SCRATCh

SECURE AND AGILE CONNECTED THNGS

Deliverable

[3

Diebold Nixdorf

MO OTARIS =¥inende AnyWi irdeto “eeis

ssssssssssss

HHliberia Jnimbeo GVAHE Quobis LYULMA

Copyright © 2018-2022, SCRATCh

@ X ITEAZ

Deliverable 2.5: The Firmware Update System

Work package: WP2

Affected milestone: MS5

Partners involved: Almende BV
Diebold Nixdorf

AnyWi

Date: 7/3/2022

Deliverable version: v2.0

Editor: Merijn van Tooren, Almende BV

Author(s): Merijn van Tooren, Almende BV
Peter Guenther, Diebold Nixdorf

Marcell Marosvolgyi, AnyWi

Responsible Contact: Merijn van Tooren
Almende BV
Stationsplein 45, unit a1.205-207, 3013 AK Rotterdam
merijn@almende.org

+316-10657644

Copyright © 2018-2022, SCRATCh 1

Version history

@ X ITEAZ

Date Version Author Comment
14/10/2020 | 1.0 Merijn van
Tooren
4/3/2022 2.0 Merijn van
Tooren

Copyright © 2018-2022, SCRATCh

Table of Contents

T I O TUCEION ettt et e e et ee e e e e e e e e ee e aaeeseeeeanennaaesseesnnnnnaaaeseeenennnnnaaess 4

A N TV = oL =] SRR 5

Copyright © 2018-2022, SCRATCh 3

@ & ITEAZ
1. Introduction

As a major part of the SCRATCh project, a new Firmware Update System is
designed and developed. The goal is to create a new approach to setting up
automatic, secure firmware updates for 0T end devices, and to create it so that
the approach is user friendly, requires little to no security expertise, and is
applicable to many if not all end devices.

As SCRATCh aims to help SMEs set up and perform Secure DevOps from scratch,
it is important to investigate the matter of setting up a secure and effective
firmware update system in any use case. Security by design is important here, as
many interdependent components have to be set up on servers and end devices,
and a large number of threats must be identified and addressed before the
system may be considered secure.

This sub-project also involves working out how to plan secure communications
and storage for many types of devices and data. Payloads of varying sizes must
be hashed, signed and transported so they may be installed on end devices, and
it may be necessary to store these updates for later use, yet conversely outdated
updates form a security risk.

In this document, the process that lead to the Firmware Update System design is
elaborated upon, and the final system draft is presented.

Copyright © 2018-2022, SCRATCh 4

X ITEAZ

2. The Manifest

A first step in this undertaking was to study related works and create an overall
strategy. The most relevant works studied are TUF (The Update Framework),
Uptane, MCUBoot, Arm Platform Security Architecture, and the IETF Suit for
Manifests. The essence drawn from these works is that there should be a
“Manifest” containing metadata about an update, which is packaged and signed
together with the update. Such a manifest contains data that will make it
possible to ensure that an update is only deployed on intended target devices,
and only at intended times.

What follows now is an analysis of security threats pertaining to firmware
updates. These threats have been drawn from aforementioned literature
research, and will be used to arrive at a list of requirements for the Firmware
Update System’s own Manifests. Threats that should be addressed outside the
specific scope of the Firmware Update System are left out for the sake of
conciseness. Threats are also categorised using STRIDE for convenience.

2.1. Threat Analysis
— Image Tampering (STRIDE Category: Tampering)

o Important data/ code is intercepted on its way to the end device

and tampered with or replaced, then delivered as if normal.
— Data tampering (STRIDE Category: Tampering)

o Important data / code is tampered with on device, e.g. while itis in
flash memory.

— Rollback (STRIDE Category: Tampering)

o An old update is provided to an end device to reintroduce old
vulnerabilities.

— Off-Chip Data Reading (STRIDE Category: Information Disclosure)

o Important data / code is read from the device, e.g. to create clones
or for reverse engineering.

o Not addressed using the Manifest. Rather, the device and off-chip
storage must be designed in a way to prevent unwanted reading.

— Persistent Malware (STRIDE Category: Tampering, Elevation of Privilege)

o Malicious software is installed on device in a way that persists
across resets.

— Update Abuse (STRIDE Category: Denial of Service)

o An attacker renders a device inoperable by sending an unmodified
but incompatible firmware update, or by initiating many transfers
without finishing them.

— Side Channels (STRIDE Category: Information Disclosure)

Copyright © 2018-2022, SCRATCh 5

X ITEAZ

o An attacker infers the value of sensitive on-chip code or data by
using non-invasive techniques, such as differential power analysis or
software observable side channels.

o Note: Not addressed by the Firmware Update System, but
considered an important threat to regard when setting up an
update chain, and therefore included here.

— Weak Cryptography (STRIDE Category: Elevation of Privilege)

o An attacker breaks the cryptography used by the end device.

o Note: This is mainly included as a reminder that cryptography must
be kept up to date in order to be fully effective.

— Untrusted Installation (STRIDE Category: Tampering, Denial of Service)

o When a device awaits to receive an update, an attacker may provide
untrusted files with any type or content, which may affect the device
when installed.

— Endless Data (STRIDE Category: Denial of Service)

o An attacker responds to a device with endless data, thereby
hampering the device's system.

— Extraneous Dependencies (STRIDE Category: Tampering, Denial of
Service)

0 Adevice's update system automatically downloads referenced
dependencies with unwanted results.

— Fast Forward (STRIDE Category: Denial of Service)

o An attacker increases meta data version number, e.g, to prevent
subsequent updates due to downgrade protection.

— Freeze (STRIDE Category: Spoofing)

0 An attacker ensures that a device's requests for updates are
answered with outdated firmware in order to render it unaware of
the new updates it is being denied.

— Mix and Match (STRIDE Category: Tampering, Denial of Service)
o Trick separate clients into installing a combination of firmware
versions that did not exist together on server at the same time.
— Key Compromise (STRIDE Category: Elevation of Privilege)
o An attacker obtains a complete set of required keys.
— Read Updates (STRIDE Category: Information Disclosure)
o An attacker obtains sensitive data from update messages.
— Deny Installation (STRIDE Category: Denial of Service)

0 An attacker interferes with a device's communication and prevents
it from receiving updates.

— Interfere Functionality (STRIDE Category: Tampering)

Copyright © 2018-2022, SCRATCh 6

X ITEAZ

o0 An attacker causes a device to malfunction or exhibit unexpected
behaviour, thereby causing harm.

o Note: This particular threat may result in bodily harm to persons on
premises.

— Control (STRIDE Category: Elevation of Privilege)

o An attacker gains full control of a device.

— Mismatched Firmware (STRIDE Category: Denial of Service)

o An attacker sends a valid firmware image, for the wrong type of
device, signed by an actor with firmware installation permission on
both types of device. The firmware mismatch causes the device to
fail.

— Offline Device (STRIDE Category: Tampering)

o A device that has been without access to updates for a while is given
an update that is new for it, yet outdated. Similar to [Rollback], this
threat may result in introduction of old vulnerabilities.

— Misinterpret Payload (STRIDE Category: Denial of Service)

o |If a device misinterprets the type of the firmware image, it may

cause a device to install a firmware image incorrectly.
— Wrong Location (STRIDE Category: Denial of Service)

o If a device installs firmware to the wrong location, it may result in
device failure.

— Redirection (STRIDE Category: Tampering, Denial of Service)

o Adevice that attempts to download update data is redirected to a
compromised server.

— Verification Bypass (STRIDE Category: Tampering)

o An attacker replaces a newly downloaded firmware after a device
finishes verifying a manifest.

— Precursor Image (STRIDE Category: Denial of Service)

o An attacker sends a valid, current manifest to a device that has an
unexpected precursor image.

— Unqualified Image (STRIDE Category: Elevation of Privilege)

o Firmware that was not approved is introduced into deployment
system.

— Image Reverse Engineering (STRIDE Category: Information Disclosure)

o An attacker obtains a firmware image and reverse engineers it, e.g.
to set up a tampering or to find vulnerabilities.

— Manifest Override (STRIDE Category: Elevation of Privilege)

o An authorised actor, but not the firmware authority, uses an
override mechanism to change an information element in a
manifest signed by the firmware authority.

Copyright © 2018-2022, SCRATCh v

X ITEAZ

— Extra Data (STRIDE Category: Tampering)
o Extra code is appended to a valid, authenticated image to smuggle
unwanted software on device.
— Manifest Modification (STRIDE Category: Tampering)
o The metadata manifest is modified after construction but before it
is signed.
— Brick Device (STRIDE Category: Denial of Service)
o An attacker sends crafted data to brick the device.

Following is a section in which requirements for the metadata Manifest are listed
to address the above listed threats.

2.2. Manifest Requirements
— Payload Digest

o Adigest of the payload is included in the metadata.
o Addresses Threats:

» Image Tampering attacks are prevented by checking the
payload with the digest in the metadata.

» Data Tampering attacks are prevented by checking the
payload with the digest in the metadata.

— Metadata Signature
o The metadata must be signed so its authenticity can be verified.
Included in metadata.
o Addresses Threats:

» The Image Tampering threat includes tampering with the
image metadata, which is prevented by checking this
signature.

— Monotonic Sequence Numbers
o Aversion number that increases with every new release. Included in
metadata.
0 Addresses Threats:
» Rollback attacks are prevented by checking the monotonic
sequence number in the metadata.
— Vendor, Device-type Identifiers
o An identifier for the vendor and device type associated with a
release. Included in metadata.
0 Addresses Threats:

» Mismatched Firmware situations are prevented by checking

the device-type identifier.
— Expiration Time

Copyright © 2018-2022, SCRATCh 3

https://github.com/SCRATCh-ITEA3/firmware-update-system/blob/master/report.md#ImageTampering

X ITEAZ

o A date, potentially date and time, at which the release will be
considered outdated and unsafe. Included in metadata.
0 Addresses Threats:

» The Offline Device threat is prevented by checking the
expiration time, provided the device has a trusted source of
time to check with.

» The impact of the Deny Installation threat can be prevented
by stopping devices from running on outdated firmware.

— Authenticated Payload Type
o Indication of the payload type for unpacking and parsing. Included
in metadata.
o Addresses Threats:
» The Misinterpret Payload threat is prevented by acting
according to the payload type specified in the metadata.
— Authenticated Storage Location
o Indication of the location on the device where the payload must be
installed. Included in metadata.
0 Addresses Threats:
» The Wrong Location threat is prevented by assuming the
location specified in the metadata.
— Authenticated Remote Resource Location
o Indication of the location of payload to be fetched remotely by the
device. Included in metadata.
o Addresses Threats:
» Redirection problems are prevented by checking the remote
location specified in the metadata.
— Authenticated Precursor Images
o If an update requires a precursor image, a digest of said precursor
image must be included in the metadata and used to verify the
precursor image on device.
o Addresses Threats:

» The Precursor Image threat is prevented by checking the
precusor image digest in the metadata with the image
currently installed on device.

— Rights Require Authenticity
o Ifthere are multiple different rights and roles, then the individual
rights must be sure from the Metadata Signature.
o Addresses Threats:

Copyright © 2018-2022, SCRATCh 9

X ITEAZ

» The Unqualified Image threat is prevented by verifying that
the signing entity has all required rights for the update being
deployed.

— Payload Encryption
0 The payload must be encrypted.
o Addresses Threats:

* Image Reverse Engineering is counteracted by encryption of
the payload, because the attacker will have to break the
encryption to read the payload.

— Access Control
0 The device must be programmed to verify that the signing party has
all the necessary rights. Relates to Rights Before Authenticity.
o Addresses Threats:
» The Unqualified Image threat is prevented by ensuring that a
device knows how to verify the signing entity's rights.
— Encrypted Manifests
o It must be possible to encrypt the metadata.
0 Addresses Threats:
» The Read Updates threat is addressed by making metadata
unreadable.
— Whole Image Digest
o Adigest of the complete installed payload. For fixed-storage devices,
this should be a digest of the complete storage space, which allows
verification against late unwanted additions.
o Addresses Threats:
» This counteracts the Extra Data threat by providing a way to
check for extra data after installation.
— Secure Reporting
o Reports and updates coming from the device should be
authenticated to prevent spoofing or tampering.
o Addresses Threats:
» Aform of the Read Updates threat is prevented by way of this
requirement.
— Protected Storage of Signing Keys
o Signing keys should be stored in such a way that they cannot be
obtained by network access, and are unlikely to be usable from
compromised development computers.
o Addresses Threats:

Copyright © 2018-2022, SCRATCh 10

X ITEAZ

» The Key Compromise threat is addressed by this
requirement, by making it harder for attackers to
compromise any signing keys and use them.

— Validate Manifests Prior to Deployment
o Metadata should be parsed and verified before deployment to
verify they have not been tampered with.
o Addresses Threats:
= Addresses the threat of Manifest Modification.
— Construct manifests in a trusted environment
0 Metadata should be constructed in a trusted environment where
tampering is unlikely.
0 Addresses Threats:
» Addresses the threat of Manifest Modification.
— Manifest kept immutable between check and use
0 The metadata must be held immutable, and the end device must
protect the metadata from other processes during the update
process.
0 Addresses Threats:
» Addresses a form of ImageTampering.
— Immutable Boot Loader
o The immutable bootloader is a hardware Root of Trust that
executes from reset, containing the minimal functionality required
to check the authenticity of the Trusted Boot software.
0 Addresses Threats:

» The Data Tampering threat is prevented by relying on the
hardware root of trust provided by the immutable boot
loader.

— Authenticated Trusted Boot Stages
o Following the Immutable Boot Loader, each next stage of boot must
be verified by the previous.
o Addresses Threats:

» The Data Tampering threat is prevented by ensuring that all
boot stages are, by extension, verified by the immutable boot
loader.

— Chain of Trust
o A chain of trust ensures that each loaded component on the system
has not been tampered. The chain of trust begins on reset whereby
a hardware component authenticates the first stage of software.
The chain continues when the authenticated software loads
additional software.

Copyright © 2018-2022, SCRATCh 11

X ITEAZ

0 Addresses Threats:
» Counteracts Persistent Malware.
— Identified Roles
0 A product analysis must determine the number of potential actors
that will maintain the components of a product.
o Addresses Threats:

» Rather than directly addressing a threat, this requirement is
necessary for the proper implementation of requirements
related to having multiple signing parties.

— Signer ID
o Identifies the signing party. Included in metadata.
o Addresses Threats:

» This requirement enables other requirements concerned with
verifying that a signing party has the necessary rights to
deploy an update.

— Manifest Format Version
0 The metadata format version. Included in metadata.
0 Addresses Threats:
» Aform of Update Abuse is prevented by avoiding metadata
format version mismatch.
— Payload Size
o The size of the payload. Included in metadata.
o Addresses Threats:

» The Endless Data threat is prevented by including a payload
size and reading no more than indicated.

» The Extra Data threat is also counteracted by reading none
more of the payload than indicated.

— Role Indicator
o If there are multiple signing roles, the role of the signing party must
be indicated in the metadata.
o Addresses Threats:
» This requirement keeps other requirements consistent in the
presence of multiple roles, e.g. in an Uptane implementation.
— Root Metadata
o The Root Metadata identifies the roles, their public keys, and the
threshold of signatures required for those roles.
o Addresses Threats:

» This requirement keeps other requirements consistent in the

presence of multiple roles, e.g. in an Uptane implementation.
— Snapshot Metadata

Copyright © 2018-2022, SCRATCh 12

w X ITEAZ

o The Snapshot Metadata lists the version numbers and file names of
Targets Metadata files.
0 Addresses Threats:

» This requirement prevents a specific form of attack where
Targets Metadata files are mixed-and-matched to create an
invalid combination of valid file and version number.

o Research Note:

» The Uptane Standard has a very specific set of four roles,
namely Root, Targets, Snapshot and Timestamp, and some of
its requirements inevitably refer to this setup. Refer to the
original document for more information.

— Timestamp Metadata
o The Timestamp Metadata contains the version number and file
name of the latest Snapshot Metadata file, as well as at least one
digest of that file.
0 Addresses Threats:

» This requirement makes it possible to verify whether an
update is the latest update. It can therefore be used to
counter the Freeze threat.

— End-Device Requirements
o An Uptane-compliant ECU shall be able to download and verify
Image metadata and image binaries before installing a new image
and MUST have a secure way of verifying the current time, or a
sufficiently recent attestation of the time.
o Addresses Threats:

» A consequence of other requirements, as such devices must
be able to run security code before installing downloaded
payload, and must check whether the payload is outdated.

Copyright © 2018-2022, SCRATCh 13

X ITEAZ
3. System Architecture

Before getting into the design proper, this document will elaborate upon the
discussion of push and pull architecture as an interesting aspect of the research.

3.1. Push and Pull
In order for updates to be applied automatically, there must be an automatic

initiative. Typically, this is push or pull: either the owner of the update pushes it
towards devices, or the devices pull new updates from a repository. This is a
choice with consequences, and there are arguments against both approaches.

Firstly, for a push approach, it must be possible to send a message to an end
device in order to get it to accept an update. If an end device is listening for such
a push, that is also a vulnerability, as an attacker will also be capable of triggering
or even providing updates through this channel. Secondly, this requires that the
end device is kept alive and listening, and may introduce an unwanted drain of
batteries or other resource. It is also very significant that, in order to be able to
push to an end device, that end device must be known. If an end device is not
known to the device manager, it will not receive updates, and if it is tampered
with, its changed behaviour will not be noticed during update attempts.

Conversely, in a pull approach, the initiative is the responsibility of the end
devices. This is a risk in and of itself. Typically, the end devices are much less
accessible and debuggable remotely than the device manager - which is the
reason to have this sort of system - and if an end device stops pulling updates for
any reason, this is harder to detect as well as to fix. Furthermore, this approach
takes a measure of control away from the device manager, which may have
implications for security and for safety. If an update must be rushed or delayed,
in a pull setup, the device manager can do nothing more than refuse pull
attempts. There is no way to spontaneously trigger an update, nor to change the
pull schedule without updating the end device.

There is somewhat of a third method, which is to set up a messaging service that
allows end devices to "subscribe" to update notifications. In terms of security
concerns, this is largely similar to a push setup, but it generally makes it easier
for attackers to perform a fake push.

Based on these considerations, the conclusion is drawn that push and pull are
optimal in different situations, depending on a weighing of security and safety
threats, and the required control over the update schedule. Therefore, the
update system should offer support for both approaches, and the user should
be able to make a selection.

Copyright © 2018-2022, SCRATCh 14

X ITEAZ
3.2. The Design

To reiterate, the goal is to design a system for firmware updates of multiple end
devices. The pain point is a lack of uniformity - the end devices may be from
different vendors, may receive updates via different channels, etcetera. The
system must use a metadata Manifest to secure the update chain from attacks.

The design is thus: an “Update Manager” must be set up on site, and connected
to end devices. It may be directly connected, or additional devices may be used
as bridges. This amount of centralisation is accepted in order to create an
overview of live firmware versions, which is considered an essential form of
monitoring that will help counter many threats.

In an analysis of the specific use case, security requirements from the Manifest
Requirements subsection will be selected to decide on the composition of the
metadata Manifest. Firmware updates will be supplied with such Manifests,
signed, and made available on an online repository.

The Update Manager will download firmware updates from the repository and
act as a midway point of trust. It should be properly provisioned for this purpose.
Provided that a downloaded update is verified by the Update Manager, it may be
applied to the applicable end devices, as identified by the metadata.

For each type of end device, an Update Driver must be implemented. This should
be a simple executable or process that can receive data through an internal
socket within the Update Manager, and proceed to provide the update to
connected, compatible end devices.

The Update Driver should use the same socket to report back to the Update
Manager about the success or failure of updating each individual connected end
device, and this information should be stored by the Update Manager.
Appropriate staff should be notified of any failed updates. Further notifications
should follow if end devices continue to go without (successful) updates for a
certain amount of time.

Copyright © 2018-2022, SCRATCh 15

@ a ITEAZ
4. Conclusion

After a lengthy research of the many threats involved in secure firmware
updating, and the possible ways to counter them using a firmware update
system with metadata manifests, a design for a generic solution has been
achieved. The nature of the field means that no single full implementation will
suffice for most use cases that exist, but the information gathered in this
document should prove instrumental in tackling this aspect of a project’'s Secure
DevOps.

Copyright © 2018-2022, SCRATCh 16

