
                                                                                              
 

 

                                                                                                                      

HYBRID SIMULATION MODELS – 

A SOLUTION FOR CONCEPT TO REALISM CONTINUITY 

 

 
DOCUMENT TYPE: DELIVERABLE 

DELIVERABLE N0:  D3.1A 

DISTRIBUTION LEVEL: PUBLIC 

DATE: 02/06/2022 

VERSION: FINAL 

 

 

AUTHOR(S): LARS MIKELSONS (UNIVERSITY AUGSBURG)  

KAY BIERZYNSKI (INFINEON) 

TOBIAS KAMP (DLR)  

CASPAR BIERI (DLR) 

OLAF VAN DER SLUIS (PHILIPS) 

 

 

 

 

 

 

 

FORMAL REVIEWED:  MEDINA ĆUSTIĆ (VIRTUAL VEHICLE) 

 

APPROVED: MARTIN BENEDIKT (VIRTUAL VEHICLE) 

 

 

PROJECT ACRONYM: UPSIM 

PROJECT TITLE: UNLEASH POTENTIALS IN SIMULATION 

ITEA PROJECT N0: 19006 

CHALLENGE: SMART ENGINEERING 

PROJECT DURATION: 01/10/2020 - 30/09/2023 

PROJECT WEBSITE: WWW.UPSIM-PROJECT.EU    

COORDINATION: VIRTUAL VEHICEL RESEARCH GMBH 

PROJECT LEADER: DR. MARTIN BENEDIKT 

 

 

http://www.upsim-project.eu/


Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            2 / 28 

Contents 

1 Introduction ............................................................................................................... 3 

2 Hybrid Modelling Approaches ......................................................................................... 4 

2.1 Physics informed neural networks ............................................................................. 5 

2.2 NeuralODEs .......................................................................................................... 6 

2.3 U-Mesh ............................................................................................................... 7 

3 Hybrid modelling within the UPSIM use cases.................................................................... 9 

3.1 Automotive Use Case ............................................................................................. 9 

3.1.1 Brake System .................................................................................................... 9 

3.1.2 Vehicle Dynamics .............................................................................................. 11 

3.1.3 Driver Monitoring .............................................................................................. 15 

3.2 Medical Use Case ................................................................................................. 20 

3.2.1 Neural networks to describe the deformation of a medical device................................ 21 

3.2.2 Physics-informed neural networks to describe the deformation of a medical device ........ 23 

4 Abbreviations ............................................................................................................ 24 

5 Literature.................................................................................................................. 25 

6 Acknowledgment ........................................................................................................ 27 

 
 

 

 

  



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            3 / 28 

1 Introduction 

 
UPSIM aims at providing tools, methods and processes for credible industrial simulation. One key 
capability for a company to generate credible simulations is to include newly gained information 
in an existing model. This results in the ability to reduce the gap between the model and the real 

product continuously in the advancing development process and during operation. However, this 
is not feasible relying on physical modelling only. Physical modelling starts with the determination 
of the purpose of a model and subsequently assumptions on the importance of physical effects are 
made. These assumptions represent the foundation of the model and are the major driver for both, 
the modelling effort, and the reachable accuracy of the model. Typically, low modelling effort 
comes along with limited model accuracy. Starting with extensive assumptions leading to low 
modelling effort often leads to a situation, where refinement of the model is not easily doable, and 
accuracy is at its limit. Consequently, re-modelling becomes necessary and continuity in reducing 
the gap between model and reality is broken. However, starting with lightweight assumptions leads 
to high modelling effort at the very beginning of a development cycle and hence to the risk of 
having the models available too late for first design decisions. Additionally, for such models, 
parameters are often not at hand in the beginning of a product development. 
Recent approaches combine methods from machine learning with physical modelling. This allows 
the usage of data to refine and respectively improve physical models. The resulting models are 
called hybrid models in the following. Since nowadays data usually becomes available during 
development, and especially during operation, these hybrid modelling approaches pave the way 
to continuously reduce the gap between model and realism. Within UPSIM, different approaches 
for hybrid modelling are investigated. Subsequently, their ability to support concept to realism 
continuity is validated within the UPSIM use cases.  

In this document, the approaches for hybrid modelling considered within UPSIM are described in 

Section 2. Moreover, the approaches are classified depending on how equations and data are 

combined using a taxonomy from [1]. In Section 3, usage of the approaches within the use cases 

is presented with a focus on how concept to realism continuity shall be achieved. Summarizing the 

approaches for concept to realism continuity, this deliverable is part of the milestone MS3 “Update 

in System Simulation Governance Processes and Methodologies and Tooling aligned”. Clearly, due 

to the point in time this document was prepared, Section 3 lacks a validation of the proposed 

approaches to reach concept to realism continuity. Therefore, the document will be updated with 

results and lessons learned from the realization of the use cases later during the project and 

released as Deliverable 3.1b.  

 

 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            4 / 28 

2 Hybrid Modelling Approaches 

Following the rapid progress in the field of machine learning in recent years, it is now time to apply 
the new methodologies to industrial applications. In the context of UPSIM, this applies especially 
to the data-based modelling of dynamic systems. For example, trained neural networks are already 
being used in control units. However, a great deal of effort to generate the necessary data and to 

select a suitable network architecture is required for even small subsystems. The modelling 
approach (data-based or physical) in industry is currently an either/or decision, so that the 

potentials of combined, i.e. hybrid models, remain unused.  
In academia, methods that combine physical modelling and data-based modelling techniques 
became available recently. Figure 2-1 shows a taxonomy that can be used to order the approaches 

on a conceptual level.  

 

Figure 2-1 Taxonomy for the classification of hybrid models (based on [1]) 

  

The first relevant feature is the source of knowledge for the existing models.  

Natural sciences provide knowledge that is theoretically founded. These include, for example, 

Newton's laws or the Navier-Stokes equations.  

Expert knowledge is usually more application-specific and is available to rather small user 
groups. This knowledge does not necessarily have to be theoretically founded; for some 
applications, know-how rather than "know-why" counts. Model validity ranges are an example of 
this. Today, the question for which studies a simulation model can be used is mostly answered by 
experts based on their experience with this model, without being able to quantify the model 
quality.  

Secondly, a distinction is made according to the type of representation of the models.  

Algebraic equations or inequalities are formal statements about equality or inequality of different 
quantities. These can be, for example, kinematic relationships in mechanics, but also characteristic 
curves and maps.  

Simulation results are obtained from the numerical evaluation of the models.  

Differential equations, in contrast to algebraic equations, contain differentials or derivatives 
(temporal or spatial), which is particularly advantageous for the description of dynamic processes.  

Statistical relations quantify uncertain quantities or describe their dispersion. State transition 
probabilities are an example of such relations. This category of representations is not limited to 
descriptions of the shape of multivariate distribution functions. It also encompasses e.g. 
requirements for special shapes of autocorrelation functions [3] of model deviations.  

Invariants are properties which remain unchanged throughout mathematical transformations. As 
an example, consider the conservation of mass in hydraulic systems. In [28] such conservation 

laws are used to improve the training of neural networks.  



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            5 / 28 

Existing data can be included at different points within each of the above model representations 
to generate a hybrid model. The basis for this is a model hypothesis, i.e. the mathematical 
construct of the hybrid model. In the simplest case, this can be a neural network, but also a 
combination of a neural network and a model of a different structure. This model hypothesis is 
trained using the learning algorithm in such a way that the training/testing data is reproduced as 

accurately as desired, if possible.  

Training data can be extended or pre-processed. For example, in [5] simulation results are used 
to generate learning data for an ANN-model of the longitudinal dynamics of a truck. In [23], 
simulation results of an injection moulding machine are used to compare two transfer learning 
approaches.  

In model hypotheses, prior knowledge can be introduced, for example, via the choice of an 
adequate mathematical structure of the model. For example, in [6], knowledge about the quadratic 

dependence of drag forces on velocity acting on a model helicopter is used. Another example of 
forming a model hypothesis can be found in [9]. There, differential operators are represented or 
approximated by convolutional neural networks. In [24], the architecture of state-space neural 
networks is designed based on model knowledge.  

The learning algorithm consists of the cost function and a matching optimisation algorithm. 
Models can be incorporated into the cost function as well as used for the optimisation itself. In [2] 
it is demonstrated how models, represented as PDE, can be integrated into the cost function to 

regularize the parameters of a neural network. In [25], a regularisation term based on Lyapunov 
stability is added to the loss function.  

The final hypothesis is the final result of machine learning: a model. The predictions of the model 
can be compared to prior knowledge, for example, in order to introduce a plausibility check. If, for 
example, a model of a rocket reaches a speed above the speed of light, it can be concluded that 
the model yields unreliable predictions.  

In the following, the approaches followed in UPSIM are classified, shortly presented and references 

for further reading are given. 

 
2.1 Physics informed neural networks 

  

 

Figure 2-2 Classification of PINNs 

 

Physics informed neural networks (PINNs) combine prior knowledge in the form of differential 
equations in the learning algorithm with measurement data to learn a function that best solves 
the differential equation while taking the measurement data into account [2].  

Accordingly, the use of PINNs requires measurement data in addition to the model of the system. 

The goal is to train a feed-forward neural network (FFNN) that can represent the measurement 
data well. The model is inserted into the learning algorithm to reduce the solution space of the 
parameters of the FFNN.  

For this purpose, the residuals of the differential equation are considered, which are generated 
when the network output and its corresponding derivatives, which can be efficiently computed via 
automatic differentiation, are inserted.  

A PINN time-continuously models the solution to a differential equation as a FFNN. Assume that 

you have an approximate white-box system model in the shape of an implicit differential equation 
𝐹(�̇�, 𝑥) = 0  which you want to improve. Given a set of training parameters Θ, a PINN models not 
the right-hand side �̇�(𝑥, 𝑡, Θ) but the solution 𝑥(𝑡, Θ) to a differential equation directly as a function 
of time𝑡 as a neural network 𝑁𝑁 by 

𝑥(𝑡, Θ) = 𝑁𝑁(𝑡, Θ) 
 
Prior system knowledge is included into 𝑁𝑁 during the training phase: The usual data error terms 

in loss function 𝑙(Θ) are enriched by a physics-based regularization. Evaluations of e.g. 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            6 / 28 

𝐹 (𝑁�̇�(𝑡, Θ), 𝑁𝑁(𝑡, Θ))
2

 at a number of arbitrarily scattered points in time 𝑡 are added to the data 

error terms.  

Thus, the physics informed loss function includes not only a measure of how well the FFNN can 
reproduce the measured data, but also an additional term that expresses how well the FFNN solves 
the differential equation. The additional term makes the system dynamics, which are only implicit 
in the measured data, explicitly available to the learning algorithm, resulting in a reduction of the 
required measured data. In [1], this approach is used to investigate its applicability in power 
systems by means of a simple example. In the conclusion, it is particularly pointed out that for 
more complex systems, despite considering models in training, large amounts of data are needed 
for successful training. However, a benchmark of PINN comparing it to conventional methods based 
on the example is left out.  

PINNs learn the solution of a differential equation as a mathematical function of time. 
Consequently, the computation of the solution at a point in time corresponds to an evaluation of 
a neural network, which promises extremely performant models.  

On the other hand, PINNs can only be used in application scenarios where a sufficient amount of 
measurement data is available. However, a measure for the amount of required data does not 
exist. Also, an application of the approaches published so far from this method field is only possible 
if the application scenario does not require variable initial values, since the solution of the 
differential equation is learned. Moreover, the integration of a model in the form of residuals is 
only possible if the model can be evaluated for arbitrary inputs and at arbitrary time points. 
Moreover, an application to discontinuous systems does not seem very promising since the model 
hypothesis itself is differentiable and thus can only poorly approximate discontinuous behaviour.  

 
2.2 NeuralODEs  

 

Figure 2-3 Classification of Neural ODEs 

  

Computing the output of the layers in a deep neural network can also be interpreted, in the case 
of residual neural networks or normalizing flows, as the application of a solution procedure for 
ordinary differential equations to a nonlinear function [10], [11], [12], [15], [26]. For infinitely 
many layers, summands added per layer become infinitesimal. This is analogous to infinitesimal 
changes to system states as considered in differential equations [11]. At the same time, a layer 
of an FFNN can be interpreted as a nonlinear function depending on a set of parameters, which 
transforms an input vector into an output vector (potentially of different dimension) [12]. These 

ideas establish a bridge between deep FFNN and solutions to differential equations (see e.g. Figure 
3-2). Consequently, methods of established techniques from one area can be used in the other. 
Moreover, model hypotheses can be constructed as a combination of conventional FFNN layers 
with ordinary differential equations. In this way, for example, previously constant parameters can 
be replaced by nonlinear mathematical expressions that can in principle depend on arbitrary other 
quantities. Considering a network as a differential equation in turn allows for the efficient 
computation of the sensitivities of the network with respect to its weights by means of the adjoint 
ordinary differential equation [13], a well-known method from the field of differential equations. 

Meanwhile, more advanced approaches attempt to learn systems which also contain discrete 
variables [20], [27].  

NeuralODEs are a promising way to combine data-driven and physical model parts in one model 
and to use techniques from both fields, differential equations and Machine Learning, to solve these 
models efficiently.  

However, to the authors' knowledge, no examples of industrial use of NeuralODEs exist yet. This 

is even more true for the approaches to learn models with continuous and discrete variables. 
Consequently, an assessment of the performance of the NeuralODEs approach in industrial settings 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            7 / 28 

is lacking. Furthermore, no best practices exist for hyperparameter selection for the layers of 
artificial neural networks (ANNs). Also, experience regarding the model hypothesis does not exist. 
For example, it is unclear which parts of the system are better modelled as data-based and which 
should be included in the hybrid model as a physics-based equation to generate a computationally 
efficient hybrid model. In addition, to use the adjoint differential equation for the computation of 

sensitivities with respect to the system parameters, the differential equation must be continuous. 
Depending on the number of parameters, these require a representation of the model in a form 
that can be incorporated into corresponding frameworks [14]. Moreover, models that combine 
conventional networks and ordinary differential equations in the sense of neural ODEs are not per 
se faster to solve than conventional models. Again, additional methods are necessary to learn the 
system dynamics, which are not included in the existing models, in such a way that the differential 
equation solver needs as few evaluations of the proper model as possible [15].  

  
 
2.3 U-Mesh 

 

Figure 2-4 Classification of U-mesh 

 

Mendizabal et al. [29] propose a framework by the name of 'U-mesh' that is based on the U-net 

architecture (Figure 2-5). The U-mesh framework is able to perform complex and complete volume 

deformation calculations of arbitrary shapes and extremely fast and accurate simulations are 

reported. The FFNN can learn a desired biomechanical model based on finite element analysis 

generated input data and predict deformations at haptic feedback rates with very good accuracy. 

U-mesh has an architecture that is similar to an auto-encoder. Auto-encoders typically transform 

the input space into a low-dimensional representation with an encoding path and expand it back 

to its original size through a decoding path. Constraining the latent feature vector space to be 

small ensures that the network will learn salient features from the high dimensional input data. 

 

 

Figure 2-5 Simplified schematic representation of the U-mesh architecture 

 
U-mesh uses a tensor of input constraints, consisting of traction forces on the surface boundary 

as input data. The domain ω is sampled using a 3-dimensional grid. Thus, the input data dimension 

is 3 times the grid size, i.e. a traction force for each point in the grid. The network generates an 

equally sized tensor of volume displacements as output. This architecture makes use of four types 

of operation layers: convolutional layers, pooling layers and up-sampling layers as depicted in 

Figure 2-6. 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            8 / 28 

  

Figure 2-6 General U-mesh network architecture for an object with a resolution of 𝒙 × 𝒚 × 𝒛 

nodes, 𝒄 channels in the first layer and 𝒌 steps 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            9 / 28 

3 Hybrid modelling within the UPSIM use cases 

 

3.1 Automotive Use Case 

3.1.1 Brake System  

From the first days of vehicle development, braking system played an essential role in vehicle 

design. While being pure mechanic in the past time, validation of such systems was straight-

forward also due to less safety regulations: Every mechanical component must be designed so 

that the applied mechanical load and stress during operation can be handled over the lifetime of 

the system. Over time, the engines became more powerful and electrified, vehicles became more 

light-weight, top speed raised, and safety needs increased – as a consequence the braking systems 

needed to evolve, too. In consequence, functions like ABS, ESP and ADAS systems were 

integrated. Today the braking system is a complex mechatronic system, with electric and hydraulic 

subsystems, and “braking” itself a highly complex task. On the other hand, there is a tremendous 

trend towards Software-in-the-Loop (SiL) testing respectively validation via simulation. Thus, 

highly accurate multi-domain models of these systems are required. An example of a highly 

sophisticated braking system is the Integrated Power Brake (IBP) from Bosch that is considered 

in this use case. In order to investigate hybrid modelling for a brake system in a first step, the 

electric subsystem is considered (Figure 3-1). This subsystem includes the EC-motor of the linear 

actuator that applies the brake torque for this brake-by-wire system and its control. 
 

 

Figure 3-1 Topology of the subsystem PSC of the IBP of this use case 

 

In particular, a model of the EC-Motor will be tested with real controller software in a SiL-Setup. 
Because the physical EC-motor model does not behave exactly like its real counterpart, in certain 
situations the safety features of the controller hardware detect an error with the EC-motor model 
limiting the number of software functions that can be tested in simulation. Hence, improving the 
model accuracy leads to more virtual testing capabilities. This improvement will be achieved using 
a hybrid modeling technique called NeuralFMU based on the concept of NeuralODEs. 
  
NeuralODEs and NeuralFMUs 

The field of research that deals with machine learning of dynamical physical systems is always 
confronted with the mathematical challenge of learning the state space trajectory of the considered 
system over time. Thereby, learning is performed with the help of system observations, i.e., 
measurements. The trained model shall reflect the real systems behavior, and thus mathematically 
learning means performing an optimization that minimizes the gap between data and model 
output. A breakthrough in learning dynamical systems was the idea of NeuralODEs (Section 2.2) 
that allows to combine physical modelling with ANNs. 

 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            10 / 28 

 

Figure 3-2 Topology of a NeuralODE 

 

From a topologic view, a NeuralODE is the structural combination of an ANN and an ODE-solver as 
depicted in Figure 3-2. The main contribution of the original NeuralODE paper [11] was not only 
the idea of the topologic separation, but more a technical solution on how to train these structures. 
The challenge is that backpropagation of the gradient with respect to the ANN-parameters is 
needed, but when a numerical ODE solver is placed between the ANN and the problem solution, 
the gradient must be propagated through the solver itself. However, methods for sensitivity 
analysis combined with automatic differentiation offer an efficient solution. 

Hybrid modeling with NeuralODEs is possible by extending the topology by physical equations and 
still to compute the required gradient via sensitivity analysis. One point of criticism is, that this 
approach requires white-box modelling, i.e. having the equations symbolically at hand. In real-
world applications this is typically not the case since modelling is performed in commercial 
modelling tools that do not allow for export of the underlying equations.  

To make the concept of NeuralODEs usable in such industrial applications, the concept of 
NeuralFMUs was introduced in [36]. Even if most modeling tools do not support the export of 
symbolic model equations, they support model export as a functional mock-up unit (FMU). FMI 
comes with two different flavors, model exchange (ME) and Co-Simulation (CS). In order to 
combine FMUs and ANNs resulting in a NeuralFMU according to Figure 3-3, a FMU capable of 
computing a state vector derivative and optional system outputs given a state vector, optional 
system inputs and the current point in time are required. Hence, within this use case ME FMUs are 
used. 

 

 

Figure 3-3 Topology of the considered NeuralFMU 

 

The left ANN (semi-transparent) in Figure 3-3 is currently neglected in this use case, but in general 
it allows to transform states to compensate e.g., sensor drift or to make parameters state 
dependent. For the generation of such NeuralFMUs two Julia packages were developed. The 
packages are open-source and available under https://github.com/ThummeTo/FMI.jl (FMI.jl) and 
https://github.com/ThummeTo/FMIFlux.jl (FMIFlux.jl). Though the implementation was done with a 
focus on the requirements of the use case at hand, these packages allow to generate NeuralFMUs 
for a variety of use cases from different domains like e.g., the mechanic, electrical, hydraulic or 
pneumatic domain. 
  
Training of the NeuralFMU 

In contrast to conventional ANN training, initialization matters for NeuralFMUs (and also 
NeuralODEs). In particular, bad initialization may lead to slow simulation or even an unstable 
simulation and thus to slow training or even to abort of the training. This is because a randomly 
initialized ANN may generate an output that corresponds to a very stiff ODE.  

Therefore, the training of the presented hybrid model is done in two steps: A collocation-based 
initialization and the final training for fine-tuning. The central idea of collocation is, that solving an 
ODE requires more than one function evaluation per timestep. Thus, instead of solving the 
NeuralFMU with an ODE solver, the ANN is isolated and trained without the other components. 
Therefore, on the one hand the training data is propagated through the FMU, to get the FMU state 

https://github.com/ThummeTo/FMI.jl
https://github.com/ThummeTo/FMIFlux.jl


Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            11 / 28 

derivatives corresponding to the measured trajectory. These serve as the input during training of 
the ANN. In order to obtain labels for the FMU state derivatives a collocation function is fitted to 
the input data, where the function is chosen such that, the derivative can be analytically computed. 
Evaluating this derivative at the timepoints of the measurement gives estimated state derivatives 
along the measured trajectory and thus the required labels for the training data.  

 

 

Figure 3-4 NeuralFMU after collocation (orange) and training (green) 

 

For the final training, the entire hybrid model is simulated for a given time span (forward pass) 
and after simulation, the network weights are adapted to better fit the state trajectory from data 
(back-propagation), based on chained parameter-sensitivities through ANN, FMU and ODE solver. 
The results are shown in Figure 3-4: Even before full training, the simulation accuracy of the 
collocated NeuralFMU (orange) is already similar compared to the original FMU simulation model 
(blue). In particular it is visible, that collocation leads to an offset in the simulation results. This is 
due to the fact that collocation is performed only on state derivative level and thus deviations on 

state level have no influence. 

Starting with the collocation result, after only 160 full training steps (60s per step), the trained 
NeuralFMU (green) clearly out-performs the first-principle simulation model in terms of total error 
in comparison with the real system trajectory (purple).  

 

3.1.2 Vehicle Dynamics 

The suspension of a vehicle does not only aim to maximize the comfort of passengers but critically 
influences the road-holding and cornering abilities. Thus, its design is safety-critical and defines 
the handling of the vehicle.  

The design goals, i.e., maximizing the comfort by minimizing the (vertical) chassis acceleration 
and maximizing the road-holding ability by minimizing the tire deflection are inherently conflicting. 
This is because an increased damping eliminates lower frequency-accelerations of the chassis, 
preventing the wheel to follow the road in return. Very low damping on the other hand allows 
direct transmission of accelerations to the chassis with the risk of resonance effects. 
This is why the suspension design always implements a trade-off between comfort and 
roadholding, depending on the desired handling characteristics [30, 31]. Active and semi-active 
suspensions aim to unlock a degree of freedom, enabling a dynamic adaption of the damping 
characteristics. This can be achieved by the deployment of actuated dampers with variable 
damping characteristics [32].  

In any case, defining the trade-off between the two properties is an important development effort 
and requires both, a requirements analysis for the considered vehicle type (e.g. sports car vs. 
limousine) and a system analysis. The latter can be realized by extensive measurement of single 
components, small assemblies and the whole vehicle. However, in the context of the general 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            12 / 28 

ambitions to reduce the prototyping and experimentation expenses, it is inevitable to implement 
credible models of components, the suspension and the whole vehicle respectively. This becomes 
even more important, if the suspension contains actuated components and the design of a control-
loop is required. 

In the context of autonomous driving, high fidelity models of the vehicle dynamics are core assets 
of the development process. They are used within model-based filter-algorithms for state 
estimation, for optimization-based control approaches and for the offline training of artificial 
intelligence (AI)-based control designs, such as Reinforcement-Learning (RL). Such controllers are 
not likely to be applicable, if the underlying model is not able to represent the reality sufficiently 
well. Furthermore, the controllers of autonomous systems are safety-critical components, meaning 
the credibility of the underlying models is of high interest to the developers and the users.  
 

 

 

Figure 3-5 Linear quarter vehicle model 

 

The quarter vehicle model 
A widely used model to represent the vertical dynamics of a vehicle is the quarter vehicle model 

(QVM), which only considers one wheel and one quarter of the chassis [32, 33, 34]. As depicted 

in Figure 3-5, the wheel and the chassis are approximated by two masses that are linked by the 

suspension, consisting of a damper and a spring. The dynamics of the tire are incorporated as 

another spring-damper pair, which connects the wheel to the ground. The differential excitation 

imposed by the (dynamic) height of the ground 𝑧𝑟 is considered as the input, while the accelerations 

of chassis and wheel respectively are possible outputs. Furthermore, the dynamic wheel load is of 

major interest as the maximal applicable lateral and longitudinal tire forces are determined by the 

wheel load. The model state space consists of five quantities, being the height and vertical 

velocities of body and wheel respectively and the height of the ground. Note that all states are 

aligned with the z-axis and movements in the horizontal directions are not considered. 

 

 

Figure 3-6 Non-linear QVM with semi-active suspension 

 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            13 / 28 

Using the linear QVM as basic structure, further refinements can be added. Real dampers often 

exhibit non-linear characteristics, making the coefficient 𝑑 dependent on the current differential 

displacement [32, 34], which leads to the non-linear differential equations: 

 

 
 

 

In our use case, a semi-active suspension is used, which contains a non-linear damper, actuated 

by a current 𝐼 (see Figure 3-6). In general, the non-linear damper characteristics are often available 

through the datasheet of the manufacturer and can be integrated by approximate functions or 

look-up tables.  

However, many effects are hard or impossible to incorporate into the model. Hard to consider are 

e.g., non-linearities introduced by the transmission of the wheel excitation to the spring-damper 

excitation, resulting from constructions that do not align the suspension directly with the wheels 

z-axis. The inference of the transmission ratios is a source of ambiguity when detailed blueprints 

of the suspension are not accessible. Another source of model-errors is the inexact measurement 

of the mass of the wheel, which is not trivial, since the mass of the suspension, i.e., of the spring, 

damper, wishbones, mountings etc. must be partly ascribed to the wheels mass.  

The coefficients of the tire model are dependent on the air pressure inside the tire and might follow 

a nonlinear characteristic. Furthermore, the model neglects effects of the rubber mounts of the 

articulated parts of the suspension and any kind of friction. Finally, the coupling of the four wheels 

through the chassis and influences by other mounted masses, e.g., the engine, cannot be 

considered. At this point, it becomes apparent that increasing the precision of the QVM by refining 

the model equations and incorporating the reviewed influences soon becomes infeasible. 

  

Restoring the Concept to Realism Continuity 

In order to provide a credible model of vehicle vertical dynamics, one soon reaches the limits of 

analytical inference. Therefore, we aim to use the QVM to the degree it provides feasible 

predictions and augment it with data-driven components. The analytical part of the obtained hybrid 

model represents the fundamental behavior and incorporates available knowledge of high 

reliability, as for example the well-known spring and damper characteristics. However, effects 

which are hard to isolate, like the influences of rubber mounts for example, are not explicitly 

modelled. The data-driven parts of the model are then entrusted to close the gap between the 

model and real measurement data by learning the unmodelled phenomena. 

By augmenting the reviewed differential equations with black-box components, we aim to 

implement a set of neural ODEs (see Section 2.2) to obtain a well fitted, hybrid QVM. Choosing 

this approach has the advantage that the outputs of the neural networks can be interpreted as 

physical quantities such as forces or coefficients. This yields the opportunity to directly enforce 

physical laws and thus enhance the scalability of the model to unseen inputs [35].  

Before applying the hybrid approach to learn a model from real measurements, we used simulated 

data to validate the methodology. This is necessary, since many effects influence the 

measurements, making it hard to interpret what is learned by the black-box components. For a 

proof of concept, we deployed the linear and non-linear QVM to generate reference data by 

simulating the system for a defined input. The implementation in Julia is straightforward, using 

the OrdinaryDiffEq.jl package which allows defining an ODE problem and solve it over time. The 

generated trajectories of the state and the system-output serve as training data for the 

experiments. In a first step, we conducted a gradient-based parameter-fitting for the model 

parameters, starting from an artificially disturbed parameter-set and using the methods from 

DiffEqFlux.jl to conduct the training. While convergence could be achieved, it showed that the 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            14 / 28 

gradient-based fitting finds the optimum much slower than a basic evolutionary optimization and 

is naturally prone to local optima. We therefore propose to use non-gradient-based optimization 

methods for parameter-identification, before optimizing additional parameters of AI-components.  

 
  

 

 

  

Figure 3-7 Hybrid QVM 

  

 

  

 

  

 

Next, we augmented the linear QVM with a single single-input-single-output neural network (see 

Figure 3-7), which was trained to learn a non-linear friction force (see Figure 3-8). The friction-term 

has been incorporated in the generated reference data but was not modelled in the hybrid QVM. 

The obtained ODEs of the hybrid QVM now contain the output of the neural network, which is 

treated as a force 𝐹𝑁𝑁 and depends only on the relative velocity of the two masses: 

 

   
 

 

 

Figure 3-8 Learned and reference friction 
curve 

  

 

 

 

Figure 3-9 Hybrid QVM in comparison with 
reference data 

 

 

We found, that through the training, the underlying friction force is well approximated by the 

neural network (see Figure 3-8). Note that the friction force is not explicitly learned, but the training 

solely relies on minimizing the deviation of the model-output trajectories to the reference data. A 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            15 / 28 

detail from these trajectories for the body and wheel accelerations is depicted in Figure 3-9. It is 

evident, that the hybrid model (after training) fits the reference well, while the linear model (i.e. 

the model before training) naturally shows a significant deviation.  

To sum up, up to this point we showed that neural networks can be used to learn underlying 

physical effects using the solution of the differential equations and refer them to training data. 

However, it is yet to show that this approach scales to real measurements and that models with 

more complex and multiple black-box components yield comparable results.  

 

Providing measurement data 

For a successful model fitting, it is crucial to provide representative data which contains the 

considered model outputs as a ground truth. The common way to characterize the vertical 

dynamics of a vehicle is to simulate the road excitations with hydraulic posts underneath all four 

wheels and measure the deflections and accelerations of the wheels and the chassis. The 

excitations can either simulate a real road or evolve sinusoidally with increasing frequency (sinus-

sweep) in order to characterize the vertical dynamics in the frequency domain. In addition to the 

deflections and accelerations of the vehicle, the post (vertical) positions, velocities and 

accelerations as well as the individual dynamic wheel-loads are available and can be used for 

training and validation purposes. In extensive experiments, we have collected a large dataset with 

our experimental platform AI for Mobility (AFM), a modified series-production vehicle. After 

preprocessing, this data will be used for the upcoming modelling of the vehicle vertical dynamics 

using a hybrid QVM.  

  
3.1.3 Driver Monitoring 

The Driver Monitoring use case aims at monitoring the vital parameters of a driver by means of 
an AI-enhanced radar system. The overall system consists of the radar sensors, a microcontroller 

platform, AI models and other software components for tasks like data transfer and pre-
processing. The AI algorithm will be trained on data gathered with real world setups as well as 
simulations. These simulations include a model of the sensor and of the interior of a car with a 
driver. The use of simulated data enables system verification and testing in diverse scenarios as 
well as testing over long-time spans. Furthermore, data generated during the simulation runs can 
be used to increase the robustness of the AI models, in particular by better generalization over 
more variants of known tasks and sensing environments.  To improve the quality and robustness 
of the simulated data, information collected with real world setups can be exploited to model and 
predict environmental effects such as noise. In a real-world application, the sensor can also lead 
to measurement failures. Such failures can be caused by chip failure, deterioration due to external 
factors and damages, and wear and tear due to long usage. Therefore, for a more realistic modeling 
of the sensor in a given context, the influence of equations that take into account the main reasons 
for failure of operation must be considered together to the noise statistics extracted from the real 
data. 

For the simulation, all the 3D modeling and scenery generation will be done using Blender [37], 
which is a free, cross-platform modeling, rendering and animation software. The electromagnetic 
simulations of the radar device will be performed on Ansys HFSS [38] (high-frequency 
electromagnetic simulation environment) using Ansys SBR+ [39] (Shooting and Bouncing Rays). 

The simulation scene for this use case mainly consists of three parts: radar sensor node model, 
driving model, and car model. The scene components and their sub-parts are described in the 
following subsections. A general block diagram of the various modules for the driver monitoring 

use case is shown in Figure 3-10. 

  

https://vsdc.de/en/homepage-english/
https://www.ansys.com/products/electronics/ansys-hfss
https://www.ansys.com/content/dam/product/electronics/hfss/ansys-sbr-plus.pdf


Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            16 / 28 

 

Figure 3-10 For every simulation, the scene is composed from 3 main models: the sensor 
node model, the driving model and the car model. The environment accounts for the scene 

and model configuration. 

 

The scenario setting influences all three main model nodes. The selected scenarios are described 
after the scene element’s description. 
 
Radar sensor node model 

The radar sensor node model includes all steps from data collection, scene-dependent sensor 
configurations, signal processing with real data augmentation and preprocessing, to motion and 
vital parameter tracking.  

Raw information gathered from radar devices is not easily interpretable and often requires suitable 
preprocessing to be exploitable. In addition, the radar signal contains scattered information from 
the multiple constituent elements of the scene. Consequently, using mathematical models for the 
generation of environmental noise to be included in the simulation in relation to the particular 
scenario can be expensive and difficult to interpret during data processing. The use of equations 
that model sensor failures during use can also enable the observation of effects on measurements 
over long spans of time or chip damage, which are difficult to measure in the real world. 

Through a data-driven approach, however, it is possible to transfer information from the real world 

to the simulated data, depending on the conditions in which the sensor is employed. This 
consequently allows to decrease the gap between simulation and the real world without directly 
impacting the complexity of the models.  

The radar sensor node includes multiple sub-components, is the main component of the system 
and the component that is modelled using a hybrid approach. The entire block diagram of the 
radar sensor node is shown in Figure 3-11. The main sub-components are: 

1. The sensing element: with the purpose of emulating the physical behavior of the radar 
sensor 

2. The noise/failure generator to allow for more realistic simulations through the hybrid 
approach 

3. The tracking module for the estimation of movements and vital parameters of the driver. 

 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            17 / 28 

                   

Figure 3-11 Representative block diagram of the simulated radar model. The blocks in 
orange represent the state of the device, i.e. its configuration in the scene (Environment), 

the generated signal (Sensor Signal) and the management of the signal once preprocessed 

 

Sensing Element 

Among the various radar technologies, the FMCW (frequency modulated continuous wave) is 

particularly suitable for the detection of small displacements, thanks to its ability of accurately 
estimating the position and velocity of targets within its range. This is possible thanks to the 
continuous generation of frequency modulated signals, which contrast the ambiguity of detecting 
the position of targets compared to other modulation technologies. In our simulation, we will use 
as sensing element a black-box model of the Infineon BGT60TR13C - XENSIV™ 60GHz radar [40]. 
This model is generated in Ansys HFSS [38] through Ansys SBR+ [39], which is an asymptotic 
simulator for modeling EM interaction in electrically large environments. The measurements of the 
sensing element are directly influenced by the environment, i.e. the scene in which it is used and 
the specific measurement requirements (vital signs or driver movements). 
 

                        

Figure 3-12 Real Infineon BGT60TR13C (left) vs Simulated Black Box model in Ansys HFSS 
SBR+ (right). The separation line is between the transmission channel (Tx) and the three 

reception channels (Rx). 

 
Noise/Failure Generator 
In this module, information collected in real experiments is exploited, along with equations that 
account for device failures to increase the robustness and degree of realism of the data generated 
by the simulation. Actual data is collected in the context of in-car driving, in a manner consistent 
with the constraints placed on the defined scenarios to be simulated. For each real driving context, 
a statistical analysis is performed on the raw sensor data in order to obtain a noise distribution 
over the entire measurement range. To extend the amount of available real-world data even 
further open-source data sets are also considered and analyzed to improve input for the noise 
modeling. 

Depending on the type of scenario chosen, noise statistics generated from the real data are added 
to the simulated data upstream of the tracking module, so that the information given by the noise 
is also pre-processed and analyzed. The noise statistics for each simulation frame is estimated 

https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
https://www.ansys.com/products/electronics/ansys-hfss
https://www.ansys.com/content/dam/resource-center/application-brief/ansys-sbr-plus.pdf


Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            18 / 28 

using a regression neural network (AI model), trained on the real data statistics. Depending on 
the specific scenarios, failure information can be added to the simulated data by failure equations 
over long- or short-time spans. The training of the regression neural network can also be influenced 
by the failure equations used, in the form of training regularization terms. A regularization term 
can be added to the cost function to be optimized to avoid overfitting the model on corrupted 

signals. An example of a failure equation is the presence of noise such as Gaussian white, caused 
by wear and tear in the sensor over time. Given an ideal radar signal 𝑆(𝑡), an example of failure 

term 𝐾(𝑡) can be as follows: 

 

𝑆𝑛(𝑡)  = 𝑆(𝑡)  +  𝐾(𝑡)  =  𝑆(𝑡)  +  ℵ(𝜇, 𝜎) 
 

𝐿𝑜𝑠𝑠 =  𝐸𝑟𝑟𝑜𝑟(𝑦, �̂�)  + λ𝐾  𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑤) 
 

Where λ𝐾 is the regularization parameter, dependent by the employed K term. 

 
The outcome expected from the failure equations is also exploited to inform the model of potential 
failures in evaluation and testing phases. This hybrid approach, which consider real data and 
support equations, allows theoretically to obtain a more accurate estimation of the parameters 
than a classical deep learning approach. A descriptive diagram of the Noise/Failure Module is shown 

in Figure 3-13. 
 

                     

Figure 3-13 Block diagram of the Noise/Failure module  

 
The environment defines the context information (Scene, Scenario and sensor configuration). The 
real data is used to calculate the noise profile. The simulated data at each frame, biased by the 
failure equations are used as input to the regression neural network. The regression network, 

which employs a regularization term for the cost function depending by the defined failure term, 
exploits the real noise distribution as output and predicts the noise for the new simulated data. 
The sum of the estimated noise and the simulated data is then given as input to the tracking 
module. 
 

Tracking Module 

This module is responsible for performing all preprocessing and classification steps on the sensor 

signal, in order to extract for each simulation frame, the movements, and potentially the vital 
parameters of the driver. In most radar applications, estimation of a person's vital parameters is 
possible exclusively by analysis of the phase information between transmitted and reflected 
signals. This is because the phase is highly sensitive to small displacements such as heart rate and 
respiratory rate, which are hardly detectable by amplitude or frequency analysis. The phase 
information, however, can be easily corrupted by other movements and or vibrations. In this case, 
vehicle vibrations and driver movements can alter the information content. A correct estimation 
of vital parameters can therefore be made only in the approximation of minimum car and driver 
movements. The tracking module has therefore the objective not only to preprocess the signal but 
also to estimate the movements of the driver and understand when there are the optimal 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            19 / 28 

conditions to calculate the vital parameters. The tracking module will make use of deep learning 
models trained on real data and previously simulated together with signal processing methods to 
estimate movements and vital signs of the driver. 
 

Driving model 

 The driving model consists of two main sub-components: 
1. The driver: This is the model of a human being to the guide of the vehicle. For the 

development of the driver model, we used the mannequin and the animation of sporty 
driving taken from the Mixamo platform [41] as a base. These models have been adapted 
to the guide of a utility car and modified of proportion in order to match the average 
shoulder width of an adult man (Biacromial breadth - link [42]). The software used for the 
modification and scaling of the models is Blender [37]. 

2. The Steering wheel: i.e. steering movements in relation to driving actions. Although the 
steering is part of the car's cockpit, it is directly influenced by the vehicle's driver, scenarios 
and driving style. Consequently, it is considered as an integrative part of the driving model. 
In the case of our simulations, the steering wheel has been completely modeled in Blender 
[37]. 

 
Car model 

 The car model is mainly composed of two sub-components: 

1. The cockpit: i.e., the internal elements of the car that do not particularly affect driving 
but can affect the signals reflected by the sensing element of the radar sensor node model. 
Since the configuration of the radar sensor, both in real applications and in the sensing-
module is tuned to focus only on the arms and chest of the driver, modelling the driver seat 
is sufficient for a good approximation. The seat model has been chosen with Royalty Free 
License from CgTrader [43]. 

2. The vibration module: simulates the car vibrations according to the road condition. 
Although in real conditions, in most scenarios, most of the vibrations are attenuated by 
shock absorbers, the residual movements still cause noise added to the information sensed 
by the radar module. Such added noise can be especially critical for the computation of 
phase information, which is necessary for the extraction of vital parameters.  

However, an implementation in the simulation environment of this module is for now planned as 

an optional goal, since it depends on the state of other sub use cases of the automotive use case. 

The idea would be for example to connect this module with the brake system that is based partly 

on real world data. By simulating at the same time, the brake system and driver monitoring, the 

vibrations generated by braking can be transmitted to the cockpit and driver model. The described 

approach might not be the most efficient way to implement the simulation of vibration, but it 

shows the possibilities for a cooperation. The specific details of a cooperative simulation and its 

implementation details such as hybrid modelling will be evaluated and discussed with the 

corresponding partners. 

The basic components of the driving model along with the driver seat that is part of the car model, 

are depicted in Figure 3-14. 

 

https://www.mixamo.com/#/
https://www.healthline.com/health/average-shoulder-width#measuring-your-shoulders
https://www.blender.org/
https://www.blender.org/
https://www.cgtrader.com/free-3d-models/car/sport/car-seat-91dfc7eb-651f-49f5-a87c-568bb135de1c


Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            20 / 28 

                

Figure 3-14 Driving Model and seat in two different projections and software. In the left 
image, 3D models are important in Blender software for generating the driving scenarios. 

The dimensions of the driver's steering and shoulders are depicted in the figure. On the 
right, the same models imported into Ansys HFSS for SBR+ simulation. 

 

Next Steps 
After the basic setup of the simulation models and environment is completed, IFAG will investigate 
more aspects that improve the quality of the simulations. For example, reality continuation 
concepts will be explored and implemented. Specifically, the modelling of the drifts in sensor data 
are hard to model without real world data and information since it has many causes such as 

hardware degradation or changes in the user behavior. Furthermore, many aspects of drift and its 
causes are still researched. Hence, a continuous update and extension of the noise generator is 
essential to improve the performance, robustness and safety of AI models trained with this 
simulation environment.   

Another aspect is to introduce more randomness into the simulations. For example, under current 
conditions, all simulations are performed on a single driver model representing the average adult 
human. However, stature and other physiological characteristics of people can also influence the 

estimation of vital parameters and movements. Consequently, a set of various types of driving 
subjects should be considered in the future and for every time that the simulation starts with a 
driver entering the car, a subject will be randomly picked from the set of available models. 

A further topic is to consider sources that impact the driver. Hence, besides vibrations that were 
mentioned in the car model section IFAG considers exploring the influences of gear shifting on the 
simulation. The gear in fact would not influence only the model of the car and the consequent 
conditions of vibration of the vehicle, braking and acceleration, but also the driving model. In the 

cars with the manual gear shift in fact, the action of change of gear, which involves the movement 
of the arms represents a common action in great part of the driving conditions and can make more 
difficult the vital signs estimation. 

 

3.2 Medical Use Case 

This use case focusses on decreasing the time to market of next generation medical devices, such 

as minimally invasive imaging catheters. To this end, product development should be strongly 
supported by virtual design and testing by means of validated high-fidelity digital twins of these 
devices and human tissue (e.g., arteries). Our improved understanding of the device-human tissue 
interaction from these interacting digital models will lead to quantified loading conditions within 
the device and the surrounding tissue. Consequently, relevant failure mechanisms at device and 
tissue level can be predicted by the computational models resulting in improved performance, 
reliability, and patient safety. Figure 3-15 illustrates the technological building blocks for the 
healthcare use case. The left part of the figure corresponds to the development phase of the new 

devices, while the right part of the figure corresponds to the usage or operational phase of the 
devices. Hybrid modelling could impact both phases: during the development phase, the 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            21 / 28 

availability of data (e.g., materials, manufacturing, earlier generations) and resulting hybrid 
approaches can significantly reduce the development phase. With real data available the gap 
between the model and reality will decrease over time during the operation phase. Within this use 
case, a hybrid modelling concept will be applied and further developed to support the virtual testing 
demo in terms of near real-time simulation capability.  

 

 

Figure 3-15 Schematic of the technological building blocks of the healthcare use case; the 
hybrid modelling activity is part of the virtual testing demo (grey-dashed region) 

 
 

Near real-time simulations with sufficient accuracy can be achieved by reduced order modelling 
and hybrid modelling methods. Our use case will study both methods. Here, we will report on the 
selected hybrid modelling approach: physics-informed neural networks. One of the key ingredients 
in the healthcare use case is the ability to simulate the deformation behavior of the medical device 
during a medical procedure in near real-time. Results of experimentally validated high-fidelity 
physics-based models (left part of Figure 3-15) could be considered as ground-truth for these near 

real-time simulations.  

In this use case, hybrid modelling, next to reduced order modelling, is considered as approach to 
realize real-time simulation capabilities in the virtual testing demo. To this end, physics-informed 
neural networks will be used to describe the deformation of a medical device.  

 
3.2.1 Neural networks to describe the deformation of a medical device 

As explained in Section 2.3, this work is based on U-Mesh, a data-driven method based on a U-
Net architecture which is able to approximate a (nonlinear) relation between mechanical forces 
and displacements, proposed by Mendizabal et al. [29]. Figure 3-16a illustrates an example of a 
network architecture. 

 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            22 / 28 

 

 
 

(a) (b) 

Figure 3-16 (a) Example of network architecture for a simple bending beam [29]; (b) 
illustration of the neural network training scheme (MAE: mean absolute error) 

 

As a proof-of-principle, a simple bending beam is considered which is loaded at multiple locations 
with prescribed forces. This simple test case is motivated by the fact that bending is one of the 

principal deformation modes of a medical device as a result of device-tissue interaction during a 
medical procedure. Upon realizing accurate results within this first proof-of-principle, the 
complexity will be increased towards a real medical device. First, the neural network is trained 
using a mean absolute error of the displacement field as evaluation criterion, as illustrated in Figure 

3-16b. For this simple case, an analytical equation is used to generate the synthetic data to train 
the network as depicted in Figure 3-17. Evidently, for more realistic situations, analytical equations 
are not available. In these cases, the synthetic data will be generated by the high-fidelity physics 

models, possibly complemented with real-time sensor information. 
 

 

Figure 3-17 Analytical equations for the bending beam with arbitrary forces used to 
generate synthetic training data with the x-coordinate along the beam 

 
Several network depths were tested in order to select the most appropriate values for the use 
cases in a tradeoff for the desired accuracy and computational cost. 

Figure 3-18 shows the first results. The left picture illustrates the Mean Absolute Maximum 
Percentage Error (MAMPE), given in Figure 3-18a, as function of the training iterations. Figure 3-18b 
illustrates the trained (converged) result of the simple bending beam which is validated with the 
analytical equation.  



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            23 / 28 

 

 
 

(a) (b) 

Figure 3-18 (a) Evolution of loss function during training; (b) calculated deflection along 
the beam from the trained network (overlay: analytical equation) 

 
3.2.2 Physics-informed neural networks to describe the deformation of a medical device 

To this end, a regularization function will be added to the MAE function, as depicted in Figure 3-1. 
Here, the regularization function is the classical bending beam equation. In addition, at the left 
bottom, an additional source of synthetic data is included: finite element simulations. Clearly, this 
is not required for the simple bending beam case but will become relevant for the more realistic 
cases. 
 

 

Figure 3-19 Schematic of a physics-informed neural network 

 
This PINNs method is currently being implemented and verified. 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            24 / 28 

4 Abbreviations 

 

ACRONYM DESCRIPTION 

ANN Artificial Neural Network 

CS Co-Simulation 

FFNN Feedforward Neural Network 

FMI Functional Mockup Interface 

FMU Functional Mockup Unit 

IPB Integrated Power Brake 

MAE Mean Absolute Error 

MAMPE Mean Absolute Maximum Percentage Error 

ME Model Exchange 

ODE Ordinary Differential Equation 

PDE Partial Differential Equation 

PINN Physically Informed Neural Network 

RL Reinforcement Learning 

RNN Recurrent Neural Network 

SiL Software-in-the-Loop 

QVM Quarter Vehicle Model 

 
 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            25 / 28 

5 Literature 

 

[1] von Rueden, Laura, et al. "Informed Machine Learning--A Taxonomy and Survey of Integrating 
Knowledge into Learning Systems." arXiv preprint arXiv:1903.12394 (2019).   

[2] Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: 
A deep learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations." Journal of Computational Physics 378 (2019): 686-707.  

[3] Zhu, Quan Min, Li Feng Zhang, and Ashley Longden. "Development of omni-directional 
correlation functions for nonlinear model validation." Automatica 43.9 (2007): 1519-1531.  

[5] Albeaik, Saleh, et al. "Deep Truck: A deep neural network model for longitudinal dynamics of 
heavy duty trucks." 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019.  

[6] Punjani, Ali, and Pieter Abbeel. "Deep learning helicopter dynamics models." 2015 IEEE 
International Conference on Robotics and Automation (ICRA). IEEE, 2015.  

[9] Long, Zichao, et al. "Pde-net: Learning pdes from data." International Conference on Machine 
Learning. 2018.  

[10] Chang, Bo, et al. "Multi-level residual networks from dynamical systems view." arXiv preprint 
arXiv:1710.10348 (2017).  

[11] Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information 

processing systems. 2018.  

[12] Rackauckas, Chris, et al. "Diffeqflux. jl-A julia library for neural differential equations." arXiv 
preprint arXiv:1902.02376 (2019).  

[13] Cao, Yang, et al. "Adjoint sensitivity analysis for differential-algebraic equations: The adjoint 
DAE system and its numerical solution." SIAM journal on scientific computing 24.3 (2003): 1076-
1089.  

[14] Innes, Michael. "Don't unroll adjoint: differentiating SSA-Form programs." arXiv preprint 
arXiv:1810.07951 (2018).  

[15] Kelly, Jacob, et al. "Learning Differential Equations that are Easy to Solve." arXiv preprint 
arXiv:2007.04504 (2020).  

[20] Jia, Junteng, and Austin R. Benson. "Neural jump stochastic differential equations." Advances 
in Neural Information Processing Systems. 2019.  

[23] Tercan, Hasan, et al. "Transfer-learning: Bridging the gap between real and simulation data 

for machine learning in injection molding." Procedia CIRP 72 (2018): 185-190.  

[24] Pulido, Belarmino, Jesús M. Zamarreño, Alejandro Merino, and Anibal Bregon. “State Space 
Neural Networks and Model-Decomposition Methods for Fault Diagnosis of Complex Industrial 
Systems.” Engineering Applications of Artificial Intelligence 79 (March): 67–86. 
doi:10.1016/j.engappai.2018.12.007, 2019.  

[25] Fu, Yiwei, et al. "A Dynamically Controlled Recurrent Neural Network for Modeling Dynamical 
Systems." arXiv preprint arXiv:1911.00089 (2019).  

[26] Qin, Tong, Kailiang Wu, and Dongbin Xiu. "Data driven governing equations approximation 
using deep neural net-works." Journal of Computational Physics 395 (2019): 620-635.  

[27] Fält, Mattias, and Pontus Giselsson. "System Identification for Hybrid Systems using Neural 
Networks." arXiv pre-print arXiv:1911.12663 (2019).  

[28] Greydanus, Samuel, et al. "Hamiltonian Neural Networks." Neural Information Processing 
Systems. 2019.  

[29] Mendizabal, A., Márquez-Neila, P., and Cotin, S. “Simulation of hyperelastic materials in real-
time using deep learning”. Medical Image Analysis 59: 101569, 2020. 

[30] M. Mitschke and H. Wallentowitz, Dynamik der Kraftfahrzeuge, Springer, 2004. 

[31] G. Rill, Road vehicle dynamics: Fundamentals and modeling. Ground vehicle engineering series, CRC 
Press, 2012.  

[32] S. M. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename and L. Dugard, Semi-Active Suspension Control 

Design for Vehicles, Elsevier Ltd., 2010. 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            26 / 28 

[33] M. Fleps-Dezasse, Linear Parameter-Varying Control of Full-Vehicle Vertical Dynamics using Semi-Active 

Dampers, 2018.  

[34] R. Dessort and C. Chucholowski, Explicit model predictive control of semi-active suspension systems using 

Artificial Neural Networks ({ANN}), Springer Fachmedien Wiesbaden, 2017. 

[35] E. Heiden, D. Millard, E. Coumans, Y. Sheng and G. S. Sukhatme, NeuralSim: Augmenting Differentiable 

Simulators with Neural Networks, IEEE International Conference on Robotics and Automation, 2020. 

[36] T. Thummerer, L. Mikelsons, and J. Kircher, NeuralFMU: Towards Structural Integration of FMUs into 

Neural Networks, Modelica Conference, 2021. 

[37] Blender Foundation. https://www.blender.org/. Accessed: 12.05.2022 

[38] Ansys HFSS. https://www.ansys.com/products/electronics/ansys-hfss. Accessed: 12.05.2022 

[39] Ansys SBR+.  https://www.ansys.com/content/dam/resource-center/application-brief/ansys-sbr-plus.pdf 
. Accessed: 12.05.2022 

[40] Infineon Technologies BGT60TR13C https://www.infineon.com/cms/en/product/sensor/radar-
sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/. Accessed: 12.05.2022[41] Adobe. 
https://www.mixamo.com/ . Accessed: 12.05.2022 

[42] Healthline. https://www.healthline.com/. Accessed: 12.05.2022 

[43] Cgtrader. https://www.cgtrader.com/. Accessed: 12.05.2022 

 
 
 

https://www.blender.org/
https://www.ansys.com/products/electronics/ansys-hfss
https://www.ansys.com/content/dam/resource-center/application-brief/ansys-sbr-plus.pdf
https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
https://www.infineon.com/cms/en/product/sensor/radar-sensors/radar-sensors-for-iot/60ghz-radar/bgt60tr13c/
https://www.mixamo.com/
https://www.healthline.com/
https://www.cgtrader.com/


Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            27 / 28 

6 Acknowledgment 

 

 

 

PROJECT PARTICIPANTS:  

Virtual Vehicle Research GmbH (AT) 

Virtual Vehicle Research GmbH (DE) 

 

Aarhus University – DK 

Agro Intelligence ApS – DK 

3D Mapping Solutions GmbH – DE 

Audi AG – DE 

Automotive Solution Center for Simulation e.V. – DE 

Infineon Technologies AG – DE 

Deutsches Zentrum für Luft- und Raumfahrt (DLR) – DE 

iCONDU GmbH – DE 

LTX Simulation GmbH – DE 

Robert Bosch GmbH – DE 

Technische Universität Berlin – DE 

University of Augsburg – DE 

Virtual Vehicle Research GmbH – DE 

Volkswagen A.G. – DE 

softwarehelden GmbH & Co. KG 

Eindhoven University of Technology – NL 

In Summa Innovation b.v. – NL 

KE-works BV – NL 

LifeTec Group BV – NL 

NLR - Royal Netherlands Aerospace Centre – NL 

Philips Electronics Nederland BV – NL 

Philips Consumer Lifestyle B.V. – NL 

Reden BV – NL 

Sioux LIME BV – NL 

Unit040 Ontwerp B.V. – NL 

University of Groningen – NL 

BEIA Consult International – RO 

Lucian Blaga University of Sibiu – RO 

The Manufacturing Research Centre (MTC) – UK 

SETLabs Research GmbH – DE 

 

 
 

 
 



Hybrid Simulation Models                                                                                                          UPSIM   

 
19006 – Deliverable D3.1a – Distribution Level Public                                            28 / 28 

DISCLAIMER 
This ITEA3 Project has been made possible by a financial contribution by the German Federal Ministry of 
Education and Research (BMBF), by the Austrian Research Promotion Agency (FFG), by the Rijksdienst voor 
Ondernemend Nederland (Rvo) and by the Innovation Fund Denmark (IFD). The Publication as provided 
reflects only the authors’ view. 
 
Every effort has been made to ensure complete and accurate information concerning this document. However, 
the author(s) and members of the consortium cannot be held legally responsible for any mistake in printing 
or faulty instructions. The authors and consortium members retrieve the right not to be responsible for the 
topicality, correctness, completeness or quality of the information provided. Liability claims regarding damage 
caused by the use of any information provided, including any kind of information that is incomplete or 
incorrect, will therefore be rejected. The information contained on this website is based on author’s experience 
and on information received from the project partners. 
 
 
 
 
 
 
 
 
 

 


