing techniques for validating the code received from the

Executable Generator in two distinct phases. Validation is performed in the first phase to exploit

the candidate vulnerabilities found by the BO Finder and generate thus the exploits for them.

For those vulnerabilities it cannot exploit, they are marked as possible false positives. The

remaining ones, i.e., the exploitable vulnerabilities, are signaled as such, and their exploits are

stored for the second phase. The second phase uses the previously generated exploits to verify

if the fixes applied are effective and safe. Also, it mutates the exploits to check if there are new

exploits that can break the fixes, and that the application does not hang.

Code Corrector - This module analyzes the received code from the Validator (first phase),

identifies the existing sensitive sinks, and determines the variable sizes of the arguments of the

sinks. After this analysis, it checks for the possibility of buffer overflows through the size of the

variables used in the sensitive sinks. If it verifies that such vulnerabilities possibly exists, it uses

the fix template indicated for that sensitive sink to create a fix and applies it to the code. Also, it

detects whether the code signaled possible false positive or exploitable vulnerabilities, reporting

the former and proceeding with code corrections for the latter. In addition, the corrected code

follows to the Executable Generator to produce its executable and then to the Validator to

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 21 V1.0

proceed with the second phase of validation. On this validation phase, if the code is found to be

correct, as result a new release of the program is produced, with its files containing the

corrected code, i.e., with the vulnerabilities fixed and corrections validated.

Vulnerabilities & New Code - The result of the procedure is a new version of the program files

with the vulnerabilities fixed, and a report describing the vulnerabilities found and fixed.

CorCA was tested with C/C++ code of a software product line from Bombardier Transportation

(BT), a member of the Alstom Group, and the results showed that the code does not contain BO

vulnerabilities, i.e., it is safe with respect to this class of vulnerabilities.

4. Conclusions

In this report, we summarized the state of the art of various security methods for detection and

identification of vulnerabilities and program repair. Also, in the second part, we described the

approaches and tools/mechanisms developed within the XIVT project that implement such

methods. The XIVT tools employ several security methods to cope with different scenarios. The

approaches range from source code static analysis to penetration testing, including machine

learning, anomaly detection, and fault injection for quality assessment of test suites. The

diversity of techniques reflects the variety of characteristics in the XIVT use cases; to

adequately deal with this variety required several complementary techniques. Lastly, we

reported experiences and evaluations which were carried out with the XIVT tools.

5. References

[AFL17] M.Zawlewski, “AmericanFuzzyLop(AFL)Fuzzer,” http://lcamtuf.coredump.cx/afl/. 2017

[AMN20] Francisco Araújo, Ibéria Medeiros, Nuno Neves. Generating Tests for the Discovery of

Security Flaws in Product Variants. In Proceedings of the International Workshop on Testing

Extra-Functional Properties and Quality Characteristics of Software Systems (ITEQS), Porto,

Portugal, October 2020.

[Ari10] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and comprehensive

investigation of methods to build and evaluate fault prediction models,” J. Syst. Softw., vol. 83,

no. 1, pp. 2–17, 2010

[Bac17]M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi, “Efficient and flexible

discovery of PHP application vulnerabilities,” in Proc. IEEE Eur. Symp. Secur. Privacy, Apr.

2017, pp. 334–349.

[Bad19] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix: learning

to fix bugs automatically. Proceedings of the ACM on Programming Languages, 2019.

[Bou17] El Habib Boudjema, Christele Faure, Mathieu Sassolas, and Lynda Mokdad. Detection

of security vulnerabilities in C language applications. Security and Privacy, 2017.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 22 V1.0

[BCR21] Boehme, M., Cadar, C., & Roychoudhury, A. (2021). Fuzzing: Challenges and

Reflections. IEEE Softw., 38(3), 79-86.

[Bun20] Arnold Buntsma and Sebastian Wilczek. Cybersecurity in automotive networks,

University of Amsterdam project report. web page: https://delaat.net/rp/2019-

2020/p51/report.pdf(last accessed: Jun. 4, 2020), 2020.

[Che18] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye: Towards a

Desired Directed Grey-box Fuzzer,” inProceedings of the ACM SIGSAC Conference on

Computer and Communications Security, Oct 2018, pp. 2095–2108

[Che19] Zimin Chen, Steve Kommrusch, and Martin Monperrus. Using Sequence-toSequence

Learning for Repairing C Vulnerabilities. arXiv. 2019.

[Dah14]J. Dahse and T. Holz, “Simulation of built-in PHP features for precise static code

analysis,” in Proc. 21st Netw. Distrib. Syst. Secur. Symp., Feb. 2014, pp. 23–26.

[Don21] Dönmez, Tahsi̇n CM. "Anomaly Detection in Vehicular CAN-Bus Using Message

Identifier Sequences." IEEE Access 9 (2021): 136243-136252.

[Eva02] D. Evans and D. Larochelle, “Improving security using extensible lightweight static

analysis,” IEEE Softw., vol. 19, no. 1, pp. 42–51, Jan./Feb. 2002.

[Fan19] Y. Fang, S. Han, C. Huang, and R. Wu, “TAP: A static analysis model for PHP

vulnerabilities based on token and deep learning technology,” PLoS One, vol. 14, no. 11, Nov.

2019, Art. no. e0225196.

[Fio20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :

Combining Incremental Steps of Fuzzing Research. 14th USENIX Workshop on Offensive

Technologies (WOOT 20).

[Fly18] Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin, Jennifer

Burns, David Zubrow, Robert Stoddard, and Guillermo Marce-Santurio. 2018. Prioritizing Alerts

from Multiple Static Analysis Tools, Using Classification Models. Proceedings of the 1st

International Workshop on Software Qualities and Their Dependencies, 13–20.

[Fon14]J. Fonseca and M. Vieira, “A practical experience on the impact of plugins in web

security,” in Proc. 33rd IEEE Symp. Reliable Distrib. Syst., Oct. 2014, pp. 21–30.

[FMAN20] Ana Fidalgo, Ibéria Medeiros, Paulo Antunes, Nuno Neves. Towards a Deep

Learning Model for Vulnerability Detection on Web Application Variants. In Proceedings of the

Workshop on Testing of Configurable and Multi-variant Systems (ToCaMS), Porto, Portugal,

October 2020.

[Gri16] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier, “Toward large-

scale vulnerability discovery using machine learning,” in Proc. 6th ACM Conf. Data Appl. Secur.

Privacy, Mar. 2016, pp. 85–96.

[Hal13] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing for Overflows: A

Guided Fuzzer to Find Buffer Boundary Violations,” inProceedings of the USENIX Security

Symposium (USENIX Security 13), Aug 2013, pp. 49–64.

[HCRL22] Car-Hacking Dataset, Hacking and Countermeasure Research Lab. Web

page: http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset(last accessed: Jan 26,

2022).

https://delaat.net/rp/2019-2020/p51/report.pdf
https://delaat.net/rp/2019-2020/p51/report.pdf
http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 23 V1.0

[HF18]“honggfuzz,” https://github.com/google/honggfuzz/. 2018

[Hol13] Hoffman,K.L., Padberg,M., Rinaldi,G., et al.: Traveling salesman problem. Encyclopedia

of operations research and management science 1, 1573 – 1578 (2013)

[Hos20] Hossain, Md Delwar, et al. "LSTM-based intrusion detection system for in-vehicle

CAN-Bus communications." IEEE Access 8 (2020): 185489-185502.

[Hua04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-

Yen Kuo. 2004. Securing web application code by static analysis and runtime protection. In

Proceedings of the 13th international conference on World Wide Web (WWW ’04). 40–52

[Ieh18] Iehira, Kazuki, Hiroyuki Inoue, and Kenji Ishida. "Spoofing attack using bus-off attacks

against a specific ECU of the CAN-Bus." 2018 15th IEEE Annual Consumer Communications

& Networking Conference (CCNC). IEEE, 2018.

[Jed21] Jedh, Mubark, et al. "Detection of Message Injection Attacks onto the CAN-Bus using

Similarity of Successive Messages-Sequence Graphs." arXiv preprint arXiv:2104.03763

(2021).

[Jon06] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static detection of

web application vulnerabilities,” in Proc. Workshop Program. Lang. Anal. Secur., Jun. 2006, pp.

27–36.

[Kar18]S.Karamcheti,G.Mann,andD.Rosenberg,“AdaptiveGrey-BoxFuzz-Testing with Thompson

Sampling,” inProceedings of the ACMWorkshop on Artificial Intelligence and Security, Oct 2018,

pp. 37–47.

[Keu18] Keuper, D., and T. Alkemade. "‘The connected car ways to get unauthorized access

and potential implications." Computest, Zoetermeer, The Netherlands, Tech. Rep (2018).

[Klee18]G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz Testing,”

inProceedings of the ACM SIGSAC Conference on Computer and Communications Security,

Oct 2018, pp. 2123–2138.

[Kli21] William Klieber, Ruben Martins, Ryan Steele, Matt Churilla, Mike McCall, and David

Svoboda. 2021. Automated Code Repair to Ensure Spatial Memory Safety. Proceedings - 2021

IEEE/ACM International Workshop on Automated Program Repair, APR. pp 23–30. 2021.

[Kyr20] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020. FuzzGen:

Automatic Fuzzer Generation. 29th USENIX Security Symposium (USENIX Security 20), 2271–

2287.

[Les08] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification

models for software defect prediction: A proposed framework and novel findings,” IEEE Trans.

Softw. Eng., vol. 34, no. 4, pp. 485–496, Jul./Aug. 2008

[LF18] “libfuzzer,” https://llvm.org/docs/LibFuzzer.html, 2018

[Lin20] Lin, Yubin, et al. "An Evolutionary Deep Learning Anomaly Detection Framework for In-

Vehicle Networks-CAN-Bus." IEEE Transactions on Industry Applications (2020).

[LS17] Lackner, H., & Schlingloff, B. H. (2017). Advances in testing software product lines. In

Advances in computers (Vol. 107, pp. 157-217). Elsevier.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 24 V1.0

[Ma19] Manès, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., & Woo, M.

(2019). The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software

Engineering.

[Man18] Mandal, Amit Kr, et al. "Vulnerability analysis of android auto infotainment apps."

Proceedings of the 15th ACM International Conference on Computing Frontiers. 2018.

[Med16] Ibéria Medeiros, Nuno Neves, Miguel Correia. Detecting and Removing Web

Application Vulnerabilities with Static Analysis and Data Mining. IEEE Transactions on

Reliability. Vol. 65, No. 1, pages 54-69, March 2016

[Mor20] Ricardo Morgado, Ibéria Medeiros, Nuno Neves. Towards Web Application Security by

Automated Code Correction. In Proceedings of the International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE), Prague, Czech Republic, May 2020

[NDM16] Natella, Roberto, Domenico Cotroneo, and Henrique S. Madeira. "Assessing

dependability with software fault injection: A survey." ACM Computing Surveys (CSUR) 48, no.

3 (2016): 1-55.

[Neu07] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulnerable software

components,” in Proc. 14th ACM Conf. Comput. Commun.Secur., 2007, pp. 529–540

[Par20] Park, Seunghyun, and Jin-Young Choi. "Hierarchical anomaly detection model for in-

vehicle networks using machine learning algorithms." Sensors 20.14 (2020): 3934.

[Per15] H. Perl et al., “VCCFinder: Finding potential vulnerabilities in opensource projects to

assist code audits,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,

pp. 426–437.

[Qin21] Qin, Hongmao, Mengru Yan, and Haojie Ji. "Application of Controller Area Network

(CAN) bus anomaly detection based on time series prediction." Vehicular Communications 27

(2021): 100291.

[Rab18]R. Rabheru, H. Hanif and S. Maffeis, “VulDeePecker: A deep learning based system for

vulnerability detection,” in Proc. Annu. Netw. Distrib. Syst. Secur. Symp., Feb. 2018

[Rab20]R. Rabheru, H. Hanif, and S. Maffeis, “A hybrid graph neural network approach for

detecting PHP vulnerabilities,” ArXiv, vol. abs/2012.08835 Dec. 2020.

[Ras14] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for classifying and

categorizing android sources and sinks,” in Proc. Netw. Distrib. Syst. Secur. Symp., Feb. 2014,

Art. no. 1125.

[Reb14] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D. Brumley,

“Optimizing Seed Selection for Fuzzing,” inIn Proceedings of the USENIX Security Symposium,

Aug 2014, pp. 861–875

[Rus18] Rebecca L Russell, Louis Kim, Lei H Hamilton, Tomo Lazovich, Jacob A Harer, Onur

Ozdemir, Paul M Ellingwood, and Marc W McConley. 2018. Automated Vulnerability Detection

in Source Code Using Deep Representation Learning. (2018).

[Saw20] Arthur D. Sawadogo, Tegawende F. Bissyand ´ e, Naouel Moha, Kevin Allix, Jacques

Klein, Li Li, and Yves Le Traon. Learning to Catch Security Patches. arXiv. 2020.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 25 V1.0

[Sca14]R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting vulnerable

software components via textmining,” IEEE Trans. Softw. Eng., vol. 40, no. 10, pp. 993–1006,

Oct. 2014

[Sch13] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. 2013.

Automated Repair of Binary and Assembly Programs for Cooperating Embedded Devices.

SIGARCH Comput. Archit. News 41 (3 2013), 317–328. Issue 1.

[Sha01]U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format string

vulnerabilities with type qualifiers,” in Proc. 10th USENIX Security Symposium., Aug. 2001, pp.

201–220.

[Sha12] Lwin Khin Shar and Hee Beng Kuan Tan. 2012. Automated removal of cross site

scripting vulnerabilities in web applications. Inf. Softw. Technol. 54, 5 (May 2012), 467- 478.

[Sha13] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL injection and cross site scripting

vulnerabilities using hybrid program analysis,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp.

642–651.

[Shar12]L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns for predicting SQL

injection and cross site scripting vulnerabilities,” in Proc.34th Int. Conf. Softw. Eng., 2012, pp.

1293–1296.

[Shar12a]L. K. Shar and H. B. K. Tan, “Predicting common web application vulnerabilities from

input validation and sanitization code patterns,” in Proc. 27th IEEE/ACM Int. Conf. Automated

Softw. Eng., 2012, pp. 310–313.

[Smi16] Smith, Craig. The car hacker's handbook: a guide for the penetration tester. no

starch press, 2016.

[Son11]S. Son and V. Shmatikov, “SAFERPHP: Finding semantic vulnerabilities in PHP

applications,” inProc. ACM SIGPLAN 6th Workshop Program. Lang. Anal. Secur., 2011, pp. 1–

13

[Sos14]K. Soska andN. Christin, “Automatically detecting vulnerablewebsites before they turn

malicious,” in Proc. 23rd USENIX Secur. Symp., Aug. 2014, pp. 625–640.

[Shw17]R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via

information,” 2017, arXiv:1703.00810.

[Ta18] Takanen, A., Demott, J. D., Miller, C., & Kettunen, A. (2018). Fuzzing for software

security testing and quality assurance. Artech House.

[Thi21] Thiruloga, Sooryaa Vignesh, Vipin Kumar Kukkala, and Sudeep Pasricha. "TENET:

Temporal CNN with Attention for Anomaly Detection in Automotive Cyber-Physical Systems."

arXiv preprint arXiv:2109.04565 (2021).

[Vas19] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural

Program Repair by Jointly Learning to Localize and Repair. International Conference on

Learning Representations, 2019.

[Wal09]J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of open source web

applications,” in Proc. 3rd Int. Symp. Empirical Softw. Eng.Meas., 2009, pp. 545–553.

 D3.8 Report on methods for security testing for variant and configurable systems

PUBLIC 26 V1.0

[Yam11] Fabian Yamaguchi, Felix ’FX’ Lindner, and Konrad Rieck. Vulnerability Extrapolation:

Assisted Discovery of Vulnerabilities using Machine Learning. USENIX Workshop on Offensive

Technologies, 2011

[Yam13]F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky: Exposing missing

checks in source code for vulnerability discovery,” in Proc. 20th ACM SIGSAC Conf. Comput.

Commun. Secur., Nov. 2013, pp. 499–510.

[Yam14] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering

vulnerabilities with code property graphs,” in Proc. IEEE Symposium Security & Privacy, May

2014, pp. 590–604.

[Zho19]Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification

by learning comprehensive program semantics via graph neural networks,” in Proc. 33rd Conf.

Adv. Neural Inf. Process. Syst., Dec. 2019, pp. 10197–10207

[Zho19a] Zhou, Aiguo, Zhenyu Li, and Yong Shen. "Anomaly detection of CAN-Bus messages

using a deep neural network for autonomous vehicles." Applied Sciences 9.15 (2019): 3174.

