

Interoperable Distributed Ledger Technologies - I-
DELTA

Deliverable

I-DELTA Use-Case Design: Actors, Actions,
Technologies, and Protocols

Use-Case Name: All use cases

Use-Case Provider: All use cases

Editor: Dakik Software

Document properties

Distribution Confidential

Version 0.1

Editor Dakik Software

Authors/
Contributors

Partners from Turkey and Czechia

Pages

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 2

ITEA 3 Project 18021

I-DELTA Use-Case Design: Actors, Actions,
Technologies, and Protocols

Use-Case Name: Template Use Case

Use-Case Provider: Dakik Software

Editor: Dakik Software

Sub-document properties

Distribution Confidential

Version [01]

Editor Kamer Kaya

Authors/
Contributors

Dakik Software

Pages 10

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 3

1. Introduction

This document presents a primitive proof of concept use case and its design regarding atomic
swaps between two blockchains. In this PoC, two HyperLedger Fabric Blockchains are set up
and connected to a NodeJS backend to simulate two unique users and a ReactJS frontend to
provide a skeletal user interface that provides a simple UI to interact with the DLT.

1.1. Purpose and Audience of the Document

The purpose of the document is to dissect an I-DELTA use case to its functional primitives and
provide the details of each primitive via a sequence of intra- and cross-chain operations. For
each use case, a similar document will be prepared. The audience is all the consortium
members contributing to the design and implementation of the I-DELTA platform.

1.2. Document Structure

Chapter 2 introduces the scope of the use-case, defines its actors and actions, and provides
technical details. Chapter 3 presents a detailed view of each action of the use case. Chapter 4
is reserved for providing alternatives for the design and technologies used for the use case.

1.3. Terms and Definitions

Table 1: Terms and definitions

Term Definition

DLT Distributed Ledger Technology

PoC Proof of Concepts

SDK Software Development Kit

DID Decentralized Identifier

UUID Universally Unique Identifier

SC Smart Contract

YFT Your First Term

YST Your Second Term

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 4

2. Scope

2.1. Business Context

This section presents a primitive PoC involving an atomic cross-chain operation between two
DLTs. In this use case, there exist two contracts on two different DLTs. The contracts are
deployed on two HyperLedger Fabric instances, the backend is expected to be implemented
via NodeJS and the frontend uses ReactJS to provide a skeletal user interface that forms a
simple UI to interact with these DLTs seamlessly.

In our use case, we have two smart contracts with each deployed on a different blockchain.
The Car Smart Contract is responsible for creating new car assets with relevant properties and
changing the ownerships of existing car assets on the chain. The Car Insurance Smart Contract,
as the name implies, is responsible for creating insurances for the car assets created in
blockchain A. The contract can create new insurances and change the insured's name via the
business logic implemented within it.

In this document, a smart contract is considered as an agreement among the users in the form
of computer code. They run on the blockchain, so they are stored on a distributed database
and cannot be changed. The transactions that happen in a smart contract are processed by
the blockchain, which means they can be sent automatically without a third party. The
transactions only happen when the conditions in the agreement are met (i.e: the business
logic defined) and there is no third party involved, so there are no issues with trust.

2.2. Technical Infrastructure

The figure above provides an eagle-eye view of the relationships between the different
technologies being utilized by the use case. The arrows in the figure show all the possible flows
of communication, information, money, transactions, etc.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 5

As can be seen in the figure, the two DLTs are connected via a NodeJS backend server. The
server itself interacts with a web application to obtain the necessary information to carry out
transactions on the relevant blockchains via the deployed smart contracts.

As mentioned above, each DLT network has smart contracts deployed that are responsible for
handling the business logic for the use case in question. The smart contracts are the entities
the NodeJS backend interacts with using the fabric software development kit (SDK) provided
by Hyperledger. The details of the smart contracts are given below.

Although our PoC use-case does not, the actual use-cases can have other components such as
wallets, oracles, etc. If this is the case they must be introduced in this section.

2.2.1. Use-case Actions

The smart contract class diagrams described above summarize the functions and (if there
exist) their return types utilized in the backend to create a functioning first draft of our use
case. We can think of this information containing the building blocks of the protocols (of the
actions) the use-case will have. For this use-case, there exist 3 actions that can be performed:

1. Create Car
2. Create Insurance
3. Change Owner (Car and Insurance)

This section describes each of these actions in more detail with related diagrams and
explanations.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 6

Action 1: Create Car

This action only interacts with the Car contract; the
user creates a car asset with no insurance. The action
is described by the diagram on the left.

The Car smart contract is living on DLT A (which is a
Hyperledger instance as mentioned before). The
initial request is created via a frontend (1: green),
then a state change request is sent to the Car smart
contract (2: red), the confirmation is obtained from
the smart contract (3: blue), which is then forwarded
to the frontend (4: blue).

Action 2: Create Insurance

This action interacts with both
contracts. The first one, the Car
smart contract is accessed to
get/read the ownership information
(2: yellow with reply 3: blue), and the
Insurance smart contract is accessed
for a state change (4: red with reply
5: blue) to create new insurance for
the same car.

Action 3: Change Owner (Car &
Insurance)

This action interacts with both
contracts; the Car and Insurance
smart contracts are accessed (2: red)
to change the car ownership
information and the owner info on
the insurance, respectively. Both of
these operations must happen at the
same time for consistency purposes.
If there is an error for one, the other

operation must also be cancelled. The implementation must also guarantee that there are no
deadlocks or race conditions that can damage the integrity and consistency of the data. A
simple UI mock-up is given below for this operation.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 7

2.3. Logical View

2.3.1. System Decomposition – Design phase

2.3.1.1. Overview and Vision

This section of the document shows sequence diagram(s) designed to illustrate the
aforementioned actions in the current use case. Each sequence diagram will be shown
separately with accompanying explanations describing the diagram. We will first use the first
action (create Car) of the PoC. The next diagram corresponds to a successful transaction taking
place where the owners in both chains are successfully changed. The last diagram represents
the situation where things can go wrong and the transaction fails.

Although we do not explicitly do this here, the safety and liveness properties of the transaction
per action must be discussed by using the details of the protocol and the technical details of
the DLTs.

2.3.1.2. Runtime View

2.3.1.2.1. Runtime View of Successful Create Car Transaction

The first diagram represents a perfect scenario where the Create Car action initiates and
terminates successfully. As the diagram shows, only the Car smart contract on DLT A is
accessed and the other DLT, B, does not contribute to the action. The details given in the
diagram, e.g., set transient map and listeners, depending on the DLT, as well as the libraries
and tools used for the backend. As the sample diagram illustrates, in our PoC, the NodeJS
backend accesses the IDs stored inside the wallet to allow interaction with the DLT. For our
application, the Hyperledger fabric does not allow NodeJS to interact with the blockchain
network without the use of generated wallet IDs and so it is paramount to register IDs into
the wallet for further functionality. After the IDs have been retrieved from the wallet, we now
have permission to interact with the DLT.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 8

2.3.1.2.2. Runtime View of Successful Change Owner Transaction

The diagram above shows the sequences of transactions to realize the change owner action.
For this PoC, the protocol is using a hash-locking mechanism to guarantee atomicity of the
action but other solutions from the literature can also be leveraged. Note that the diagram
only shows the smart contracts but not the adapters/connectors, e.g., additional actors
required to implement the action.

For this implementation, we take the advantage of Hyperledger fabric’s private data
functionality where data can be stored privately on the ledger but not committed. We take
advantage of a “map” data structure as the name implies to pass on private data to the DLT.
In this specific implementation, the private data consists of a randomly generated secret that
is used to hash-lock the contract as well as the timestamp of when the map is generated. The
timestamp is used to implement the time-lock functionality of a hash-time-lock contract. Once
both assets on both chains are locked, the transaction continues. The backend server promptly
reveals the secret that can unlock the hash-lock and the transaction proceeds as expected.

2.3.1.2.3. Runtime View of Unsuccessful Change Owner Transaction

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 9

Compared to the previous one, the diagram also identifies the adapters that will be used
hence can be considered a better, more detailed view of the action. During the entire
ChangeOwner transaction, there are a bunch of potential vulnerabilities that can occur and
can cause a deadlock or instant failure in transactions. For our design and protocol selection,
since we are communicating with the blockchain via the Hyperledger Fabric SDK, it is highly
probable that in the case of two simultaneous users, one may lock the asset on DLT A while
the other locks the asset on DLT B simply due to lag or network issues. In such a case, a
deadlock will occur where no one can access the asset any longer. It is also possible that due
to some unforeseen issues, the asset may remain locked for prolonged periods. It is also of
paramount importance that in the event of a failure, the state of the asset on both remains as
it was.

To combat such grievances, a robust protocol implementation is needed that itself is future-
proof and provides the necessary functionality, protection, and usability to encompass
differing use cases. The above sequence diagram represents the necessary actions taken
during such errors. In the case of transaction failure, the NodeJS backend calls on the
necessary functions in the adapters and smart contracts to restore the chain state to its
original setting. The protocol also checks for the timestamp (stored as private data) if the asset
is already locked to check if the asset has been locked for more than some predefined
duration. If so, the asset is unlocked on both chains. Using such functions to lock/unlock assets
based on the error handling the implementation, the protocol can display barebones working
functionality.

2.3.2. Future Plans and Possible Changes

Since we are at the protocol design state, potential changes are possible. If there are such
changes you can state them here.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 10

3. Specific Platform Needs, Architectural Decisions, and Alternatives

In this section, first, specific platform needs must be described. Then the architectural
decisions and remarks can be discussed. The technology stack such as the runtime
environment and the programming language will be described to understand the technical
requirements of the I-DELTA platform.

Topic Decision/Selection/Rationale/Alternative

Hyperledger ...

React JS ...

Node.JS ...

3.1. Runtime environment and programming language

This section contains the technical specifications of the implementation environment.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 11

4. Other Comments and References to State of the Art

You can alter the structure of the document in the way that best suits your use case. If you
have other details to add, please use this section. If you believe there exists a protocol,
algorithm, etc. we need to follow through the implementation of the platform, also add them
here with an explanation of (1) what does it propose and (2) why it is necessary and important
for I-DELTA and also for your use case.

(e.g.:

[1] Peter Robinson and Raghavendra Ramesh. General Purpose Atomic Cross-chain
Transactions, 2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 10.1109/ICBC51069.2021.9461132, May 2021

The General Purpose Atomic Cross-chain Transaction protocol allows
composable programming across multiple DLTs. It allows for inter-contract and
inter-blockchain function calls that are both synchronous and atomic: if one
part fails, the whole call execution tree of function calls is rolled back. The
protocol operates on existing Ethereum blockchains without modification. It
works for both public permissioned and consortium blockchains. Additionally,
the protocol is expected to work across heterogeneous blockchains other than
Ethereum.

Since I-DELTA is interested in connecting heterogeneous DLTs, public and
private ones, the protocol may be of use for some of the use-cases in case some
form of atomicity is required.

)

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 12

I-DELTA Use-Case Design: Actors, Actions,
Technologies, and Protocols

Use-Case Name: Digitalization of Legal Agendas

Use-Case Provider: EXPECT-IT, Selfcon Systems, K&P Partners

Editor: Pavel Furch

Sub-document properties

Distribution Confidential

Version [01]

Editor Pavel Furch

Authors/
Contributors

Michal Batko, Karel Slavíček, Pavel Furch

Pages 7

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 13

1 Introduction
Our application scenario covers voting for both citizens of a city and special use at general
meetings using digital technologies based on DLT. The voting process is inherently regulated
by a number of rules, some of them legally required to be verified by a notary record. A notary
functions as a 3rd party arbiter validating votes and decisions made by legitimate voters.

Important decisions might include public polls for city hall decisions or in case of companies
change of a management, structure or distribution of profit. electronically. Using the GPC
framework, embedded devices and distributed ledger technology, an external arbiter is no
longer required. Notary is substituted by a DLT register receiving data from embedded
devices.

A wearable or easy to transport HW module which will perform authorization of the legal act
and save the transaction record into DLT is an integral part of our use case. The reason for this
approach is to make utilization of DLT transparent to non IT specialists. For end users like
lawyers who are not professionals in IT it is necessary to provide an easy to use solution, not
requiring knowledge of used technology like DLT, digital signing, encryption algorithms, etc.
The HW module will provide some authentication mechanisms like fingerprint scanner or
keypad for input of PIN, push-buttons for voting, secure storage of PKI keys and
communication interface.

1.1 Purpose and Audience of the Document

The purpose of the document is to dissect an I-DELTA use case to its functional primitives and
provide the details of each primitive via a sequence of intra- and cross-chain operations. For
each use case, a similar document will be prepared. The audience is all the consortium
members contributing to the design and implementation of the I-DELTA platform.

1.2 Document Structure

 Chapter 2 introduces the scope of the use-case, defines its actors and actions, and provides
technical details. Chapter 3 will present a detailed view of each action of the use case (in
works).

1.3 Terms and Definitions

Table 1: Terms and definitions

Term Definition

DLT Distributed Ledger Technology

PoC Proof of Concepts

SDK Software Development Kit

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 14

2 Scope

2.1 Business Context

Our application scenario covers voting at company general meetings using digital technologies
based on DLT.

As it is the highest body in companies and organizations the general meetings are regulated
by a number of rules, some of them legally required to be verified by a notary record. A notary
functions as a 3rd party arbiter validating votes and decisions made by general meeting
members. Important decisions might include changes of management, structure or
distribution of profit in a company.

We aim to develop a technology to hold voting electronically. Using the GPC framework,
embedded devices and distributed ledger technology, an external arbiter is no longer
required. Notary is substituted by a DLT register receiving data from embedded devices.

2.2 Technical Infrastructure

The individual layers of this platform will have precisely defined and publicly known
interfaces so that for a specific application it will be possible to combine the solution
developed by us with third-party components if it is advantageous for the end user, e.g. due
to the availability of special devices or better technical parameters of some components.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 15

Layers of the component diagram

End User Service Layer / Business Logic
The entire solution is built from the perspective of design and operation of services for end
users, using the (technical) resources of the lower layers. At this level, there are means for
designing end-user services and their corresponding service catalogs, means for problem
decomposition, defining agendas and how to execute them, defining the necessary data and
how to collect/calculate it, defining control mechanisms, KPIs, etc.

Operationally, there is the status of the platform in terms of the currently offered /
available services, overviews of current requirements and their fulfillment, identification of
problems of the platform impacting on service availability, or the fulfillment of quality
assurance arrangements / availability of services, etc.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 16

Application layer

Individual sub-applications, functionalities and support services operated within the
platform or offered by external providers / service providers with which the platform is
connected, etc.

Middleware

At this level, the operational management of the entire IoT ecosystem takes place. It
includes the means for managing the central and end infrastructure, integration with native
and external applications and functionalities, monitoring the status of sub-components,
implementation of event management processes, incident management, problem
management and change management (or Service Operation in general).

Key functionalities at this level are mainly adding/removing/replacing individual platform
components, i.e. devices, applications, service providers, etc.
There is also support for technologies including distributed systems, cloud computing, edge
computing, temporal and network relational databases and computations/operators over a
generic data model.

In the area of security, support for encryption, data anonymization and pseudonymization,
authentication, authorization, security model and role-based access control (RBAC).
Resources for support for security functions will also be implemented at the layers to the
extent necessary for lower layers.

Communication and interconnection layer

This layer contains both hardware and software resources and is used to ensure mutual
communication (whether permanent, intermittent, on-demand, etc.) between the elements
that make up the IoT ecosystem.

Brokerage layer – PLC Gateway

This layer contains concentrators for connecting several hardware modules (sensors,
actuators, display devices, etc.). Individual brokers are globally addressable throughout the
ecosystem and it is the smallest directly queryable unit offering certain (service catalog
defined) services. In addition to collecting data and executing defined commands over
connected end-elements, devices in this layer can provide other, more complex services
towards the IoT ecosystem – typically Edge Computing support (e.g. for input aggregation,
data preprocessing, etc.), temporary data storage and caching, custom control logic in case
of unavailability of parent control nodes (either due to failure or planned in areas with non-
guaranteed permanent network connectivity).

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 17

2.2.1 Use-case Actions

Complete overview of the voting

The diagram reveals administration, participant and evaluator workflow, all communicating
through commits written to and received from DLT (Hyperledger Fabric in our case). Let's have
a closer look at each step below.

1. Ballot administrator workflow

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 18

By signing into the application a ballot administrator creates a request for remote voting (per
rollam). For the subsequent step the user sets properties of the voting (definition of the
voting). These properties include how big the majority of voters must be in order to have a
valid result, voting period, description, additional conditions for valid vote etc. If the number
of available participants is sufficient a proposal statement with generated electronic ballots
are created. Ballots are then committed into our Hyperledger Fabric, making it available for
eligible voters for a defined time period.

2. Ballot participant workflow

The voter (end-user of our application) receives notification for the voting. Now he can
insert his vote through either an application or a dedicated voting device, which we have
developed for cases when the voting device is required to remain at an office or public place.
Both of these choices possess authentication tools. The vote is committed into DLT. As soon

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 19

as the voting results are available
(processed in the evaluator layer) the user
receives a notification.

3.

4. Evaluator workflow

When the time period defined at the beginning (definition of electronic voting) passes the
received results are put under validity verification process and formal check. If all data met
the required conditions a result is reported to both users and the administrator.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 20

2.3 Logical View

2.3.1 System Decomposition – Design phase

2.3.1.1 Overview and Vision

This section of the document shows sequence diagram(s) designed to illustrate the
aforementioned actions in the current use case. Each sequence diagram will be shown
separately with accompanying explanations describing the diagram.

3 Specific Platform Needs, Architectural Decisions, and Alternatives

Our limited experience with the Hyperledger Fabric leads us to an idea that a more robust
implementation is needed to contain the user identification (used for our voting workflow).
Our proposition is therefore creation of a common ledger containing user/citizen identities
used among all use cases. With the ledger at hand we will be able to write and read the user
data through commits but we advise that the ledger itself should be set by the
DLT/interoperability providers among our partners.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 21

I-DELTA Use-Case Design: Actors, Actions,
Technologies, and Protocols

Use-Case Name: P2P Marketplace

Use-Case Provider: KoçSistem

Editor: Aylin Yorulmaz

Sub-Document properties

Distribution Confidential

Version 0.1

Editor Aylin Yorulmaz

Authors/
Contributors

Koç Sistem

Pages 5

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 22

1. Introduction

This document presents a primitive proof of concept use case and its design regarding
blockchain based P2P trading of energy. In this PoC, two HyperLedger Fabric Blockchains are
set up and connected to a NodeJS backend to simulate two unique users and a ReactJS
frontend to provide a skeletal user interface that provides a simple UI to interact with the DLT.

1.1. Purpose and Audience of the Document

The purpose of the document is to dissect an I-DELTA use case to its functional primitives and
provide the details of each primitive via a sequence of intra- and cross-chain operations. For
each use case, a similar document will be prepared. The audience is all the consortium
members contributing to the design and implementation of the I-DELTA platform.

1.2. Document Structure

Chapter 2 introduces the scope of the use-case, defines its actors and actions, and provides
technical details. Chapter 3 presents a detailed view of each action of the use case. Chapter 4
is reserved for providing alternatives for the design and technologies used for the use case.

1.3. Terms and Definitions

Table 1: Terms and definitions

Term Definition

DLT Distributed Ledger Technology

PoC Proof of Concepts

SDK Software Development Kit

DID Decentralized Identifier

UUID Universally Unique Identifier

SC Smart Contract

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 23

2. Scope

2.1. Business Context

Blockchain is one of the most important technologies to emerge in recent years, with many
experts believing it will change our world in the next two decades as much as the internet has
over the last five. Although it is early in its development, firms pursuing blockchain technology
include IBM, Microsoft, KT, JPMorgan Chase, Nasdaq, Foxconn, Visa, Mastercard, and shipping
giant Maersk. The applications for blockchain technology seem endless. While the first
obvious ones are financial: international payments, remittances, complex financial products,
and cryptocurrency, it can also solve problems and create new opportunities in healthcare,
defence, supply chain management, luxury goods, government and voting, and other
industries.

What is blockchain: A blockchain is a single version of the truth made possible by an immutable
and secure time-stamped ledger, copies of which are held by multiple parties.

Why it matters: It shifts trust in business from an institution or entity to software and could
someday spell the demise of many traditional companies. It also promises to make tradeable
many assets that are illiquid today, enable our devices and gadgets to become consumers,
and bring trust to many areas of business, eliminating fraud and counterfeiting in the process.

How it works: Cryptography secures the data and new transactions are linked to previous
ones, making it near-impossible to change older records without having to change subsequent
ones. And because multiple 'nodes' (computers) run the network, one would need to gain
control of more than half of them in order to make changes.

Why it's disruptive: At the very least, it promises to make firms' back-end operations more
efficient and cheaper, but down the line, it could replace middleman companies altogether.

Business opportunities: New services and products will pop up in areas such as creating and
trading assets, tracking provenance, managing supply chains, managing identities, and in
providing ancillary services to the software itself. According to Deloitte's 2019 Global
Blockchain Survey, 53 percent of respondents said that blockchain technology has become a
critical priority for their organizations and 83 percent of those surveyed believe there are
compelling use cases for the technology in the enterprise.

Although some executives might fear software replacing their role or their companies, even
email hasn't killed snail mail. The technology does promise to change existing market share,
but companies can avoid becoming obsolete by seizing upon new opportunities. In fact,
blockchain technology will enable companies to offer services that previously were impossible
without it.

2.1.1. Use-case Actions

The smart contract class diagrams described above summarize the functions and (if there
exist) their return types utilized in the backend to create a functioning first draft of our use
case. We can think of this information containing the building blocks of the protocols (of the
actions) the use-case will have. For this use-case, there exist 3 actions that can be performed:

1. Selling and buying order

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 24

2. Settlement

This section describes each of these actions in more detail with related tables and
explanations.

Actors: SP: Service Provider, L: Local Distributor, Prosumer_1, Consumer_1

Scenarios: Prosumer_1 has solar panels on his rooftop. He buys a metering device. He
downloads the mobile app that lets him join his local micro-grid community. The app is
enabled by his Participant Id authentication. He earns a currency in simulation for selling his
power to Consumer_1 in the same grid on the local market.

Consumer_1 downloads the app because he wants to buy power from Prosumer_1 in the
same grid. He sets his budget for local renewable energy in the app and pays in a currency.

SP creates the rules of the marketplace (inside micro-grid), is paid to run settlements between
prosumers and consumers, and allows local value added services into the marketplace.

Usage scenario Selling and Buying Order Placement

Description
Scenario that belongs to mutual contract depending on match of purchase and
sell order in the market place

Actors
● Panel owner
● Battery

Assumptions

● Actors must exist in the system and defined
● Battery must be on and working
● Battery must be connected to consumer end points
● Battery must have sufficient energy stored
● Buy Order – Sell Order N-N relation (selling transctions may be

completed as a whole or partially)
● Date must be in format dd MM YYYY HH:MM , transfer is subject to

within one hour of release date

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 25

Steps

2. Through which asset selling is going to take place is chosen (in this case

battery)
3. Order date and amount and validity duration is entered
4. Selling amount option is selected
5. System must allow more than one buying order associated with selling

order
6. Buyer can select amount of purchase option or buying as a bulk in the

same order

Required Fields

● Selling order amount
● Order validity period
● Date of record entry
● price
● Prosumer identity

Potential Risks and
Challenges

● Panel failure
● Connection failure
● Smart meter problems
● Grid maintenance

Usage scenario Settlement

Description Settlement based on monthly production, sell and consumption

Actors

● Consumer
● Prosumer
● Market Operator
● DSO – Distribution System Operator

Assumptions Actors must be registered and identified in the marketplace

Steps

Settlement takes place:

For consumers;

Amount of transaction * commission rate 🡺 platform provider

Amount of energy consumed * commission rate 🡺 marketplace operator
and DSO

Required Fields None, backend

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 26

3. Specific Platform Needs, Architectural Decisions, and Alternatives

In this section, first, specific platform needs must be described. Then the architectural
decisions and remarks can be discussed. The technology stack such as the runtime
environment and the programming language will be described to understand the technical
requirements of the I-DELTA platform.

Hyperledger Fabric

● 1.4 or higher

To run Hyperledger Composer and Hyperledger Fabric, at least 4Gb of memory recommended
(single organization and single peer)

The following are prerequisites for installing the required development tools:

● Operating Systems: Ubuntu Linux 16.04 / 18LTS (both 64-bit), or Mac OS 10.12

● Docker Engine: Version 17.03 or higher

● Docker-Compose: Version 1.8 or higher

● Node: 8.9 or higher (note version 9 is not supported)

● npm: v5.x

IBM Cloud Kubernetes Cluster

At least two organization and two peer for each organization, IBM Cloud Kubernetes Cluster
requirements are 4 VCPUs 16GB RAM, 3 worker nodes with 3 zones.

IBM Blockchain Platform

Code Editor

● VSCode

Off Chain Data Storage

Postgre

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 27

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 28

4. Other Comments and References to State of the Art

A smart grid serves several purposes and the movement from traditional electric grids to smart
grids is driven by multiple factors, including the deregulation of the energy market, evolutions
in metering, changes on the level of electricity production, decentralization (distributed
energy), the advent of the involved ‘prosumer’, changing regulations, the rise of
microgeneration and (isolated) microgrids, renewable energy mandates with more energy
sources and new points where and purposes for which electricity is needed (e.g. electrical
vehicle charging points). However, solutions for Smart Grids have also raised various security
problems which will be a growing concern. Physical attacks, cyber-attacks or natural disasters
are major notable forms of threats to smart grid deployment which could lead to
infrastructural failure, customer privacy breach, blackouts, energy theft and/ or loss.

 Microgrids are comprised of a diverse set of technologies and resources

In addition, as technological advancements come to life, renewable energy resources have
become possible, such as rooftop solar panels, small biogas plants etc. Thus, the traditional
energy consumers are deeply involved in the energy system and market – they become energy
prosumers (i.e., producers and consumers). Furthermore, the prosumers want to know and
trace their energy generation and consumption in detail. Decentralized provision and
consumption of energy will revolutionize the energy system and market. Hence, the energy
system of the future will be decentralized and based on renewable energies. This puts forward
new challenges in stabilizing the energy transmission and distribution system and satisfying
the needs of users.

Real-time control and supervision play an important role in the smart energy grids
management and operation at medium and low voltage levels. Lately, due to the rapid growth
in the deployment of Distributed Energy Prosumers (DEPs) the smart grid management
problems can no longer be efficiently addressed using centralized approaches, thus, the need
for visionary decentralized approaches and architectures is widely recognized. The
development of Internet of Things (IoT) smart metering devices together with the prospect of
renewable energy integration has increased the level of adoption of decentralized energy
networks where, due to the lack of grid-scale energy storage capacity, electrical energy must
be used as it is generated. However, the integration of renewable energy has added a level of
uncertainty due to the intermittent and unpredictable nature of its generation. Variations in
energy production, either surplus or deficit, may threaten the security of energy supply,
leading to energy components overload and culminating with power outages or service
disruptions. A better approach is the demand side management aiming at matching the
energy demand with the production by motivating DEPs to shed or shift their energy demand
to deal with peak load periods. (Blockchain Based Decentralized Management of Demand
Response Programs in Smart Energy Grids: Claudia Pop, Tudor Cioara, Marcel Antal, Ionut
Anghel, Ioan Salomie and Massimo Bertoncini)

As more and more energies are produced by households or small, private companies, both
the energy distribution networks and the big, central energy producing plants are to be
affected. How to maintain and optimize the grid stability is a big challenge to grid operators.
Since customers are deeply involved in the energy system, new mechanism and models needs
to be introduced to operate the grid in order to reduce the energy waste. New demands from

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 29

energy consumers will emerge. For example, consumers may also want to use the green
energy and be sure what energy they are using. How to keep the energy system transparent
to the customers is of great importance. Blockchain is a distributed ledger technology,
providing distributed trust, anonymity, data integrity and availability. Blockchain technology
can benefit the energy system in two aspects fundamentally. One is it is distributed system in
nature. The other is Blockchain has intrinsic security mechanisms by design. Hence, Blockchain
poses at this point as a promising technology for meeting the requirements of future energy
system, and a solution to state-of-the-art problems of modern smart grids which cannot be
solved by existing mature technology solutions. (A Blockchain-based Architecture for Stable
and Trustworthy Smart Grid, August 2019, Yuhong Li, Rahim Rahmani, Nicolas Fouassier, Peik
Stenlund, Kun Ouyang)

Towards resilient micro grid, we must fill several technology gaps with national exploitations
by showcasing blockchain enabled peer to peer electricity trading mechanism. The
conventional architecture of electricity markets is hierarchical, dependent on the centralized
generation, inflexible and with a limited pool of bidders with a few sellers and buyers, and
restricted scalability. This structure is not efficient by means of restricted demand response
management options because of centralized control algorithms and less adaptability to
distributed generation integration. There are still risk factors to overcome until a flexible
market is fully operational:

● It is a new territory in all aspects without any legal or compliance precedents to follow,

which poses a serious problem for IOT manufacturers and services providers.

● Lack of grid-scale energy storage capacity

● Integration of renewable energy adds a level of uncertainty due to the intermittent and

unpredictable nature of its generation

● Variations in energy production, either surplus or deficit, may threaten the security of

energy supply leading to energy components overload and resulting power outages or

service disruptions.

● Large gap between IOT data transfer speeds and blockchain processing times

Review of Existing Peer-to-Peer Energy Trading Projects in Europe

There are already several projects and trails on P2P energy trading carried out worldwide
shortcoming issues (GAP analysis):

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 30

Piclo: The meter data, generator pricing and consumer preference information are used to
match electricity demand and supply every half hour. Generators have control and visibility
over who buys electricity from them. Consumers can select and prioritize from which
generators to buy electricity. Piclo matches generation and consumption according to
preferences and locality, providing customers with data visualizations and analytics. Good
Energy provides contracts, meter data, billing, award-winning customer service, and balances
the marketplace.

Vandebron: Vandebron is an online platform in Netherland where energy consumers can buy
electricity directly from independent producers, such as farmers with wind turbines in their
fields. Very similarly toPiclo, it acts as an energy supplier who links consumers and generators
and balances the whole market.

PeerEnergyCloud: It developed cloud-based technologies for a local electronic trading
platform for dealing with local excessive production. It was established in order to investigate
innovative recording and forecasting procedures for device specific electricity consumption,
to establish a virtual marketplace for power trading and to develop value added services
within a Microgrid.

Smart Watts: It proposes new approaches for optimizing energy supply using modern
information and communication technologies (ICT), and these ICTs are developed and tested.
It exploits the optimization potential of ICT to achieve greater cost-effectiveness and security
of supply.

Yeloha and Masaic: They allow interested consumers, such as apartment owners and others
who do not own solar systems, to pay for a portion of the solar energy generated by the host’s
solar system. The subscribers get a reduction on their utility bills, so that in total, they save
money, even if they move. They are like Piclo and Vandebron, but more interested in solar
power than other renewables.

sonnenCommunity is developed by sonnenBatterie, which is a storage manufacturer in
Germany. It is a community of sonnenBatterie owners who can share self-produced energy
with others. As a result, there is no need for a conventional energy supplier anymore. With a
sonnenBatterie and a photovoltaic system, members can completely cover their own energy
needs on sunny days – often even generating a surplus. This surplus is not fed into the
conventional power grid, but into a virtual energy pool that serves other members in times
when they cannot produce enough energy due to bad weather. A central software links up

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 31

and monitors all sonnenCommunity members - while balancing energy supply and demand.
This idea is very similar to Piclo’s and Vandebron’s, but sonnenCommunity obviously highlights
the importance of storage system.

Swarm Energy is a set of services provided by energy supplier Lichtblick. Swarm Conductor,
which is one part of Swarm Energy services, is a unique IT platform in the energy market. On
the platform, the processes of an increasingly complex world of energy to customer-friendly
products and services for residential and business customers are combined. Customers’ local
power plants and storage are optimized. Swarm Energy allows a meaningful interaction of
distributed and renewable energy sources.

TransActive Grid is a community energy market, and a combination of software and hardware
that enables members to buy and sell energy from each other securely and automatically,
using smart contracts and the blockchain. The current prototype uses the Ethereum
blockchain. Located in Brooklyn, New York City, consumers can choose where to buy
renewables from. Home energy producers can sell their surplus to their neighbors, and
communities can keep energy resources local, reducing dissipation and increasing micro and
macro grid efficiency.

Electron is a revolutionary new platform for gas and electricity metering and billing systems,
which is still under development. It will open the way for exciting and innovative consumer
energy services. It is a completely secure, transparent, decentralized platform that runs on a
blockchain and provides a provably honest metering, billing and switching service using Smart
Contracts and the power of Distributed Consensus. The platform will be open source and
operate for the benefit of all users. It will not be owned or controlled by suppliers or brokers.

Finally, both Exergy and Electron introduced the blockchain technology into energy sector to
simplify the metering and billing system in the energy markets. However, TransActive Grid is
more interested in developing a local P2P energy market in Microgrids, while Electron is
targeted only at an advanced billing platform for energy suppliers.

In TenneT’s pilot project with sonnen eServices, a group of residential batteries has been
made available to help balance wind energy intermittency during periods of network
congestion, when other generators may not be able to contribute to balancing. A blockchain-
based interface will enable TenneT to view the status of flexible resources, to dispatch
resources, and to maintain a record of the batteries’ contributions to grid balancing.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 32

I-DELTA Use-Case Design: Actors, Actions,
Technologies, and Protocols

Use-Case Name: P2P Marketplace

Use-Case Provider: T2

Editor: Kamer Kaya, Öge Bozyiğit

Sub-Document properties

Distribution Confidential

Version 0.1

Editor Kamer Kaya, Öge Bozyiğit

Authors/
Contributors

T2, Erste Software, Dakik Software

Pages 13

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 33

1. Introduction

1.1. Purpose and Audience of the Document

The purpose of the document is to dissect the loyalty I-DELTA use case to its functional
primitives and provide the details of each primitive via a sequence of intra- and cross-chain
operations. The aim of this document is to provide a detailed design view for the
implementers of the loyalty use case of the I-DELTA system. It will also provide insight
regarding the technical operations of the use case to those in the I-DELTA ecosystem who aim
to integrate their own use case implementations with the loyalty scenario.

1.2. Document Structure

Chapter 2 introduces the scope of the use-case, defines its actors and actions, and provides
technical details. Chapter 3 presents a detailed view of each action of the use case. Chapter 4
is reserved for providing alternatives for the design and technologies used for the use case.

1.3. Terms, Definitions and Abbreviations

Table 1: Actors/Terms and definitions

Term Definition

DID Admin Responsible for carrying out administrative tasks related to DID
management (e.g.: DID creation, revocation, sharing, setting/revoking
credentials)

 System Admin Responsible for authorizing the integration of company DLTs with the
whole system as well as other system-wide administrative tasks (e.g.:
the ones related to the message bus connecting blockchain networks).

Company Admin Responsible for creating benefits, adding/removing company
employees, and transferring token to employees/users

Employees Earn/spend loyalty tokens by buying benefits via the platform.

Loyalty Tokens Digital currency provided by companies to their employees to be used
to claim benefits on the platform

Message-bus Software platform that allows exchange or protocols and
communication between one (or more) block chain networks

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 34

Message-bus Adapter A software module that connects the company DLT with the system.

Hyperledger Fabric Permissioned blockchain platform that offers protocols, smart
contracts, standards and other key blockchain elements. Each
company DLT is a Fabric instance.

Hyperledger Indy A permissioned blockchain platform that offers protocols and smart
contracts to manage decentralized IDs. The DID is ledger is an instance
of Indy.

Hyperledger Aries Infrastructure for peer-to-peer network and blockchain-rooted
interactions within platforms that offer key management and secret
management systems.

Smart Contract An agreement among the users running on a DLT in the form of
computer code.

RabbitMQ RabbitMQ is an open source message broker software. It accepts
messages from producers, and delivers them to consumers

Employee dApp A web/mobile application employees use to check their balances, buy,
transfer and swap benefits.

Table 2: Abbreviations

Term Definition

DLT Distributed Ledger Technology

PoC Proof of Concepts

SDK Software Development Kit

DID Decentralized Identifier

UUID Universally Unique Identifier

SC Smart Contract

RMQ RabbitMQ

https://101blockchains.com/peer-to-peer-network/

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 35

DA DID Admin

SA System Admin

CA Company Admin

LT Loyalty Token

MB Message Bus

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 36

2. Scope

2.1. Business Context

In the current state, companies give extra benefits to their employees in addition to their
regular salary. These benefits create tax advantages and increase the loyalty of employees.
On the other hand, some of the benefits given to employees are not utilized and are wasted.
Companies want to maximize the effectiveness of the benefits of their employees without
wasting unnecessary funds.

The aim of the Loyalty business scenario is to provide a marketplace that lives on the
blockchain and allows users to purchase loyalty benefits from a benefit pool driven by more
than one company. The companies themselves may have their own blockchain to manage
their employee identities and their company currency, and thus it is the goal of I-DELTA to
provide the technical infrastructure to manage and operate an interoperable cross-chain
loyalty benefit pool across multiple companies. Registering companies and employees,
creating and transferring benefits, managing wallets, and synchronization between the
blockchains will be conducted through this technical infrastructure.

Figure 1

Using I-DELTA, companies will aim to maximize the purchase of their own company-generated
benefits while also increasing the satisfaction of their employees by giving them access to a
much larger benefit pool with a wide selection of benefits.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 37

2.2. Technical Infrastructure

The loyalty use-case employs blockchain frame-works launched by the Linux Foundation.
Hyperledger Fabric, Indy and Aries are the principal pillars in our infrastructure that provide
the necessary functionality for our use case. Each technological framework will be briefly
described individually and how they compliment each other and enrich the use-case scenario.

Hyperledger Fabric:

Hyperledger fabric is an open source, modular blockchain framework developed by the linux
foundation and is a well established enterprise grade blockchain platform. It provides a
permissioned, modular architecture which allows for a “plug and play” functionality which
allows for easy reuse of existing features and ready-made integration of various modules. The
modular architecture of Hyperledger Fabric separates the transaction processing workflow
into three different stages: smart contracts called chaincode that comprise the distributed
logic processing and agreement of the system, transaction ordering, and transaction
validation and commitment.

Hyperledger Indy:

Hyperledger Indy provides tools, libraries, and reusable components for providing digital
identities rooted on blockchains or other distributed ledgers so that they are interoperable
across administrative domains, applications, and any other silo. Indy is interoperable with
other blockchains or can be used standalone powering the decentralization of identity.

Hyperledger Aries:

Hyperledger Aries provides a shared, reusable, interoperable tool kit designed for initiatives
and solutions focused on creating, transmitting and storing verifiable digital credentials. It is
infrastructure for blockchain-rooted, peer-to-peer interactions. This project consumes the
cryptographic support provided by Hyperledger Ursa, to provide secure secret management
and decentralized key management functionality.

How it comes together:

https://www.investopedia.com/terms/s/smart-contracts.asp

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 38

Hyperledger indy is used as the universal ledger for storing any and all benefits created by the
companies that are part of the platform. One of the key challenges pertaining to this use case
is to allow employees of all companies to partake in the purchase of all benefits regardless of
the company that has created it. Although it can be achieved using a fabric network directly,
complexity arises when atomicity must be guaranteed in the system. A complex protocol
which can allow fabric networks of different companies to call their smart contracts must be
generated which guarantees i) atomicity ii) privacy. Each company has their own fabric
network and would not be willing to allow any access that may compromise their private
intellectual properties. Thus to overcome this, a central service becomes a necessity.

However, centralization goes against the very nature of blockchain technology and so by
utilizing hyperledger indy we are able to globalize the market place and significantly reduce
the complexity of any transactions between employees of different companies. By utilizing
indy and providing each benefit its own DID, we are able to track the benefit at all times and
significantly reduce the complexity in providing protocols that ensure atomicity.

All communication with the indy ledger is done via aries agents that provide endpoints for
interacting with the ledger and allows for storing of verifiable credentials that provide proof
of ownership of benefits. Furthermore, aries support multi-tenancy which allows for the
company to provide and administer sub-wallets that can be created and/or removed with
significant ease. This allows our solution to be scalable due to the fact that we will not be
managing multiple wallets on a per-employee level but rather a single super-wallet (belonging
to the company).

The technical infrastructure is summarized in the following diagram:

Figure 2

Use-Case Scenarios:

Buy Benefit

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 39

PreReq: Company and Employee are Registered

Scenario:

● Employee A (from Company A) wants to buy some Benefit A.

Steps:

1) Employee A browses the market-place and chooses to buy some benefit A.

a) Benefits can either belong to the company of the employee, another company

or another employee from the same or different company.

2) System check to ensure that employee A (buyer) has enough tokens to partake in the

transaction

a) API call to fabric network that checks and compares if the buyer (employee A)

can perform the transaction.

3) API call returns the appropriate message regarding feasibility of the transaction.

4) Assuming employee A has enough tokens to buy the benefit, they initiate the

transaction by starting the buying process.

a) Schema and credential definition ids are needed to ensure the buyer is able to

provide the appropriate attributes needed for change of ownership.

5) Holder (Employee A) connects to the issuer

6) The issuer provides connects to indy to update ownership status of the benefit

7) The indy ledger return a response indicating whether or not the ownership status has

changed and the benefit DiD

8) The Issuer returns a verifiable credential to the holder

9) The Holder can see the their issued VCs on the dApp

10) The token balance of the issuer is updated to reflect the changes.

11) User returned a response indicating a successful transaction had occurred.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 40

Figure 3

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 41

Figure 4

In an ideal scenario, the employee becomes the owner of the benefit they have purchased

and their token balance is updated or incase of failure, the entire transaction is canceled and

the original state of the actors involved is restored; meaning the token balance (if deducted)

is restored and the benefit is restored on the marketplace. In the loyalty use-case scenario,

there can be an event where two employees belonging to the same or different companies

may try to purchase the same benefit simultaneously. In such an event, it is entirely possible

that one of the parties involved may end-up worse off. A possible worst-case scenario is that

one employee becomes the owner of the benefit but does not have their token balance

reduced while the other has their token balance reduced but is not given ownership of the

benefit. In this scenario the employee is worse off than they were before initiating the

transaction.

To combat this grievance, the protocol must support conditions where multiple users are

attempting to purchase the same benefit and ensure that one and only one user is given

ownership and that only their token balance is updated. Hyperledger Indy does not support

smart contracts that can be called upon to revert changes hence the protocol developed must

allow for the system to reverse into its original state in the event of a failed transaction.

Create Token

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 42

PreReq: Company is Registered

Scenario:

● Company A creates token in Company blockchain

Steps:

1) Company Administrator triggers create token action to create tokens in Company

wallet. (Figure 5)

Transfer Token (within Company)

PreReq: Company has created tokens in Company Wallet

Scenario:

● Company A transfers tokens to employees in Company A

Steps:

1) Company Administrator triggers transfer token action to transfer tokens from

Company wallet to wallet of Employee1 - EmployeeN. (Figure 5)

Figure 5

Create Benefit

PreReq: Company is Registered

Scenario:

● Company A creates a Benefit and stores it in the Indy ledger

Steps:

1) Company Administrator creates a benefit with its identifier and other attributes in the

company wallet on the Indy ledger (Figure 6)

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 43

Update Benefit

PreReq: Company is Registered

Scenario:

● Company A owns some Benefit A and wants to update it.

Steps:

2) Company Administrator updates the attributes of the benefit stored on the indy ledger

(Figure 6)

Remove Benefit

PreReq: Company is Registered

Scenario:

● Company A owns some Benefit A and wants to remove it.

Steps:

1) Company Administrator removes the benefit stored on the indy ledger (Figure 6)

Figure 6

Register Company:

Scenario: A new company must be added to the idelta platform

Prerequisite: The company has an existing blockchain that can be integrated/connected with

the message bus

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 44

Steps:

1) The Company Administrator provides the DID administrator with custom controller

that contains the business logic the company will follow when interacting with the indy

ledger via an aries agent

2) DID administrator launches an Aries agent with credentials provided by the company

(Port Mapping and API Endpoints) and the controller which connects to indy

a) DID administrator has access to the genesis file provided by indy that is used

by the aries agent to connect and call endpoints on the indy ledger.

3) Once the aries agent has been set, the company administrator sets up wallets for each

employee that will act as their DID and verifiable credential storage.

Figure 7

Remove Company:

Scenario: A company must be removed from the idelta platform

Steps:

1) The company administrator removes all corresponding VCs and wallets of employee

agents stored on indy by calling the appropriate endpoint.

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 45

a) The company administrator calls the revocation registry and updates the tails

files to remove all issued VCs for all employees.

2) The company administrator removes all corresponding benefits offered by said

company from the marketplace and the ledger

a) The company administrator calls the revocation registry and updates the tails

files to remove all issued VCs for all employees.

3) The DID administrator removes the company agent (holder)

Figure 8

Add Employee

PreReq: Company is registered on the DID blockchain

Scenario:

● Company A wants to add an employee to the system

Steps:

D4.1 – I-DELTA Use-Case Design

ITEA3: Interoperable Distributed Ledger Technologies – I-DELTA
 46

1) The company administrator, through the agent, sets up a wallet for the employee that

will act as their DID and verifiable credential storage (Figure 9).

Remove Employee

PreReq: Employee is registered on the blockchain

Scenario:

● Company A wants to remove an employee from the system

Steps:

1) The company administrator calls the revocation registry for the specific employee to

be removed (Figure 9)

Figure 9

