

This document by the IML4E project (IML4E – 20219) is licensed under a Creative Commons

Attribution 4.0 International (CC BY 4.0).

Industrial Machine Learning for
Enterprises

Deliverable D2.2

First Version of Methods and Techniques for Data
Collection, Processing, and Valorisation

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 2 / 35

Project title: IML4E

Project number: 20219

Call identifier: ITEA AI 2020

Challenge: Safety & Security

Work package: WP2

Deliverable number: D2.2

Nature of deliverable: Report

Dissemination level: PU

Internal version number: 1.0

Contractual delivery date: 2022-05-31

Actual delivery date: 2022-05-31

Responsible partner: Software AG

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 3 / 35

Contributors

Editor(s) Mohamed Abdelaal (Software AG)

Contributor(s) Mohamed Abdelaal (Software AG), Timo Sinisalmi (Basware), Luca Szegletes
(BUTE), Dorian Knoblauch (Fraunhofer), Heikki Ihasalo (Granlund), Anna Korolyuk
(Granlund), Harry Souris (Silo AI), Kimmo Sääskilahti (Silo AI)

Quality assuror(s) Timo Sinisalmi (Basware), Janis Lapins (Spicetech)

Version history

Version Date Description

1.0 22-05-30 Version for publication

Abstract

The deliverable provides an overview of the research activities within IML4E WP2 after the first year of the

project. The deliverable covers the first version of methods and tools developed to realize the objectives of

the main three tasks in WP2, including data preparation automation (Task 2.1), data management and version

control (Task 2.2), and continuous data quality assurance (Task 2.3). The sections of the deliverable are

structured into four main themes. The first theme is an industry viewpoint discussion of existing approaches,

and a motivation for the work presented in this deliverable. The other three themes cover the research tasks

T2.1, T2.2, and T2.3, respectively.

Regarding data preparation automation, we introduce three different methods for automatically clean and

prepare different data models, including structured data and 2D images. For instance, we propose a meta

learning-based error detection method for structured data. Another contribution is a privacy-friendly

preparation workflow for 2D images processed by AI models. Moreover, we develop a novel ML-based data

cleaning method for tackling data with noisy labels. For data version control, we define a set of criteria and

characteristics which has to be considered while designing or comparing data version control solutions.

Moreover, we provide an outlook for reference implementations that we plan to build this year. Finally, we

provide a catalogue of data quality attributes which can be used to continuously monitor data quality

throughout the lifecycle of AI projects.

Keywords

Data preparation, data valorisation, anomaly detection, data version control, data quality assurance, ML
certification, quality metrics, data cleaning, data privacy

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 4 / 35

Executive Summary
The overall objective of IML4E WP2 is to develop tools and techniques to facilitate the collection, valorisation,
and processing of the data collected for machine learning applications. In other words, we strive to develop high
quality and interoperable data preparation infrastructures for trustworthy ML. To this end, we divide this main
objective into three tasks, involving (I) the development of a set of required technologies to accomplish the data
collection and data preparation in an automated way; (II) the development of a version control procedure and
system guaranteeing the versioning of data sets and intermediate files; and finally (III) the development of a
continuous data quality process and ensuring that data quality and quantity fulfil the requirements of its intended
use in operation, planning and training throughout all data sources that will be used within the ML project.

This deliverable reports on the WP2 results after the first year of the project. The WP2 research tasks that were
initiated at the beginning of the project, and that are covered by this deliverable, are (Task 2.1) data preparation
automation, and (Task 2.2) data management and version control solutions, and (Task 2.3) continuous Data
quality assurance. Before reporting on the current results of these tasks, we give in Section 2 an industry-
viewpoint discussion of existing approaches to motivate the work that is presented in the remainder of the
deliverable. The section complements the presentation of the state of the art in deliverable D2.1.

Section 3 to Section 6 cover the automation of data preparation techniques and tools. In particular, Section 3
introduces a new meta learning-based data cleaning method dedicated to structured data. The main contribution
of this work is to exploit already-existent knowledge in historical datasets to generate a set of features leveraged
to train an error detection model. Section 4 presents the specifications and criteria for developing data quality
dashboards for monitoring the building energy consumption data. Section 5 elaborates on our endeavours to
preserve the privacy of individuals while training AI models on digital images that include their faces. Section 6
discusses the development of an automated data cleaning method, referred to as Mosquito, which can efficiently
detect anomalies in the ground truth data using formal grammars and machine learning models.

Section 7 introduces our recent work toward standardizing the data quality solutions. Specifically, we introduce
a catalogue of data quality attributes which can be employed to automatically define the application-relevant
quality metrics. Section 8 discusses several criteria and characteristics while designing or comparing data version
control solutions. Afterwards, the section briefly presents three use cases that will be involved in the
development of a data version control. Such use cases comprise (I) human pose estimation from images and
versioning solution with DVC, (II) large-scale information extraction from PDFs, and (III) weather prediction.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 5 / 35

Table of contents

TABLE OF CONTENTS .. 5

1 INTRODUCTION ... 7

2 OVERVIEW OF INDUSTRIAL DATA QUALITY TOOLS .. 8

2.1 DATA QUALITY DASHBOARDS ... 8
2.1.1 Informatica ... 8
2.1.2 SAP Information Steward ... 8
2.1.3 Talend Data Catalog .. 9

2.2 DATA CLEANING PLATFORMS FOR STRUCTURED DATA ... 10
2.2.1 OpenRefine ... 11
2.2.2 Trifacta Wrangler .. 11
2.2.3 Tamr .. 11

2.3 DATA VERSION CONTROL SOLUTIONS ... 11
2.3.1 DVC ... 12
2.3.2 lakeFS .. 12
2.3.3 Pachyderm .. 13
2.3.4 Dolt ... 13
2.3.5 Delta Lake ... 14
2.3.6 Feast .. 14

2.4 DISCUSSION ... 15

3 META LEARNING-BASED ERROR DETECTION FOR STRUCTURED DATA .. 16

3.1 ML-BASED ERROR DETECTION .. 16
3.2 META LEARNING-BASED FEATURE EXTRACTION ... 17
3.3 CONCLUSION AND ONGOING WORK .. 18

4 DATA QUALITY DASHBOARD .. 19

4.1 QUALITY AND SUITABILITY OF ENERGY DATA.. 19
4.2 METHODS FOR QUALITY AND SUITABILITY DETECTION ... 19
4.3 DASHBOARD FOR ENERGY DATA PROFILING... 20

5 PRIVACY-FRIENDLY IMAGE PREPARATION FOR AI PIPELINES .. 21

5.1 PROBLEM DEFINITION ... 21
5.2 FACE ANONYMIZATION TECHNIQUES .. 21
5.3 PRELIMINARY RESULTS .. 22

6 MOSQUITO DATA CLEANER FOR UNSTRUCTURED DATA .. 24

6.1 PROBLEM STATEMENT ... 24
6.2 GENERAL SOLUTION .. 24
6.3 WORK PLAN WITHIN WP2 ... 25

7 CATALOGUE OF QUALITY ATTRIBUTES .. 29

7.1 MEASUREMENTS .. 29
7.2 MAPPING OF RAW DATA TO MEASUREMENT INPUTS .. 30

8 DATA VERSION CONTROL: CRITERIA AND USE CASES ... 31

8.1 DATA VERSIONING USE CASE CHARACTERISTICS ... 31
8.2 LIST OF SELECTED USE CASES .. 32

8.2.1 Human Pose Estimation from Images and Versioning Solution with DVC 32
8.2.2 Large-Scale Information Extraction from PDFs .. 32
8.2.3 Weather Prediction .. 33

9 SUMMARY... 34

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 6 / 35

REFERENCES ... 35

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 7 / 35

1 Introduction
A main objective of IML4E WP2 is to develop techniques and tools for the automation of data preparation and
data version control in machine learning pipelines. To fulfil this objective, we are conducting R&D activities in
two main directions. First, we are developing techniques and tools for automated data profiling, data cleaning,
and continuous quality assurance. In this context, we are eager to develop a unified data preparation
infrastructure which can seamlessly deal with different data modalities, including structured data, e.g., sensor
readings, financial records, medical reports, as well as unstructured data, such as digital images, videos, and log
files. Moreover, we focus on developing tools and techniques to enable easy interaction between users and the
data quality methods. This goal can be achieved through developing a novel data quality dashboard which can
clearly visualize the various data quality problems, propose curation techniques, and enable users to monitor
and to make decisions to solve the data quality problems. We envision the data quality dashboard to employ
advanced data profiling, error detection, and error repair methods. This deliverable provides an overview of the
work done to realize such tools and techniques with highlighting some obtained results.

The second task of WP2 is to develop a novel data version control systems which fits well with the requirements
of industrial applications. The main contribution of this line of research is to develop a solution which can deal
with data coming from different sources with distinct sizes. To this end, we need to enhance the flexibility of the
planned solution to adaptively react to the application’s requirements. The deliverable presents a set of
characteristics which we shall be considered while designing or comparing various data version control solutions.

The main IML4E research questions that we tackle in WP2 are the following:

• To what extent we can automate the task of detecting errors in structured and unstructured data?

• What are the most relevant quality metrics necessary to ensure continuous quality assurance and how
to efficiently and precisely measure these quality metrics?

• How to improve the modularity and reuse of development and data artefacts, datasets and metadata
that may serve the training of models in different application contexts, throughout the development
process?

• How to enable flexible data versioning and traceability of development and data artefacts (data sets,
models, parameters, test results) during data preparation, training, and operations?

The results presented in this deliverable investigate all these research questions. The deliverable is structured
into three main themes, namely an industry-viewpoint discussion of existing approaches, techniques for data
quality and dashboards, and techniques for data version control. In particular, Section 2 gives a motivation of the
WP2 work from an industrial perspective by reviewing existing methods, thereby addressing the first theme. The
section complements the overview of the state of the art presented in deliverable D2.1. The second theme is
addressed in the subsequent four sections. In Section 3, we elaborate on a novel error detection method which
makes use of the knowledge embedded in historical data to determine the indices of the dirty data. To this end,
it trains a set of base classifiers and a meta classifier which can differentiate between clean and dirty data. Section
4 introduces several requirements and criteria for developing an interactive data quality dashboard. Section 5
elaborates on our privacy-friendly data preparation method dedicated to digital images. Along a similar line,
Section 6 presents several generations of the Mosquito data cleaning method which tackles the mislabelling
problems while dealing with unstructured data such as PDFs, images, and log files. Section 7 provides definition
of some important quality metrics for the sake of enabling the automation of continuous quality assurance.
Moreover, the section provides means for properly measure such quality metrics. The third theme is addressed
in Section 8 which provides a set of characteristics and question need to be addressed while designing a data
version control solution suitable for a certain application.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 8 / 35

2 Overview of Industrial Data Quality Tools
In this section, we provide an industry-viewpoint discussion of existing data quality tools to motivate the work
that is presented in the remained of the deliverable. The section complements the presentation of the state of
the art in deliverable D2.1.

2.1 Data Quality Dashboards

A dashboard is typically used to provide a summary and at-a-glance view of relevant information. Various data
visualization methods, such as graphs, colours, and metrics, are utilized in highlighting the most important
information. One often used method is key performance indicator (KPI) which presents performance against a
target, for example in a percentage value. This section presents features of dashboards in three data quality
tools, Informatica, SAP Information Steward and Talend Data Catalog. All the tools are positioned as leaders in
Gartner® Magic Quadrant™ in year 2021.

2.1.1 Informatica

Informatica Cloud Data Profiling service focuses on creation of data profiling tasks and monitoring of data quality.
The tool provides following statistics of the data:

• Number of distinct, non-distinct, and null values

• Percentage of distinct, non-distinct, null, zero, and blank values

• Documented and inferred data types

• Number of patterns

• Percentage of top pattern

• Maximum and minimum length of values

• Maximum and minimum values

• Average, sum, and standard deviation for numeric data types

• Value frequencies

• Outliers

The statistics are shown in a summary view (cf. Figure 1) and the results can be sorted by columns. In addition to
the summary view, the tool user can drill down to see more detailed results, view historical results, run queries
to view rows that have data quality issues and compare multiple columns. With Informatica it is also possible to
add rules to the profile. There exist ready-made rules, for example replacing incorrect values or removing
unwanted values, as well as possibility to create own rules.

2.1.2 SAP Information Steward

SAP Information Steward tool gives statistical analysis of data. It shows the following information on data quality:

• Value; min, max, average, and median value of column

• String length; min, max, average, and median value of column

• Completeness; percentage of nulls, percentage of blanks, percentage of zeros

• Distribution; value - distribution of records, pattern - number of patterns, word - usage of words

An example of SAP Information Steward data profiling is shown in Figure 2. Similar to Informatica, SAP
Information Steward allows to profile data against rules. The tool provides library of rules, but users can also
create custom rules by themselves (figure 3). Rule results are shown as score from 0 to 10 describing how much
of the data passes the rule.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 9 / 35

Figure 1. Informatica summary view (Informatica 2021)

Figure 2. SAP Information Steward data profiling statistics (Pinjwani 2021)

Figure 3. Creating data quality rule in SAP Information Steward (Lintelman 2020)

2.1.3 Talend Data Catalog

Talend Data Catalog reports and dashboards enable easy view of data quality trends and possible quality issues.
With the tool, it is possible to make custom quality dashboards as shown in Figure 4.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 10 / 35

Figure 4. Talend data quality dashboard (Talend Team)

The tool can display the following data profiling details:

• Count, number of rows actually profiled

• Distinct, non-distinct=total-distinct-empty

• Duplicate, duplicate rows in database or in files.

• Valid, valid rows in database or in files.

• Empty, null rows in database or empty rows in files.

• Invalid, invalid rows in database or in files

• Average length, average length of values.

• Min length, minimum length of values.

• Max length, maximum length of values.

• Frequency, distribution of values and their frequency as a percentage

• Patterns, list of different patterns of data presentation discovered in the source and their frequency as
a percentage (Talend)

2.2 Data Cleaning Platforms for Structured Data

In this section, we highlight a set of commercial data quality tools which can strengthen the quality, applicability,
and value of the collected data. The selected list represents the most popular and top-rated data quality tools.
Most of these tools are included in Gartner magic quadratic reports for data quality solutions1. The list comprises
the following tools: OpenRefine, Trifacta, and Tamr. It is worthwhile mentioning that there exist several other
tools, such as DataCleaner, TIBCO Clarity, Winpure, Cloudingo, Melissa Clean Suite, and IBM Infosphere Quality
Stage. However, we have not considered them in this deliverable to make it more concise and to focus on the
tools which highly related to our planned contributions.

1 https://www.gartner.com/en/documents/3988016

https://www.gartner.com/en/documents/3988016

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 11 / 35

2.2.1 OpenRefine

It was developed by Google as an open-source data tool which enables users to transform data between different
formats and clean them from different data problems2. Data exploration is performed through two operations,
namely faceting and filtering. In the former operation, OpenRefine generates a widget, for each column, that
displays all the distinct values in the column and their number of occurrences. Moreover, OpenRefine enables
users to define expressions, e.g., the values in a column should be greater than a threshold, on multiple columns
for faceting. In this case, OpenRefine generates the widget based on the values of the expression. In the latter
operation, users can select one or more values in the widget, before filtering the rows that do not contain the
selected values.

Aside from data exploration, OpenRefine also enables data cleaning via an editing operation. Specifically, users
can either edit one cell at a time or edit a group of cells at a time via modifying the corresponding text facet. For
instance, if the widget displays two facets “USA” and “US”, then modifying one of them will propagate the
modification to all cells of this facet. It is worthwhile mentioning that OpenRefine enables working with the data
on local machines. Accordingly, it can be used to clean confidential data without worrying about data privacy.
However, it assumes that users have a relatively high level of technical know-how.

2.2.2 Trifacta Wrangler

Trifacta offers users a variety of self-service data operations, such as data discovery, cleaning, enriching, and
validating3. Such a tool can transform structured or unstructured datasets stored in CSV, JSON, relational table
formats, or SaaS application data of any size. For structured data, Trifacta can automatically detect schemas, data
types, possible joins, and anomalies such as missing values, outliers, and duplicates. Moreover, it uses a
proprietary inference algorithm to interpret the data transformation intent of a user’s data selection. Users can
define data quality rules to monitor the accuracy, completeness, consistency, validity, and uniqueness of the
data. It is worthwhile mentioning that Trifacta leverages Google Cloud processing engine to accelerate the data
transformation process. However, it can be slow while uploading the data and preprocessing them. A major
drawback of Trifacta is lacking connectors to data sources such as Google Analytics which implies that data
extraction process often needs to be handled externally. Moreover, the free version is relatively limited, and it is
not feasible to try the full version before buying it.

2.2.3 Tamr

It is a tool developed by Tamr Inc., a startup focusing on large-scale data integration and cleaning4. Such a tool
tackles problems such as duplicate records, entity consolidation, and data integration. For instance, Tamr
performs entity consolidation when multiple records have data for the same entity. Specifically, Tamr employs a
continuous data cleaning process, where users are involved in the process to carry out several tasks, including:
(I) assessing the quality of analytics and translate user feedback into feedback on the underlying data sources;
(II) generating training data for the back-end machine learning models, (e.g., de-duplication models); and (III)
administrating the repairing actions on the underlying data sources given the feedback on analytics and the
learned models. Such user involvement usually comes at a price where the tool requires skilled users to interact
with the Tamr APIs efficiently and properly.

2.3 Data Version Control Solutions

In this section, we give an overview of selected data version control solutions. The tools selected here have been
chosen based on their perceived adoption and to select tools covering multiple scales and diverse use cases,
ranging from small-scale projects with structured data to large-scale projects with unstructured data. The tools
selected for this overview, include DVC, LakeFS, Pachyderm, Dolt, Delta Lake, and Feast.

2 https://openrefine.org
3 https://www.trifacta.com/
4 https://www.tamr.com/

https://openrefine.org/
https://www.trifacta.com/
https://www.tamr.com/

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 12 / 35

In general, metadata stores, such as MLFlow and Neptune, are commonly used together with data version control
tools. During the experiment run, data version information is logged to the metadata store. Metadata stores can
also be used for data versioning by, for example, logging dataset snapshots as training artifacts. These
approaches are not discussed here. Finally, MLOps platforms provided by cloud vendors such as Amazon
SageMaker, Google Cloud Vertex AI and Azure ML provide their own solutions for data lineage tracking. These
solutions are not discussed here but should be considered when using such platforms.

2.3.1 DVC

DVC is an open-source tool5, developed by iterative.ai, that tracks datasets and machine learning projects, works
with many types of storages (Amazon S3, Azure Blob Storage, Google Drive, Google Cloud Storage, local, HDFS,
HTTP, network attached storage, etc.), and runs on top of Git repositories. It also supports building and running
pipelines. DVC brings agility, reproducibility, and collaboration into existing data science workflows. It makes
projects reproducible and shareable.

If we look at similar data versioning solutions, like Git and Git-LFS (Git large file storage), they can be challenging
to use, as Git itself is not suitable for big files (100 MB is the maximum size that can be uploaded and tracked),
and even Git-LFS has a file size limit of 5GB. These constraints cannot be met in typical machine learning or data
engineering projects, where data can be multiple times the maximum size supported by these systems. DVC also
uses reflinks or hardlinks to avoid copy operations on checkouts, thus handling large data files much more
efficiently. The way that DVC is handling data versioning tasks, is by looking at the data, and creating a small
metadata file, that will be versioned by Git. This file contains information about the dataset, so it can be tracked.
In the meantime, DVC automatically adds the data itself to the repository’s .gitignore file, therefore it will never
be pushed to remote, instead it will be pushed to the storage you specify. Changes to the data result in changes
to the metadata file created by DVC and tracked by Git.

In addition, DVC supports the creation of data pipelines, series of data processes that produce a final result, like
ETL workflows or machine learning pipelines. These pipelines can also be versioned by Git, therefore allowing
the reproducibility of the workflow later. Tracking metrics, updating parameters, and visualizing performance
are also easy with DVC. All these tasks can be combined into experiments which can then be compared, making
it very easy to experiment with different ML model parametrization for example. DVC Studio, a product also
made by iterative.ai, is an official online platform for DVC. It can be used to visualize and share results,
experiments, and pipelines6. DVC can be used as a command line tool or by using its Python API7. The command
line tool uses similar commands to Git, so people familiar with Git commands will not have any difficulties
learning DVC commands. Furthermore, many easy-to-follow tutorials are available on their website8.

2.3.2 lakeFS

LakeFS is an open-source project used to implement versioned data lakes. The documentation describes the tool
as a “project that provides a git-like version control interface for data lakes, with seamless integration to most
data tools and frameworks.” The tool enables data reproducibility, rollback, and automated data quality
validation. The tool can be tried out in the playground environment without installing the tool9. An interactive
tutorial on Katacoda is also available10. lakeFS deployment includes a central data management server. The server
provides a web UI for managing and browsing the data. The command-line tool lakectl can be used to manage

5 https://github.com/iterative/dvc
6 https://studio.iterative.ai
7 https://dvc.org/doc/api-reference
8 https://dvc.org/doc/start
9 https://demo.lakefs.io/
10 https://docs.lakefs.io/quickstart/

https://github.com/iterative/dvc
https://studio.iterative.ai/
https://dvc.org/doc/api-reference
https://dvc.org/doc/start
https://demo.lakefs.io/
https://docs.lakefs.io/quickstart/

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 13 / 35

resources from the command-line. There are multiple integrations available11 to access data from, for example,
Python, Spark, or Kubeflow Pipelines components.

lakeFS uses an object storage as the underlying object storage, typically a cloud provider’s object storage. lakeFS
uses a PostgreSQL database to synchronize actions on repositories. In production environments in the cloud,
using a managed SQL database is recommended. lakeFS server API is compatible with the S3 object storage API.
Therefore, any tool that can read data from S3, can also read from lakeFS. The S3 data path such as s3://data-
bucket/collections/foo only needs to be supplemented with the branch name, resulting in path names

such as s3://data-bucket/main/collections/foo.

lakeFS manages data in Git-like manner in repositories and branches. Developers can checkout data from
branches created by others or create new branches for their experiments. New data is committed atomically to
prevent inconsistent data views. Users can add data to a branch in a repository with lakectl, through the web UI
or with tools such as aws s3. After data is added, it is atomically committed to the branch with a commit

message. Committed data can be accessed either via the S3-compatible API, with lakectl, or one of the
available integrations.

2.3.3 Pachyderm

Pachyderm provides a solution for data versioning and pipelines in MLOps. Pachyderm is not fully open-source
but “source-available”, limiting the use for purposes that would compete with Pachyderm12. Users can choose
between the Community Edition, Enterprise Edition and Pachyderm Hub. The free Community Edition is a limited
version of the Enterprise Edition. Pachyderm Hub is a fully managed service. Pachyderm is deployed as a Helm
application on Kubernetes. For data storage, PostgreSQL database and object storage are required. In cloud
environments, using the cloud provider’s object storage and managed SQL is recommended.

Data in Pachyderm is organized in a Git-like structure that enables team collaboration through repositories,
branches, commits, and rollbacks. Typically, each dataset is its own repository. A commit is an immutable
snapshot of data corresponding to a change in source data or transformations. Branch in Pachyderm points to
the state of its repository at a particular commit, updating as new data is added, and tells Pachyderm what input
the branch depends on. Files are the actual data in the repository. Files can be any type and size. Data is stored
in Pachyderm as native objects, not metadata pointers like in many data versioning tools. This ensures strong
data versioning guarantees. This kind of file-based versioning provides, for example, a complete audit trail for all
data and artifacts across pipeline stages, including intermediate results.

Pachyderm Pipeline System can be used to perform transformations on the versioned data. User defines a
pipeline specification and creates a pipeline that waits for certain conditions to be met, for example, for new
data being added to any repositories. When new data arrives, a pipeline performs an operation and processes
the data. The command-line tool pachctl can be used for interacting with the Pachyderm cluster. The tool is used
to manage repositories, branches, and files. The typical developer workflow involves “adding data to versioned
data repositories, creating pipelines to read from those repositories, executing the pipeline's code, and writing
the pipeline's output to other data repositories''. Pachyderm handles the code execution according to the
pipeline specification. Data in Pachyderm is automatically mounted to the pipeline containers. Data can be
accessed and exported using pachctl, writing data to an external datastore as a pipeline step, or mounting the
repository to a local computer.

2.3.4 Dolt

Dolt is an SQL database that one can fork, clone, branch, merge, push and pull just like a Git repository. Dolt
tracks every change made to the data in the database: who made it, what the commit message was, and what
the previous values were. This makes Dolt a good fit for data provenance and auditing use-cases. In Dolt, data

11 https://docs.lakefs.io/integrations/
12 https://www.pachyderm.com/community-license-faq/

https://docs.lakefs.io/integrations/

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 14 / 35

snapshots are automatic. Every commit is a snapshot to which users can time-travel for backup, disaster
recovery, or reproducibility. Dolt also gives tools for viewing the difference between two versions. Users can
update the data located in a Dolt database in a separate branch. Once the user is happy with the changes, they
can merge the changes to the main branch or submit the change for peer review. This workflow ensures that
data is updated in as controlled manner as code. Dolt databases including schemas and views are also easy to
share with other teams.

One use-case for Dolt is to completely replace PostgreSQL or MySQL database backing an application. This is
especially useful in cases when the application uses the database in read-only mode and data is added to the
database in well-defined batches on some regular schedule. Dolt’s branching and commit features ensure that
data is added in a controlled manner. The trade-off is that Dolt is 2-20 times slower than SQL13. Data in Dolt is
managed in repositories similar to Git repositories. A Dolt repository has a “.dolt” folder (again similar to “.git”
folder), containing the state and history of the database. Dolt’s storage engine implementation is based on Noms
project (link) and data structures called Prolly trees14. Dolt repositories can be hosted either on DoltHub, local
filesystem or on cloud object storage systems such as Google Cloud Storage and Amazon S3.

Dolt is used through a command-line interface “dolt”. The dolt CLI has the same commands as Git and some extra
commands. The CLI can be used to, for example, add and commit data to a Dolt repository, run SQL queries
against tables in the repository and to start a MySQL-compatible server that can be queried with MySQL clients.
In addition to the dolt CLI, Dolt can also be used via the Python library “doltpy”. The library is a wrapper around
the dolt CLI and can be used, for example, to connect to and interact with an existing repository. In this way,
users can write and read data in any branch in the repository.

2.3.5 Delta Lake

Delta Lake is an open-source storage layer for data lakes. It uses Spark’s distributed processing power to handle
versioning metadata for billions of files. Delta Lake adds ACID transactions (atomicity, consistency, isolation and
durability) to the data lake, allowing row-level inserts, updates and deletes. This ensures that data readers never
see inconsistent data. Delta Lake can also enforce schema integrity on writes to ensure data integrity. Delta Lake
stores data into so-called Delta tables. Under the hood, a Delta table consists of files (written in open Parquet
file format) and a transaction log. The files are stored to a configurable storage location such as Amazon S3, Azure
Blob Storage, Google Cloud Storage, or HDFS15. Transaction log keeps track of all the commits made to the table
to provide ACID transactions. Table metadata can also be written to a Hive metastore.

Delta Lake provides unified batch and stream processing by Apache Spark Streaming integration. Delta table is
both a batch table as well as a streaming data source and sink. Delta Lake provides very powerful time travel
capabilities powered by the transaction log. Old snapshots of a Delta table can be queried either by version
number or timestamp. By default, the retention period is 30 days. Delta Lake does not contain any server
component itself, but it does require Apache Spark, typically run in a separate cluster. Delta tables can be queried
and manipulated with Apache Spark’s reader and writer APIs, using SQL, Scala, or Python16. Delta tables can also
be queried by external query engines such as Presto or Trino. Delta Lake also has integrations to data processing
engines such as Apache Flink and Apache Kafka, allowing reading and writing data from various external sources.

2.3.6 Feast

Feast is an open-source feature store. The project was originally developed by Gojek with Google Cloud. Today,
the primary contributor to the project is Tecton, who also offers a fully managed feature store named Tecton
built on top of Feast. Feature stores are in a good position to work as data versioning tools, because data is
accessed and made available to training through them. Feast version 0.18 added experimental support for Saved
Datasets, which allow training dataset snapshots to be persisted for later retrieval. The main use case of Saved

13 https://docs.dolthub.com/reference/sql/latency#benchmark-data
14 https://docs.dolthub.com/architecture/storage-engine
15 https://docs.delta.io/latest/delta-storage.html
16 https://pages.databricks.com/rs/094-YMS-629/images/Delta%20Lake%20Cheat%20Sheet.pdf

https://docs.dolthub.com/reference/sql/latency#benchmark-data
https://docs.dolthub.com/architecture/storage-engine
https://docs.delta.io/latest/delta-storage.html
https://pages.databricks.com/rs/094-YMS-629/images/Delta%20Lake%20Cheat%20Sheet.pdf

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 15 / 35

Datasets was to provide reference datasets for validating new training and serving data, but the snapshots can
also be used for data versioning.

Feast version 0.9 and earlier was based on a complex infrastructure stack, including Kubernetes and Apache
Spark. In version 0.10, the project was re-written to become SDK/CLI centric software that can deploy or
configure infrastructure. Feast is installed with pip, the package installer for Python. The configuration for a Feast
project is stored in a central location called a feature repository. It is the declarative source of truth for the
desired state of the feature store. Users interact with the repository using the Feast CLI and the Feast Python
library.

Feast uses a file-based feature registry as a central catalogue of all feature definitions and their related metadata.
This registry is stored in an object store such as Google Cloud Storage or Amazon S3. For serving historical
features, Feast requires an offline store used as a storage and compute system. Typical choices for an offline
store include data warehouses such as Google Cloud BigQuery, Amazon Redshift and Snowflake. Note that it is
not possible to query any type of data sources from all offline stores: for example, when BigQuery is used as an
offline store, it is typical to query features from another table in BigQuery. For serving online features, Feast
requires an online store that’s optimized for low-latency access. Values are periodically materialized from an
offline store to online store. Typical choices for an online store include Redis, Google Cloud Datastore and
Amazon DynamoDB. See the figure below for detailed architecture of Feast.

2.4 Discussion

As one can see in the sections above, there exist several tools and techniques for data quality and data version
control. However, such tools and techniques do not fit well with the requirements and specifications described
in the proposal of IML4E. For instance, the reported data cleaning tools are partially automated, which implies
that users have to be involved in the process and in case of lack of skilled users, the quality of such tools are
negatively affected. It is important to mention that none of the methods described below consider the
requirements of downstream applications, e.g., ML modelling. They simply tend to cure the data quality
problems regardless of how these data will be consumed.

Similarly, the reported data version control solutions exhibit useful features for specific sector of applications.
However, they lack the enough flexibility to deal with different problems which involve fluctuating requirements.
Some industrial applications may change their requirements and demands according to the workload or the level
of available skilled workers. In this case, the data management solutions have to dynamically react to these
changes seamlessly. Moreover, the current solutions may face challenges while dealing with different data
modalities. Therefore, we envision designing and developing a novel solution which can efficiently overcome
these challenges.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 16 / 35

3 Meta Learning-Based Error Detection for Structured Data
In this section, we address the challenge of automatically detecting discrepancies and noise in structured data.
In general, structured data are those data originated from sensors, IoT devices, medical records, financial reports,
etc. They are typically stored in relational databases which simplify various data operations, such as data search,
update, and analysis. In fact, real structured data, generated from real-world applications, usually suffer from
different types of discrepancies, which hinder the utilization of such data in AI applications. For instance, the data
collected manually in a certain application, e.g., customers and purchase records, may suffer from missing values
due to lack of information or due to data entry errors. Along a similar line, data duplicates may occur due to
improper join operations. Examples of other types of discrepancies comprise outliers, rule/pattern violation,
mislabelling, inconsistencies, and typos. Moreover, structured data may suffer from white noise emerged from
noisy contamination and interference of the communication channels.

3.1 ML-based Error Detection

In this work, we tackle such problems through automatically identifying the contaminated records in structured
data. To this end, we lean on semi-supervised Machine Learning models to differentiate between clean and
contaminated records. Figure 5 depicts the different processes necessary to formulate the error detection task
as a binary classification problem. At the outset, each data cell is used as an input to an automatic featurization
module. The purpose of such a module is to extract a set of features which can be utilized to train a detection
model. Examples of such features include metadata, statistical conclusions, word embeddings, and/or results of
simple error detection methods. A subset of these features is typically selected to be labelled by an oracle who
assigns a label of one to contaminated records and zero to clean records. Afterward, a detection classifier, e.g.,
random forest, XGBoost, or multi-layer perceptron classifier, is trained on the labelled records. To detect the
contaminated records in the unlabelled data, the detection classifier is employed to predict the label of each
unlabelled feature vector. Moreover, such a detection classifier can be later used to detect errors in the newly
arrived serving data.

Figure 5. Error detection formulation as a binary classification problem

Despite being effective in detecting different error types which might occur at the same time in a dataset, the
aforementioned ML-based error detection still suffers from several drawbacks. First, the task of feature
extraction is computationally intensive where multiple values are to be computed for each cell in the dataset.
The results of our experiments showed that such an error detection method is hardly applicable with relatively
large datasets. Second, the error detection method cannot exploit design-time knowledge or historical artefacts.
The main intuition was to develop a configuration-free error detection method. However, being completely
independent of external resources prevent the method from exploiting existing knowledge which might boost
the detection performance. Third, the ML-based error detection method does not recognize the error types,
where the output is a binary decision for each cell of being contaminated or clean. Finally, its performance is
highly dependent on the labelling budget. If the budget is limited or if no data experts exist, the ML-based error
detection method performs poorly. To tackle such drawbacks, more research efforts are to be exerted and to
make the ML-based error detection methods suitable in a wide range of AI applications.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 17 / 35

3.2 Meta Learning-Based Feature Extraction

In this section, we introduce a novel ML-based error detection method which overcomes the first two drawbacks.
In other words, the proposed method makes use of the concepts of meta learning to exploit the historical
knowledge and to provide a knob for controlling the execution time of the error detection task. The core idea is
to exploit the knowledge embedded in the historical datasets and use this knowledge while training the detection
classifier. Before delving into the details of the proposed method, it is necessary to introduce the concepts behind
meta learning. Generally, meta learning is used to learn new concepts and skills fast with few training examples.
To this end, meta learning methods exploit pre-trained models that have been used for prior tasks to achieve
higher model prediction accuracy, a faster and cheaper training process, and build more generalized models
Figure 6 demonstrates the different meta learning processes. Initially, a set of base classifiers are usually trained
exploiting training sets collected from prior tasks, where the sets share the same schema. For a new unseen task
with few training examples, the base classifiers can generate a rich feature vector, referred to as the meta
features. To generate predictions in the new task, the meta features are exploited for training the so-called meta-
classifier. Accordingly, the knowledge embedded in the base classifiers can be transferred to the meta classifiers
through the generated meta features.

Figure 6. Basic idea behind meta learning

In fact, the utilization of meta learning to generate features for the detection classifiers is motivated by the fact
that historical datasets typically share properties with new datasets within a certain application. This means that
the knowledge of dirtiness profiles in historical datasets can be exploited to detect errors in similar new datasets.
As an example, imagine a smart factory which includes several machines producing a certain product. The
machines are embedded with a set of sensors to track the health of the machines and to predict the maintenance
needs. The data extracted from these sensors can be contaminated due to sensors defect or noisy
communication channels. In this case, the sensory data are to be cleaned by a team of data experts. The
knowledge of such experts will be embedded in the datasets. Accordingly, such knowledge can be extracted and
used for cleaning newly generated data within the factory. Moreover, if the owners of such a factory decided to
establish a new branch which also comprises the same machines. Then, the data generated in the new branch
will be mostly similar to the data in the original factory. In this scenario, the proposed meta learning approach
can be easily applied to detect errors in the newly collected data. Figure 7 illustrates the architecture of the meta
learning-based method for detecting errors using features generated using a set of historical datasets. A meta
learning module takes as inputs the historical datasets and the dirty dataset. The module begins with training a
set of base classifiers on the historical datasets, before using these classifiers to generate the meta features.
After generating the meta features, a meta classifier is to be trained on a set of labelled features. To implement
the meta-learning module, it is necessary to identify a subset of the historical datasets which highly correlate
with the dirty dataset. This step is required to exclude irrelevant data from being used to generate meta features.
To control the execution time of the proposed method, we can simply adjust the number of base classifiers used
to generate the meta features.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 18 / 35

Figure 7. Architecture of meta learning-based error detection method

3.3 Conclusion and Ongoing Work

In WP2, we focus on the development of a unified framework for data processing and valorisation. One of the
main problems, tackled by WP2, is to automatically clean the collected data before being used for training and
serving. To this end, we introduced in this section a novel semi-supervised method for detecting errors in
structured data. To consider the historical artefacts, the proposed method leans on the concepts of meta learning
to transfer knowledge from the historical datasets to the dirty data. The proposed method has been evaluated
with several real datasets and the results showed that the proposed method outperforms a set of baselines if
the new data is similar to the historical datasets. We are currently working on the following extensions to further
improve the performance in terms of the detection accuracy and runtime.

• Adopt a multioutput classifier to recognize the error type, e.g., outlier, rule violation, missing value,
etc.

• Employ a data augmentation method to improve base classifiers in case of datasets with low error
rates.

• Develop a data valorisation method to intelligently decide when and how to clean the collected data
The proposed methods will serve as the backbone of the unified framework for data processing and valorisation,
as planned in WP2. Moreover, the proposed methods in this section will be closely aligned with the techniques
and tools developed in WP3.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 19 / 35

4 Data Quality Dashboard
This section describes the development work within data quality dashboards. In Section 2, we gave an overview
to leading data quality dashboards in the market. The tools provide basic statistical information about the data
quality, such as number of distinct, non-distinct and null values. In addition to statistics, tool users can create
rules to find possible quality issues. As there already exists tools for basic statistical analysis, the development in
this project concentrates on more advanced data profiling methods. The use case for development work is
building energy consumption prediction. The following sections present typical data quality and profiling issues
in this field, methods that can be used to resolve the issues and ways of visualizing the results in a dashboard.

4.1 Quality and Suitability of Energy Data

Typical data quality problems with energy meters are related to missing values and abnormal values. For missing
values existing commercial tools provide solutions, but for abnormal values more advanced methods are needed.
Abnormal values can be meter jams to certain consumption level or changes in a typical energy consumption
level. To detect these problems, energy meter figures can be compared with historical values. In addition to
assuring the quality of the data, there is a need to verify the suitability of data for energy prediction. Predictability
is improved if there are no changes in the consumption pattern and the correlation between outside
temperature, day of the week and consumption is similar during the analysed time period. Therefore,
observation of changes in consumption patterns and correlations is vital.

4.2 Methods for Quality and Suitability Detection

Throughout the IML4E project, several different methods will be tested and evaluated to detect energy data
quality issues and suitability for energy prediction. One of the tested methods will be ARIMA, that is used for
predicting time series data. Figure 8 shows an illustration of ARIMA prediction. Knowing historical data, it is
possible to predict the range (not exact values) in the near future – and thus detect if consumption falls into this
range. This method is good, for example, for detecting outliers. The strength of the method is that it is able to
catch seasonality, thus cyclic nature of consumption (hours of the day, day of the week, season of the year).

Figure 8. Forecasting using ARIMA (Pabba 2017)

Another method that will be tested is clustering (cf. Figure 9). We can create multidimensional vectors from data
table - one row is one point and numbers of columns is number of dimensions. Then in the multidimensional
space using for example principal component analysis (PCA), we can cluster those points into groups. If there is
outlier, we can detect it and viewer of the dashboard can investigate it further. Unlike time series method, here
we see each point (i.e., each row) independently. This approach may have pros and cons compared to
ARIMA/time series methods, so we need to investigate which methods fits better for which task.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 20 / 35

Figure 9. Clustering data (Kaur et al. 2011)

4.3 Dashboard for Energy Data Profiling

After finding suitable methods for quality and suitability detection, the results of the methods are developed into
KPIs (e.g., percentage of abnormal values) and visualized in a dashboard. Several visualization techniques are
examined to support the quality problem detection and root cause analysis. For example, more detailed
information of results will be shown to enable deeper analysis of the reasons behind quality deviations. The
dashboard is going to developed together with the end users of the tool so that it is interactive enough to support
their work in the best possible way.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 21 / 35

5 Privacy-Friendly Image Preparation for AI Pipelines

5.1 Problem Definition

In this section, we elaborate on a data preparation process dedicated to 2D images. In this context, we at the
Budapest University of Technology and Economics (BUTE), jointly with use case partners from Vitarex Stúdió,
develop a processing workflow for images which involves facial anonymization to offer a privacy-friendly AI
model generation process. It is necessary to mention that the developed method is planned to be adopted to
the pose estimation use case. In general, human 2D pose estimation is a challenging problem in computer vision,
and it has a wide variety of applications. Pose estimation is usually employed in augmented reality, robotics, and
health care. In pose estimation, a person's movements are tracked by finding the location of a set of selected
keypoints. However, many of these keypoints can be found on the person's face, which is a very privacy-sensitive
area. Unfortunately, these facial keypoints have great information value for further applications mentioned
before. Therefore, they are needed to be recognized for an accurate pose estimation and are not negligible.

With the rising importance of data protection and individual privacy, face anonymization has drawn increased
attention from the research community in recent years. Since the introduction of the General Data Protection
Regulation (GDPR) by the European Union in early 2018, privacy protection became an indispensable task of
research fields, institutions and companies using personal data. GDPR requires regular personal consent from
individuals for using their privacy-sensitive data, thereby making it difficult to work with these types of resources.
However, the regulation leaves space for non-consensual use of these images if the individual is unrecognizable.

5.2 Face Anonymization Techniques

Generally, face anonymization is a computer vision technique where facial information is removed from digital
images and videos. In this case, a problem arises when these anonymized images are used as the input to further
machine learning algorithms, such as the case of pose estimation. We lose crucial information from our data
stream by applying anonymization methods as pre-processing. It is important to find the right method of
anonymization, where the data stays private while preventing the machine learning algorithm from being
corrupted. In this project, we examined four state-of-the-art anonymization techniques, namely: blacked out,
blurred, pixelated and DeepPrivacy (Hukkelås, Mester and Lindseth, 2022). Figure 10 depicts an example to
compare between the four different anonymization methods. As the figure demonstrates, the blacked out
pictures are generated through filling the bounding box, containing the face, with random black and white pixels.
For the blurred version, the face is blurred with a 3x3 kernel Gaussian Blur, while for pixelated images, the face
is replaced with a 15x15 pixel array.

Figure 10. Examples of the different types of face anonymization techniques. From left to right: the original

image from the dataset, blacked out, blurred, pixelated and DeepPrivacy modified.

DeepPrivacy provides an anonymization method by replacing individual faces on images while minimizing the
change in the existing data distribution. The model removes all privacy-sensitive information and generates
highly realistic faces with high accuracy. It uses Mask R-CNN (He, Gkioxari, Dollar and Girshick, 2017) for facial
keypoints estimation and Single Shot Scale-Invariant Face Detector (Zhang et al., 2017) for bounding box
annotation. For the face replacement, it uses a conditional GAN architecture (Mirza et al., 2014). It is worthwhile
mentioning that DeepPrivacy requires only the images as an input to execute the anonymization. We explored

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 22 / 35

the effectiveness of these four face anonymization methods in our pose estimation use case. For this purpose,
we anonymized the input images (remove facial information), before employing a state-of-the-art pose
estimation algorithm and evaluated them on a publicly available dataset. The results showed that DeepPrivacy
outperforms all other face anonymization methods (cf. Figure 11).

Figure 11. Workflow: Face anonymization and pose estimation stages

In a second set of experiments, we measured the success of the alteration methods. Specifically, we evaluated
each unmodified image, its alterations, and the blacked-out version, on the Lightweight Open Pose network17
(Osokin, 2022). Such a network exploits a part based (also called bottom-up) approach, that searches an image
for keypoints, and then determines their pairwise relationships, thus creating the skeletons. Such a network is a
modified, performance-tuned version of the original OpenPose paper (Cao et al., 2021). With a different, more
lightweight backbone, and refinement stages, it is considerably faster that OpenPose, which is critical in edge
devices like smartphones, where pose estimation applications are emerging. The accuracy of the optimized
network is nearly identical to the original, dropping less than 1% in average precision.

5.3 Preliminary Results

To evaluate the workflow, we used the MPII Human Pose dataset (Andriluka, Pishchulin, Gehler and Schiele,
2014) that shows people in great appearance variability and complexity in over 40000 images, and in more than
800 activities. Moreover, it provides rich annotations for the main body and face keypoints. The annotations
include the head, torso, and the left/right limb joints. We filtered the database for single person images in regular
resting positions. We selected 92 images and their corresponding annotations from the data set. Because the
pose estimation network detects facial keypoints too, and many of these keypoints were not provided with the
annotations (left and right eye, nose, left and right ear), we manually annotated these. The final keypoints are
drawn as red circles in Figure 12.

We used the same evaluation metrics that S. Wu et al. utilized in evaluating the performance of facial keypoint
detection (Wu, Xu, Zhu and Guo, 2018). Specifically, we use the detection error (DE) defined inters of the actual
and predicted values of the keypoints and the width of the face’s bounding box. Equation 1 expresses the error
DE where 𝑥 and 𝑦 are the predicted values of the keypoint,�̅� and �̅� are the annotated values and w is the width
of the face's bounding box. Aside from the detection error, we also employ the Root Mean Square Error (RMSE),
defined in Equation 2, where n is the number of keypoints recognized in the image. Moreover, there were some
instances where the pose estimation failed to recognize a keypoint. To measure these events, we estimate the
finding rate (FR), as expressed in Equation 3, where f is the number of the images where all keypoints were found,
and N is the total number of images.

𝐷𝐸 =
√{(𝑥 − �̅�)2 + (𝑦 − �̅�)2}

𝑤
(1)

17 The implementation of such a network is publicly available (GitHub - Daniil-Osokin/lightweight-human-pose-
estimation.pytorch: Fast and accurate human pose estimation in PyTorch. Contains implementation of "Real-
time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose" paper., 2022).

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 23 / 35

Figure 12. The pose estimation and keypoints. Annotated keypoints are marked red, estimated keypoints
yellow, and bounding box for pose green.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑥�̅�)2

𝑛

𝑖=1

+ (𝑦𝑖 − 𝑦�̅�)2 (2)

 𝐹𝑅 =
𝑓

𝑁
(3)

Table 1 summarizes the obtained results of our experiment. Considering the finding rate (FR), the pose estimation
worked equally well on the blurred and DeepPrivacy images. Looking through the images, it can be concluded
that the pose estimation network fails to identify keypoints for annotations where some keypoints are covered,
like when limbs overlap each other or the subject hides facial features because of head rotation. The evaluation
metrics show that the DeepPrivacy face replacement method surpasses the performance of the traditional
anonymization techniques (like blurring and pixelating). Looking at the DE and RMSE values, the performance of
the DeepPrivacy images is consistently near the results of the original ones. It greatly improves over the results
of the blurred method, which achieved 6.8% average DE and 8.370 RMSE, compared to 5.6% and 6.614 for the
DeepPrivacy. Out of these methods, the blacked out estimation is found to be insufficient to successfully track
human poses.

 Face Full body

Type FR DE RMSE RMSE

Original 0.92 0.053 6.613 15.604

Blacked out 0.39 0.293 31.889 24.523

Blurred 0.88 0.068 8.370 17.332

Pixelated 0.85 0.075 9.272 16.157

DeepPrivacy 0.88 0.056 6.614 14.952

Table 1: Metric values for the pose estimation (Finding rate (FR) and average of Detection error (DE) and
Root Mean Square Error (RMSE))

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 24 / 35

6 Mosquito Data Cleaner for Unstructured Data
In this section, we elaborate on a novel data cleaning method, referred to as Mosquito, which can be used to
clean the data extracted from PDFs.

6.1 Problem Statement

Basware “SmartPDF AI” product extracts data from PDF documents (including scanned versions). It receives a
PDF/image as an input and responds with field data as the output. Our models are supervised, using 3.3 million
manually processed invoices as training set. The training data contains human errors - both instance-level,
originating from single unbiased human mistakes, and population-level, originating from regular
misinterpretation of the field’s meaning. For some best fields, the percent of human errors in training data is
0.8%, for some worst fields the percent of errors can reach 30%. The training set requires automatic cleaning
before the training has started.

6.2 General Solution

In general, it is not feasible to use boosting-like data-cleaning methods because our models are huge and
expensive to train. Instead, we use a smaller model called “Mosquito” for data cleaning. Figure 13 demonstrates
the code idea behind Mosquito where the anomalies are detected through comparing the ground truth with the
predictions of Mosquito. In other words, our cleaning approach can be roughly characterised as “clustering-and-
majority-voting-based anomaly detection”. Mosquito model consists of three levels of algorithms. The first level
is the representation of the invoice structure at some degree of heuristic understanding. For example, an invoice
can be considered as bag-of-words, bag-of-blocks, or bag-of-key-value-pairs. This algorithm produces the invoice
signature, which is a set of strings that can be quickly compared with another signature. The signature similarity
is considered as a distance between invoices.

Figure 13. Cleaning GT for the main model training by comparing it with Mosquito predictions

The second level of algorithms uses a signature-based similarity distance for dataset clustering. For example, it
finds 100K groups among 3.3M invoices. To this end, it uses different techniques like hierarchical clustering or
pivot-based clustering. The invoices inside one group have static parts (like labels), called “anchors”, and variable
parts, called “fields”. We use different proprietary algorithms to separate anchors from fields. The third level of
algorithms uses ground truth (GT) to attach labels to the fields within each group. The problem here is that GT
contains human errors, and the task becomes ambiguous. To resolve the ambiguity, we use majority voting.
Specifically, each anchor candidate gets the score of correct extractions. The anchor with the largest score is
considered a winner, and all GT samples that disagree with the winner choice are considered anomalies. Such
anomalies are marked with lower sample weight for the main model training. This simple training approach
removes immediately 30% of errors from the main model predictions, which significantly boosts the quality of
the production model. One can also consider this kind of anomaly detection as applying Mosquito model to its
own training set and comparing the result with the GT. If GT does not match the prediction, it can be annotated
as an anomaly.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 25 / 35

6.3 Work Plan within WP2

To increase the quality of data cleaning, Basware decided to raise the heuristic power of Mosquito algorithms
within the scope of WP2. Additionally, Basware strives to apply the latest technologies in multi-modal image
segmentation to introduce ML-based heuristics to the Mosquito algorithms. In the scope of WP2, we introduce
three new generations of Mosquito algorithms in addition to Gen1, which has already been implemented before
being involved in the activities of WP2. Figure 14 demonstrates the planned four generations of Mosquito with
highlighting the main technological differences among these generations. The Gen1 heuristics (G1L1) used the
“bag-of-words” invoice model. This method is the most trivial invoice understanding, which produces the
primitive signature like “123Due”, ”456Total”, where the number is x-coordinate of the word. This signature is
not very descriptive, and it is vulnerable to x-shaking produced by OCR.

Figure 14. Mosquito algorithms family

As a result of low descriptive power, the clustering and anchor detection with this type of signature requires
sophisticated hierarchical clustering techniques in G1L2. In fact, we failed to detect anchors in unsupervised
manner, so anchor detection was moved to G1L3, which uses GT to spot the anchor-field pairs. The deficiencies
of Gen1 approach inspired us to develop the more sophisticated heuristic representation of the invoice. The
Gen2 family of algorithms uses geometry-based heuristics to represent the invoice as “bag-of-blocks”. Figure 15
shows an example where the “bag of blocks” model has been used to understand the content of an invoice. This
type of invoice representation enables much more descriptive signature like “14(0<3)2=Fakt”, “45(1<2)2=Kund”,
where digits are x-position, size, and numbers of neighbours of blocks. This kind of highly descriptive signature
makes such a tightly packed invoice clusters that separating them from each other can be done with the most
primitive pivot-based technique in G2L2.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 26 / 35

Figure 15. Mosquito G2L1 “bag-of-blocks” view of invoice

However, spotting the anchors with this technique becomes very difficult, because of the coarse-grain
representation of the invoice, which is “blind” to individual fields. Therefore, we interrupted the Gen2
development and switched to even more sophisticated Gen3, which finds key-value pairs and anchors by pure
algorithmic CFG-based heuristics. The G3L1 algorithm implements a grammar-based heuristic invoice
understanding, which splits the invoice to key-value pairs (tabular data is considered separately). This invoice
representation already contains ready-made anchors, so anchor detection becomes a trivial task. Figure 16
demonstrates an example where the “key-value-pairs” model is used to understand the contents of an invoice.
The G3L1 algorithm uses 2D-SCFG probabilistic grammars for parsing the two-dimensional structure of the
invoice. The parsing is done with simplified version of CYK algorithm, which produces the incomplete parse.

Figure 16. Mosquito G3L1 “key-value-pairs” view of invoice

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 27 / 35

It is unfortunately not feasible to define the grammar for the complete parse of the invoice due to enormous
diversity of the invoice types. However, the constituents of the invoice are surprisingly simple and typical, which
makes the incomplete grammar quite trivial. Figure 17 demonstrates an example of such a grammar. The G3L1
algorithm builds the semantic representation of the invoice, which makes it is possible to produce fully
translation-invariant and highly descriptive set of signatures, e.g., “faktdato[over]levdato”,
“antall[left]enhet”.

Figure 17. Example 2D-SCFG grammar of the invoice, Chomsky normal form, fragment

This type of invoice description is completely free from any digital metrics and fully invariant to OCR damages
and minor algorithm modifications, which makes a solid ground for G3L2 clustering. As mentioned above, G3L2
doesn’t need to find anchors in most of the cases, because the keys are already found by G3L1. However, there
are orphan fields that don’t have any label. For those fields, the anchors are still to be found. Finally, the G3L3
algorithm will use ground truth information to attach the labels to the fields. Since the fields are already identified
by the anchors, the assignment can be done with single data sample, which enables Mosquito single-click
learning feature needed also for self-validation (outside of the scope of WP2). In case more than one sample is
provided, and there is a conflict, the resolution is done with majority voting like in G1L3. The G3L1 algorithm
relies heavily on the anchor-string dictionary. This dictionary is populated automatically by G3L2 and verified
manually. The G3L3 adds labels to the dictionary, which makes it possible to identify fields in completely
unknown invoices. It is worthwhile mentioning that the G2L1, G2L2, and G3L1 have been implemented, while
the generations G3L2 and G3L3 are not yet started.

We have also started the research for ML-based generation G4L1, which is supposed to produce key-value
segmentation of the invoice using multi-modal transformer-based model borrowed from Microsoft LayoutLMV2
published open-source by Microsoft18. The model takes both 2D raster image of the invoice and the 1D text-
based representation of the invoice as inputs. The model produces the segmentation of the invoice like the one
shown in Figure 18. This segmentation can later be used for clustering and anchor detection. The final value
extraction can also be done by a separate ML-based model G4L3. The G4L1 model is supervised, and it needs the
training data. The training data can be automatically generated by G3L1. However, there is a risk that G4L1 will
learn from heuristic errors of G3L1. To avoid this, only the most probable branches of the stochastic-grammar-
based parse-tree must be taken. If the parser is uncertain, it is better not to use the sample for training. The
benefit of ML-based approach is that it can generalize better to the cases that CFG parser fails to parse due to
grammar limitations. G4L3 is seen as the final goal of the WP2 project.

18 https://arxiv.org/pdf/2012.14740.pdf

https://arxiv.org/pdf/2012.14740.pdf

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 28 / 35

Figure18. Mosquito G4L1 “label-value-other” view of invoice, using LayoutLMV2

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 29 / 35

7 Catalogue of Quality Attributes
For assessing the quality of data in the MLOps process, its necessary to perform measurements on the dataset.
In this section, we describe how a data quality catalogue can be used to quantify the quality of the data in an
automated manner. Furthermore, we provide a methodology of mapping MLOps artifacts to the measurement
inputs. In general, data is the core part of every ML-System, hence quality assurance in this domain has the main
focus. All the attributes are taken from ISO 25012 (cf. Table 2). Quality checks and data manipulation usually take
place in the first steps of each cycle. Measurements are performed on static artifacts produced in those early
steps. Thus, the frequency for data-related quality attribute assessment is usually once per cycle. The ISO 25024
(ISO/IEC, 2015) standard introduces generic measurements for the listed quality attributes.

Quality Attribute Description

Accuracy "Data accuracy is the degree to which data has attributes that represent the
actual value of a concept." (ISO 25012)

Completeness "The degree to which subject data associated with an entity has values for all
expected attributes." (ISO 25012)

Consistency "The degree to which data has attributes that are free from contradiction and
are coherent with other data in a specific context of use." (ISO 25012)

Timeliness "The degree to which data has attributes that are of the right age in a specific
context of use." (ISO 25012)

Table 2: Initial set of quality attributes from the Data domain.

7.1 Measurements

The ISO 25024 standard provides a set of measurements for Accuracy, Completeness, Consistency and
Timeliness. The measurement is being performed according to the formula. The difficulty lies in retrieving the
input variables. As an example, let us look at the measurements for accuracy from the ISO 25024 in Table 3. The
A and B value are per se none existed in the first place, which means they need to be obtained. This can happen
in serval ways, like querying a database or loading the data frame an analysing it. In general, it needs some sort
of information retrieval to obtain these values.

Quality Measurement Formula

Syntactic data accuracy X=A/B
A is the number of syntactyly correct items
B is the number of items where syntactic correctness is required

Semantic data accuracy X=A/B
A is the number of semantically correct items
B is the number of items where semantic correctness is required

Data accuracy assurance X=A/B
A is the number of data items measured for accuracy
B is the number of data that needs to be measured for accuracy

Risk of data set inaccuracy X=A/B
A is the number of elements of the data model that accurately describe the
system.
B is the number of elements of the data model that describe the required
accuracy within the required specification of the system.

Metadata accuracy X=A/B
A is the number of metadata that provides appropriate required information
B is the number of metadata defined within the required specification of data.

Data accuracy range X=A/B
A is the number of data items having value included in a specified interval.
B is the number of data items for which a range can be defined.

Table 3: Accuracy measurements taken from ISO 25024

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 30 / 35

7.2 Mapping of Raw Data to Measurement Inputs

Information required for the measurement needs to be obtained from artifacts like logs, metadata, code or raw
data. During the various steps of the MLOps process, different kinds of artifacts are generated. Those artifacts
contain either directly valuable information for quality assessment or they can be used as tools to generate this
information. This information can then be mapped to certain measurement inputs, see Figure 19. It shows on
top the MLOps process where each iteration produces raw data. This raw data is either input to active testing or
directly to the extractor. The extracted information gets mapped to the inputs.

Usually, the MLOps process in industry is supported by frameworks like MLFlow or Kubeflow. Both allow
extending their functionality like managing artifacts. We are utilizing this to extract raw data like logs, metadata,
or trained models. In the next step, this raw data gets processed depending on the kind it can be simply parsed
to extract information, or it is being used as input for other testing tools. The way a particular artifact is handled
depends on by which tool it was generated. For instance, TensorFlow logs have a specific format, so it requires a
dedicated parser for them. The Extractor needs to be implemented for each kind of artifact and some artifacts
require the implementation or configuration of a specific active testing tool. In the end, the extracted information
gets mapped to a specific API call parameter and therefore to a specific measurement value.

Figure 19: Mapping of the raw data to the input of the measurements

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 31 / 35

8 Data Version Control: Criteria and Use Cases
In this section, we outline our contributions in data version control. Our main goal is to help teams and
organizations choose the best tools and architectures for their use cases. We begin with listing the important
characteristics of data management use cases that teams should consider when comparing tools and designing
architectures. We then list three example use-cases that we will consider, in this project, and finish the section
with an outlook for reference implementations that we plan to build later in the project.

8.1 Data Versioning Use Case Characteristics

The choice of a suitable data versioning approach for a given project broadly depends on the use case.

In this section, we list some important questions that should be thoroughly answered when comparing

tools or designing architecture of data versioning solutions.

• What is the total size of the dataset? Data versioning approach for a dataset of size 1 MB is likely

different than for 1 TB. Does the dataset contain structured, semi-structured or unstructured data? For

example, some tools are better suited for tabular data than image data. How many files or rows are

there in the dataset? If there are millions of files, it may not be feasible to keep references to them in a

Git repository. How large is each file and what is their format?

• How is the dataset updated? How much data is added to the dataset and how often and what is the

process for creating a new version of the dataset? If a new version is created every day, duplicating data

between versions is less desirable than when creating a new version once a month. Are the updates

append-only? For example, if new images are added to the dataset regularly, the “diffs” between

versions are simple additions. Are samples in the dataset modified or deleted? If data is stored in huge

CSV files and individual rows are modified between versions, this may have effect on storage

requirements. What kind of data quality checks are needed when the dataset is updated?

• How is the dataset used outside of the current project? Is the dataset shared to other teams in the

organization and used in multiple projects simultaneously? Updating the dataset for one project’s needs

might have unexpected consequences on the other projects. What are the requirements for access

control and governance? Maybe only specific users are allowed to view datasets that contain personally

identifiable information. How long should each version be persisted? How are users’ requests to delete

their own data handled?

• How do employees and internal systems access the data? For tabular data, data scientists and analysts

may want to query the dataset with SQL commands. For very large datasets, it might be convenient if

the dataset can be accessed through an S3-compatible API from tools such as Apache Spark. Is it feasible

for employees to download the datasets to their local desktops to browse and visualize the data? Does

the dataset need to stay in-place?

• How are features derived from the dataset? For example, if predicting transaction fraudulence depends

on transactions created in the last 72 hours, the system needs to be capable of computing and accessing

such online features. Is it enough to version snapshots of the raw data or should features be versioned

too? Are the features shared between multiple projects or teams?

• Finally, it is important to consider what tools are already used in the team or organization and if

introducing new tools is feasible. Is the organization committed to using Kubernetes? If not, self-hosting

Kubernetes-based tools like Pachyderm is not feasible. Is Apache Spark used for data analytics or

machine learning? If yes, it is much easier to get started with Delta Lake. Do your existing machine

learning pipelines already read data from S3-compatible system like S3 or MinIO?

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 32 / 35

8.2 List of Selected Use Cases

8.2.1 Human Pose Estimation from Images and Versioning Solution with DVC

During the image preparation project, we used DVC, mostly for its data management and versioning capabilities.
As we were working with images, a machine learning model, training data and annotations for images, it was an
excellent showcase of DVC’s ability to handle these tasks. To get started with DVC, we just followed the tutorial
on the official website19. We chose to use the command line interface, but a Python API is available if one prefers
that. It was very easy to integrate it into our existing Git repository, and its Git-esque commands were easy to
adopt. Once initialized, we added the files to version and track, using the `dvc add` command. Using this
command, DVC automatically puts the selected files into the project’s .gitignore file, and started tracking only
the small metadata file that it created based on the content of the original. The next step was to choose a location
where DVC would keep the data. For our use case, a network attached storage (NAS) was the best fit. Setting it
with `dvc remote add`, and then pushing using `dvc push`, it copied the data cached locally to the NAS remote
storage we set up earlier. The remote storage directory at this point looked like on Figure 20. If another colleague
would then join us, they could get the files using the command `dvc pull`, as seen on Figure 21.

Figure 20. File structure after adding a file to dvc and pushing it

Figure 21. Pulling the versioned data with DVC

In fact, our pose estimation use-case was a relatively simple one, but sometimes that represents what a certain
project may need. The data we versioned was small-scale, only reaching a few gigabytes in size, however DVC
can handle data at much bigger scales as well. In our case, versioning images and image annotations was crucial
in a sense that we measured some metrics based on these. Changes to the mentioned data resulted in changes
to the computed metrics, and we wanted to reproduce these later. Accordingly, DVC proved to be a very useful
tool for our data versioning needs. It was simple to integrate in our existing repository, easy to use, and provided
plenty of functionality. For our use case, Git LFS would have also been an adequate choice, but opting for DVC
instead guaranteed that our solution would work in larger scales as well and having the option to use DVC
pipelines and experiments can be a real advantage in the future.

8.2.2 Large-Scale Information Extraction from PDFs

The goal is to train a model for extracting information from PDFs. The dataset consists of PDF files and associated
annotations, making it unstructured data. The total size of the dataset is around 1 TB. Every month, 1 million
PDFs are added to the dataset, growing the dataset. Each file is around 100 kB to 1 MB in size. Annotations are
stored in JSON files, and they consist of bounding boxes with associated metadata. Such annotations are modified
when errors are discovered. Because annotation work is very error-prone, data quality checks must be run for
new dataset versions. Specifically, PDFs are fed to the model as raw data. Any feature extraction happens as a
pre-processing step, so features are not reused. The dataset is used for one project only. No special access control
mechanisms are needed beyond standard data security measures.

The data, used in this use case, does not contain any personally identifiable information. Moreover, data is stored
in an S3-compatible object store. Because of the size of the dataset, it is not feasible for users to download the
dataset to their machines. Users want to be able to browse data in the dataset and run queries to find PDFs with
specific kind of data. The team has experience of using Apache Spark for data analytics but not for machine

19 https://dvc.org/doc/start

https://dvc.org/doc/start

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 33 / 35

learning. In future deliverables of the project, we plan to describe possible solution architectures fitting this use
case and implementing a reference solution.

8.2.3 Weather Prediction

In the weather prediction use case, the goal is to predict the weather for the next 24 hours using sensors and
radar data. The dataset consists of high-volume tabular data and radar image files, making it a mix of structured
and unstructured data. The datasets used for training are multiple TBs in size. New data is ingested to the system
daily. New models only need to be trained on weekly or monthly basis when new dataset snapshots are also
created. Updates to the data are append-only, but the data quality will vary a lot due to untrustful sensor
readings. Since the sensor and radar readings do not include any sensitive data, no special access control
mechanisms are needed beyond standard data security measures. Multiple development teams want to be able
to access the dataset simultaneously. Data scientists want to be able to query data with SQL for visualization and
development. In future deliverables of the project, we plan to describe the use case in more detail, discover
solution architectures suitable for the use case and implement a reference solution.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 34 / 35

9 Summary
In this deliverable, we have reported on our first results of the current WP2 tasks, namely data preparation
automation (Task 2.1), data management and version control solutions (Task 2.2), and continuous Data quality
assurance (Task 2.3). We started with briefly describing a set of industrial tools and platforms which are relevant
to our planned contributions. We provided an overview of each tool and described the need to enhance such
tools through the research and development activities in IML4E WP2. Afterward, we present our endeavours to
develop a unified data preparation infrastructure for a trustworthy ML pipeline. In this context, we developed
solutions for detecting errors in structured data, employing formal grammars and machine learning models to
curate unstructured data, and propose a privacy-friendly preprocessing tool for digital images. Moreover, we
defined a catalogue of quality attributes and methods for measuring such attributes to enable continuous quality
assurance throughout the ML lifecycle.

For structured data, it is highly important to identify the contaminated records which can be extremely harmful
to the downstream ML models. Therefore, we reported in this deliverable on our novel meta learning-based
error detection method which uses a trained classifier to differentiate between clean and dirty records. Such a
tool enables users to exploit the historical data sets which have been cleaned in the past. Moreover, it provides
them with a knob to adjust the time needed to generate the list of detections. The next step in this work is to
involve data valorisation into the data cleaning process. If we are able to identify the weight of each record, we
can make important decisions, such as (I) whether to clean the records with lowest weights, (II) what are the best
methods to cure the highly valuable records, and (III) whether we can get rid of the less-valuable records before
the training phase.

After defining a set of requirements, it becomes clear how to develop a data quality dashboard suitable for the
industrial applications. Therefore, we plan to start working on the data quality dashboard which can involves
advanced techniques and tools for data profiling and cleaning. Similarly, we plan to start working on our data
version control solution which can be adapted according to the dynamics the application scenario. Moreover, we
are also eager to enable our solution from dealing with different data models, including images, relational data,
audio, text, and log files.

Industrial Machine Learning for Enterprises

 IML4E – 20219 Page 35 / 35

References
Hukkelås, H., Mester, R. and Lindseth, F., 2022. DeepPrivacy: A Generative Adversarial Network for Face
Anonymization.

Osokin, D., 2022. Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose. [online] arXiv.org.
Available at: <https://arxiv.org/abs/1811.12004> [Accessed 4 May 2022].

He, K., Gkioxari, G., Dollar, P. and Girshick, R., 2017. Mask R-CNN. 2017 IEEE International Conference on
Computer Vision (ICCV),.

Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X. and Li, S., 2017. S^3FD: Single Shot Scale-Invariant Face Detector. 2017
IEEE International Conference on Computer Vision (ICCV),.

Andriluka, M., Pishchulin, L., Gehler, P. and Schiele, B., 2014. 2D Human Pose Estimation: New Benchmark and
State of the Art Analysis. 2014 IEEE Conference on Computer Vision and Pattern Recognition,.

Mirza, M. & Osindero, S. (2014), 'Conditional Generative Adversarial Nets' , cite arxiv:1411.1784 .

GitHub. 2022. GitHub - Daniil-Osokin/lightweight-human-pose-estimation.pytorch: Fast and accurate human
pose estimation in PyTorch. Contains implementation of "Real-time 2D Multi-Person Pose Estimation on CPU:
Lightweight OpenPose" paper.. [online] Available at: <https://github.com/Daniil-Osokin/lightweight-human-
pose-estimation.pytorch> [Accessed 4 May 2022].

Cao, Z., Hidalgo, G., Simon, T., Wei, S. and Sheikh, Y., 2021. OpenPose: Realtime Multi-Person 2D Pose Estimation
Using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), pp.172-186.

Wu, S., Xu, J., Zhu, S. and Guo, H., 2018. A Deep Residual convolutional neural network for facial keypoint
detection with missing labels. Signal Processing, 144, pp.384-391.

Informatica. 2021. Informatica® Cloud Data Profiling, July 2021. Cited 10.5.2022. Available:
https://docs.informatica.com/content/dam/source/GUID-2/GUID-2755ADC0-A395-4CE7-91BC-
30C14E970F08/11/en/CDP_July2021_DataProfiling_en.pdf

Lintelman, L. 2020. Shared Rules – A Hybrid Use Case with SAP Data Intelligence and SAP Information Steward.
September 15, 2020. Cited 10.5.2022. Available: https://blogs.sap.com/2020/09/15/shared-rules-a-hybrid-use-
case-with-sap-data-intelligence-and-sap-information-steward/

Pinjwani, A. (2021). Data profiling overview – SAP Information Steward. April 19, 2021. Cited 10.5.2022. Available:
https://blogs.sap.com/2021/04/19/data-profiling-overview-sap-information-steward/

Talend. Talend Cloud Data Catalog User Guide, Sampling and profiling data. Cited 10.5.2022. Available:
https://help.talend.com/r/en-US/Cloud/data-catalog-user-guide/sampling-and-profiling-data

Talend Team. A revolution in data quality: introducing Talend Data Quality Service. Cited 10.5.2022. Available:
https://www.talend.com/blog/introducing-talend-data-quality-service/

Pabba, S. 2017. Time Series-based Forecasting using ARIMA Models. Available at
https://www.hcltech.com/blogs/time-series-based-forecasting-using-arima-models

Kaur, P., Lamba, L. M. S., Gosain, A. 2011. DOFCM: A Robust Clustering Technique Based upon Density.
International Journal of Engineering and Technology, 3(3):297-303

https://www.talend.com/blog/introducing-talend-data-quality-service/

	Table of contents
	1 Introduction
	2 Overview of Industrial Data Quality Tools
	2.1 Data Quality Dashboards
	2.1.1 Informatica
	2.1.2 SAP Information Steward
	2.1.3 Talend Data Catalog

	2.2 Data Cleaning Platforms for Structured Data
	2.2.1 OpenRefine
	2.2.2 Trifacta Wrangler
	2.2.3 Tamr

	2.3 Data Version Control Solutions
	2.3.1 DVC
	2.3.2 lakeFS
	2.3.3 Pachyderm
	2.3.4 Dolt
	2.3.5 Delta Lake
	2.3.6 Feast

	2.4 Discussion

	3 Meta Learning-Based Error Detection for Structured Data
	3.1 ML-based Error Detection
	3.2 Meta Learning-Based Feature Extraction
	3.3 Conclusion and Ongoing Work

	4 Data Quality Dashboard
	4.1 Quality and Suitability of Energy Data
	4.2 Methods for Quality and Suitability Detection
	4.3 Dashboard for Energy Data Profiling

	5 Privacy-Friendly Image Preparation for AI Pipelines
	5.1 Problem Definition
	5.2 Face Anonymization Techniques
	5.3 Preliminary Results

	6 Mosquito Data Cleaner for Unstructured Data
	6.1 Problem Statement
	6.2 General Solution
	6.3 Work Plan within WP2

	7 Catalogue of Quality Attributes
	7.1 Measurements
	7.2 Mapping of Raw Data to Measurement Inputs

	8 Data Version Control: Criteria and Use Cases
	8.1 Data Versioning Use Case Characteristics
	8.2 List of Selected Use Cases
	8.2.1 Human Pose Estimation from Images and Versioning Solution with DVC
	8.2.2 Large-Scale Information Extraction from PDFs
	8.2.3 Weather Prediction

	9 Summary
	References

