
D1.5b Description of demonstrator for production process optimization
Public

1

Knowledge-based services for and optimization of machines

Deliverable D1.5b

Description of demonstrator for
production process optimization

Deliverable type: Document

Deliverable reference number: ITEA 18030 | D1.5b

Related Work Package: WP 1

Use Cases, Requirements & Evaluation

Due date: M38 (30 November 2022)

Actual submission date: 14.11.2022

Author(s) Mehmet GÖKÇEDAĞLIOĞLU / Mehmet Cem YILDIZ

Confidentiality Public

Version v 1.0

D1.5b Description of demonstrator for production process optimization
Public

2

Contributors:

Name Company

Mehmet GÖKÇEDAĞLIOĞLU ERMETAL

Mehmet Cem YILDIZ ERMETAL

Özlem ALBAYRAK TEKNOPAR

Barış ÖKMEN DOĞRU

Bilge ÖZDEMİR ERSTE

Kamer KAYA DAKİK

D1.5b Description of demonstrator for production process optimization
Public

3

Table of Contents
Contributors: ... 2

Table of Contents .. 3

Tables .. 3

Figures ... 3

1. Revision History .. 4

2. Abstract ... 4

3. Description of demonstrator for production process optimization (ERMETAL) 4

3.1. Description and covered Use Cases .. 4

3.2. Outline of the demonstration of ‘‘Production Process Optimization Use Case’’ 5

3.3. Creation of Digital Twin (DAKIK- ERSTE) ... 13

3.3.1. DTDL Standards – creation .. 13

3.3.2. Data Querying and Visualization ... 21

3.3.3. ML-based from Processing .. 27

3.4. Data Acquisition and Data Processing (TEKNOPAR) ... 44

3.5. HMI Applications (DOĞRU) ... 49

3.5.1. Android Application .. 52

3.5.2. IOS Application .. 63

3.5.3. Unity .. 69

3.6. Implementation Schedule for Demonstration (ERMETAL) ... 70

Tables
Table 1: Validation profile of Description of demonstrator for production process optimization 5
Table 2: List of Sensors .. 7
Table 3: List of PLC and other assistance hardwares .. 8
Table 4: List of PC information .. 8
Table 5: List of softwares and platforms ... 9
Table 6: Press parameters to be collected .. 12

Figures
Figure 1: 3D Design of Ermetal Pressline .. 6
Figure 2: 3D Design of Ermetal Pressline .. 6
Figure 3: Data Flow Scheme .. 12

D1.5b Description of demonstrator for production process optimization
Public

4

Figure 4: Schedule for Description of demonstrator for production process optimization 71

1. Revision History

2. Abstract

This demonstration will be implemented to a 1600T press line in Ermetal press production
line. The press line consists of 5 presses (1x1600T press & 4x800T press) 8 transfer robots.
Proper devices and software developed by Turkish and other MACHINAIDE partners can be
used in the implementation of the demonstration. Aiming at predictive maintenance of the
press, digital twin of the press will be created. To do so sensors will be attached on the
press. The press will be observed virtually, and data will be collected by the help of the
sensors, e.g. pressure, temperature, vibration. These data coming from the sensors will be
the input for a learning algorithm. The visualisation and the learning algorithm will enable
the operators to view the status of the process.

As a result of the demonstration, Ermetal will obtain several benefits such as determining
the wearing effects on press, observing production parameter deviations might cause to
breakdowns and increasing efficiency e.g. press shot per minute by avoiding stop of a press
line by the help of assumptions of Digital Twin about possible breakdowns.

3. Description of demonstrator for production process optimization
(ERMETAL)

3.1. Description and covered Use Cases

In the table below, general information such as use case definitions, responsibilities,
possible contributions of partners to the use cases, interaction of use case with other
work packages are given (Table 1).

Version Date Description

v 1.0 14/11/2022 First version

D1.5b Description of demonstrator for production process optimization
Public

5

Responsible person: Mehmet GÖKÇEDAĞLIOĞLU
Main contributor, demonstrator
responsibility:

ERMETAL

Additional contributors and
needed contribution:

• TEKNOPAR: Use case description, Requirements
description, Platform creation, Automation

• ERSTE: Use case description, Requirements
description, Machine-learning based event
estimation, Data collection

• DOGRU: Use case description, Requirements
description, HMI applications

• DAKIK: Use case description, Requirements
description, Creation of Digital Twin

• Others:

Use case:

• Start Production
• Collect and Process Data
• Train ML Processes
• Conduct Predictive Maintenance
• Simulate Product Lifecycle

What is going to be validated
with this demonstrator?

• WP1 – Use Cases, requirements and evaluation
• WP2 – Interoperability of Digital Twin eco-systems
• WP3 – Processing of multiple Digital Twin’s data
• WP4 – Creating innovative HMIs for Digital Twin

based services
• WP5 - Information usage across the machine

lifecycle
Start of project: • 10/2019

Table 1: Validation profile of Description of demonstrator for production process optimization

3.2. Outline of the demonstration of ‘‘Production Process Optimization Use Case’’

This demonstrator is intended to simulate the MACHINAIDE use cases for Digital Twin
applications in a press line which consists 5 presses and 8 robots.

Demonstration will simulate following 5 cases as defined in details in D1.1;

1. Start Production
2. Collect and process data during production
3. Train Macine Learning Process

D1.5b Description of demonstrator for production process optimization
Public

6

4. Conduct Predictive Maintenance
5. Simulate Product Lifecycle

The demonstrator is going to be applied to the following 1600T press line of ERMETAL
illustrated by pictures below (Figure 1-2 and 3);

Figure 1: 3D Design of Ermetal Pressline

Figure 2: 3D Design of Ermetal Pressline

D1.5b Description of demonstrator for production process optimization
Public

7

Figure 3: General view of shop floor on which demonstrator to be implemented

Sensor types to be used in demonstration are listed in table below (Table 2);

NO SENSOR INFORMATION
(Pressure sensor, heat sensor, vibration sensor etc.)

QUANTITY

1 VIBRATION SENSOR (Accelermeter 50g.0-6000 hz) 4
2 HEAT SENSOR (PT100 PABUÇ TİPİ) 2
3 HEAT SENSOR 4-20mA OI-LINK CONVERTER 2
4 HEAT SENSOR -50-150 C 1
5 AIR FLOW SENSOR 4
6 PRESSURE SENSOR WITH SCREEN 0-100bar 1
7 PRESSURE SENSOR WITH SCREEN 0-400bar 1
8 ENERGY METER 400 V 5
 TOTAL 20

Table 2: List of Sensors

PLC and other assistance hardwares are listed in the table below (Table 3);

D1.5b Description of demonstrator for production process optimization
Public

8

NO PLC AND ASSISTANCE HARDWARES QUANTITY

1 PLC CPU 1515-PN 1
2 VIBRATION DIAGNOSTICS UNIT (BETWEEN

SENSORS-PLC)
1

3 VIBRATION DIAGNOSTICS UNIT (BETWEEN
SENSORS-PLC)

2

4 SIMATIC PLC MEMORY CARD 4MB 1
5 SIMATIC BUSADAPTER BA2XRJ45 2
6 SCALANCE XB008 INDUSTRIAL ETHERNET SWITCH 1
7 SIMATIC PN/PN COUPLER 1
8 SITOP PSU100S 24 V/5 A POWER SUPPLY 1
9 INTERFACE MODULE 1
10 SIMATIC ET 200SP BUSADAPTER 1
11 PLC MODULE SOCKET 6
 TOTAL 18

Table 3: List of PLC and other assistance hardwares

The sensors listed above purchased within the scope of the project and mounted on
determinated presses for demonstration. Each press has a total number of 24 sensors
and 47 data can be tracked via these sensors. All of these data flows and are ready to
store for processing for the purpose of Digital Twin creation etc.

PC information to be used for this demonstration are listed in the table below (Table 4);

NO PC INFORMATION QUANTITY

1 DELL OPTIPLEX 5080MT 17-
10700/8GB/256SSD/WIN10PRO Computer

1

2 KINGSTON 8GB 2666MHZ CL19 DDR4 PC RAM 1
3 DELL SE2416H 23.8 1920X1080 LED MONITOR 1
 TOTAL 3

Table 4: List of PC information

D1.5b Description of demonstrator for production process optimization
Public

9

Softwares and platforms to be used for this demonstration are listed in the table below (Table
5) ;

NO SOFTWARES AND PLATFORMS QUANTITY

1 OPC ROUTER 4 - KAFKA PLUG-IN 1
2 OPC ROUTER 4 BASIC 1
3 OPC ROUTER UA/DA CLIENT 1
4 OPC UA Licence (SIMATIC OPC UA S7-1500) 1
 TOTAL 4

Table 5: List of softwares and platforms

By using sensors, PLC, hardwares, PC information, softwares and platforms, mentioned
above, following press parameters will be collected;

RELEVANT PRESS
SYSTEM

DATA DEFINITON

MAIN ENGINE MAIN ENGINE RUN TIME
MAIN ENGINE START TIME
MAIN ENGINE MINUTE-REVOLUTION NUMBER
MAIN ENGINE BODY TEMPERATURE
MAIN ENGINE BACK REGION VIBRATION
MAIN ENGINE BACK REGION IMBALANCE
MAIN ENGINE BACK REGION MISALIGNMENT
MAIN ENGINE BACK REGION AXIAL CLEARENCE
MAIN ENGINE BACK REGION BEARING
MAIN ENGINE BACK REGION ACCELERATION
MAIN ENGINE FRONT REGION VIBRATION
MAIN ENGINE FRONT REGION IMBALANCE
MAIN ENGINE FRONT REGION MISALIGNMENT
MAIN ENGINE FRONT REGION AXIAL CLEARENCE
MAIN ENGINE BACK REGION BEARING

D1.5b Description of demonstrator for production process optimization
Public

10

MAIN ENGINE FRONT REGION ACCELERATION
LUBRICATION LUBRICATION PRESSURE

LUBRICATION OIL ROTATING TEMPERATURE
LUBRICATION UNIT HYDRAULIC PUMP VIBRATION
LUBRICATION UNIT HYDRAULIC PUMP IMBALANCE
LUBRICATION UNIT HYDRAULIC PUMP PALLET
LUBRICATION UNIT HYDRAULIC PUMP ENGINE BEARING
LUBRICATION UNIT HYDRAULIC PUMP ACCELERATION

FLYWHEEL FLYWHEEL BEARING TEMPERATURE
FLYWHEEL VIBRATION
FLYHEEL IMBALANCE
FLYHEEL GEAR
FLYWHEEL BEARING
FLYWHEEL ACCELERATION
FLYWHEEL INTERNAL BEARING
FLYWHEEL INTERNAL ACCELERATION

BALANCING BALANCING AIR PRESSURE
BALANCING AIR CONSUMPTION
BALANCING AIR TEMPERATURE

GENERAL PRESS MAIN SUPPLY LINE AIR CONSUMPTION
MAIN SUPPLY LINE AIR TEMPERATURE
CLUTCH BRAKING AIR CONSUMPTION
CLUTCH BRAKING AIR TEMPERATURE
HYDRAULIC SAFETY OIL PRESSURE
BRAKING GROUP WORKING TEMPERATURE
RAM TUNING POSITION
OPERATING DIE NUMBER OR NAME
PRESS PRESSURE TONNAGE
RAM STROKE NUMBER

ROBOT ROBOT MAIN SUPPLY LINE AIR CONSUMPTION
ROBOT MAIN SUPPLY LINE AIR TEMPERATURE
ROBOT CONTROLER UNIT INTERNAL TEMPERATURE
MONITORING

MAIN MACHINE
ENERGY

VOLTAGE BETWEEN L1-L2 PHASES
VOLTAGE BETWEEN L2-L3 PHASES
VOLTAGE BETWEEN L3-L1 PHASES
VOLTAGE BETWEEN NEUTRAL-L1
VOLTAGE BETWEEN NEUTRAL-L2

D1.5b Description of demonstrator for production process optimization
Public

11

VOLTAGE BETWEEN NEUTRAL-L3
L1 PHASE CURRENT
L2 PHASE CURRENT
L3 PHASE CURRENT
NETWORK FREQUENCY
ACTIVE COUNTER INDEX
REACTIVE COUNTER INDEX
TOTAL ACTIVE POWER
TOTAL REACTIVE POWER
TOTAL POWER FACTOR POWER

MAIN MOTOR
ENERGY

VOLTAGE BETWEEN L1-L2 PHASES
VOLTAGE BETWEEN L2-L3 PHASES
VOLTAGE BETWEEN L3-L1 PHASES
L1 PHASE CURRENT
L2 PHASE CURRENT
L3 PHASE CURRENT
ACTIVE COUNTER INDEX
REACTIVE COUNTER INDEX
TOTAL ACTIVE POWER
TOTAL REACTIVE POWER
TOTAL POWER FACTOR POWER

RAM TUNING
MOTOR ENERGY

VOLTAGE BETWEEN L1-L2 PHASES
VOLTAGE BETWEEN L2-L3 PHASES
VOLTAGE BETWEEN L3-L1 PHASES
L1 PHASE CURRENT
L2 PHASE CURRENT
L3 PHASE CURRENT
ACTIVE COUNTER INDEX
REACTIVE COUNTER INDEX
TOTAL ACTIVE POWER
TOTAL REACTIVE POWER
TOTAL POWER FACTOR POWER

LUBRICATION
HYDRAULIC
PUMP MOTOR
ENERGY

VOLTAGE BETWEEN L1-L2 PHASES
VOLTAGE BETWEEN L2-L3 PHASES
VOLTAGE BETWEEN L3-L1 PHASES
L1 PHASE CURRENT
L2 PHASE CURRENT
L3 PHASE CURRENT

D1.5b Description of demonstrator for production process optimization
Public

12

ACTIVE COUNTER INDEX
REACTIVE COUNTER INDEX
TOTAL ACTIVE POWER
TOTAL REACTIVE POWER
TOTAL POWER FACTOR POWER

DIE TROLLEY
HYDRAULIC
PUMP MOTOR
ENERGY

VOLTAGE BETWEEN L1-L2 PHASES
VOLTAGE BETWEEN L2-L3 PHASES
VOLTAGE BETWEEN L3-L1 PHASES
L1 PHASE CURRENT
L2 PHASE CURRENT
L3 PHASE CURRENT
ACTIVE COUNTER INDEX
REACTIVE COUNTER INDEX
TOTAL ACTIVE POWER
TOTAL REACTIVE POWER
TOTAL POWER FACTOR POWER

Table 6: Press parameters to be collected

Figure 3: Data Flow Scheme

D1.5b Description of demonstrator for production process optimization
Public

13

3.3. Creation of Digital Twin (DAKIK- ERSTE)

3.3.1. DTDL Standards – creation
A key challenge with digital twin technology is understanding how to model industry-specific
domain knowledge while enabling different platforms to communicate with each other to
make sense of the complex relationships that exist in the physical world. Assuming these
twins also interact with each other, a standard digital twin definition language is needed to
create and manage the twins in a digitalized ecosystem. However, as industry technology
evolves, the languages that support their development must evolve as well. In this project,
we have used Azure Digital Twins Definition Language (DTDL). which is implemented and
made available by Microsoft as the core DTDL for their Digital Twin applications.1

3.3.1.1. Azure DTDL
The key features of Azure DTDL are that you can define your own dictionary and can create
your twin graph under automatically defined conditions of your business. This feature is
provided through User-defined models. You can think of your models as names in a
description of the world.

The model is similar to a class in an object-oriented programming language and defines a data
shape for a specific concept in your actual work environment. Models have names (such as a
room or temperature sensor) and contain items such as properties, telemetry / events, and
commands that describe what this type of entity in your environment can do. You will then
use these models to create the digital twin representing specific entities that meet this type
of description.1

Azure digital twin models are defined using the digital twin definition language (DTDL). DTDL
is based on JSON-LD and is programming language independent. It is not exclusive to Azure,
but is also used to display device data in other IoT services such as IoT Plug and play.

Within a model definition, the top-level code element is an interface. This encapsulates the
entire model and the rest of the model is defined within the interface. A DTDL model
interface can contain zero, one, or more of each of the following fields:

• Property : properties are data fields that represent the state of an entity (such as

properties in many object-oriented programming languages). Features backs up
storage and can be read at any time.

• Telemetry : telemetry fields represent measurements and events and are often used
to show device sensor settings. Unlike features, a telemetry digital twin is not stored;
This is a set of time-bound data events that must be processed in the order they occur.

1 https://docs.microsoft.com/en-us/azure/digital-twins/concepts-models

D1.5b Description of demonstrator for production process optimization
Public

14

• Component : components allow you to build your model interface as a compilation of
other interfaces. An example of a component is a leading Camera interface (and
another component interface back camera) used when defining a model for a Phone.
First, you need to define an interface for front-camera like its model and then you can
refer to it when defining Phone.

• Relationship : relationships allow you to represent how to incorporate a digital twin
with other digital TWINS. Relationships allow the solution to provide a chart of
interrelated entities.

Below is a typical model written as a DTDL interface. The model describes the planners, each
having a name, batch, and temperature. Consider that planets can also interact with their
moons, the Moons. In the example below, the model refers to the links to these other entities
by referring to two external models (and). These models are also defined in the sample code
below, but are too simple to stop at the primary example.

The table below shows some of the keywords and definitions used when creating a digital
twin with Azure DTDL. For more details, you can refer to
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md.

 Explanation

D1.5b Description of demonstrator for production process optimization
Public

15

@id An identifier for the model. It should be in the form. dtmi:
<domain> : <unique model identifier> ; <model version number>

@type Defines the type of information being disclosed. For an interface,
the type interface.

@context Sets the JSON document context. Models should use.
dtmi:dtdl:context;2

displayName The selection allows you to give the model an easy name if you
want.

contents All remaining interface data is placed here as an array of attribute
definitions. Each attribute must provide a (feature, telemetry,
command, relationship, or component) to determine the order of
the interface information it describes, followed by a set of
properties that define the actual attribute (for example, and define
a feature).

Sometimes you may want
to further customize a
model. For example, it can
be useful to have a general
model room and a
customized assortment
conference-room and a
Gym. Azure DTDL supports
inheritance in fast
customization: interfaces
can be inherited from one
or more interfaces. The
example on the left
redisplay the Planet model
above as a subtype of a
larger model. The "top"
model is defined first and
then created using the
"bottom" model area.
3.3.1.2. Example
JSON from the Turkish use-
case
The following file
containing the hierarchy of
factory, production line,

machine, component, sensor, field has been received from ERMETAL. In this file, there is

https://niem.github.io/json/reference/json-ld/context/

D1.5b Description of demonstrator for production process optimization
Public

16

information that identifies the parent-child relationship among the parts. In addition,
metadata information such as name, displayName, description and data source settings about
the relevant part are also kept.

According to this file, the JSON structure shown below has been created. This JSON
structure is used in the creation and management of the digital twin in the program.

3.3.1.3. Tree hierarchy and its management/visualization
The digital twin monitor page is where the configurations of the digital twin are made and
monitored. This main page consists of 3 parts. In the middle, there is a graph/tree whose
nodesand edges generate the factory, production line, machine, component, sensor and field
hierarchy. In the left part, the metadata of a selected node on the graph is displayed, and in
the right part, a 3-dimensional visual model of a selected node on the graph is displayed.

D1.5b Description of demonstrator for production process optimization
Public

17

3.3.1.4. Complex twins, interoperability and TWINAIDE
Twinaide is an open-source platform for managing and creating interoperable digital twins.
Twinaide aims to support innovative concepts for accessing, searching, analysing and using
multiple Digital Twins data. Twinaide will allow the data of digital twins to be pulled from
sources such as Kafka, RabbitMQ, InfluxDB and displayed on appropriate graphics. Using an
extended version of Azure DTDL, Twinaide will allow users to flexibly create their own
hierarchy and upload them to the system via prepared files. The Twinaide tool consists of 3
separate module: a single page application developed with React, a rest API developed with
NodeJS and ExpressJS, and a Flask API developed to interact with third-party services.

• Source codes of API developed using NodeJS, ExpressJS and MongoDB can be accessed
at twinaide.

• The source code of the interface developed using ReactJS and various Javascript
libraries can be accessed at twinaide-ui.

• The API developed using Python and Flask technologies and communicating with
third-party services can be accessed at twinaide-python.

For the implementation of Twinaide, the following technology stack have been used: Overall,
we used the traditional MERN (MongoDB, Express.js, React.js, Node.js) stack while developing
the web application. On top of MERN, we employed a Javascript library Three.js to render the
visual scenes on the browser and d3.js for creating the Digital Factory graph which visualize
the relationships, e.g., child/parent, among the multiple twins insider the factory. The
integrator currently supports Kafka and MQTT data brokers and using Websocket to connect
and retrieve real-time streaming data from the brokers. In addition to these, we used Python
and Flask to create a Python API which is used to communicate the external services or third-
party libraries. To represent/store/process digital twin metadata, we have used Azure’s
Digital Twin Description Language (DTDL).

To act as a generic integrator for multiple twins, we have extended Azure DTDL so that users
can upload their digital twin hierarchies as flexible as possible. The figure below shows the
metadata information of an example digital twin in Twinaide. In order to create the JSON
structure that defines the digital twin in a flexible manner, a parent-child relationship has

https://github.com/suatbayir1/twinaide
https://github.com/suatbayir1/twinaide-ui
https://github.com/suatbayir1/twinaide-python

D1.5b Description of demonstrator for production process optimization
Public

18

been created. The data source configurations of the sensors and file information for 3D-
display can also be embedded into the the JSON structure which then will be automatically
processed by Twinaide.

The User Interface and Flow

The users of the integrator software will first
pass an e-mail and password-based
authentication mechanism that has been
developed for role-based access and login
within the application. The user must first
register in the system by entering their
information on the sign-up page. Then, they
can log in to the system by entering their
email and password information on the sign
in page. The sign in and sign up pages are

 shown on the left.

Once the users log in, they can import the metadata of a new digital twin to the integrator
via its JSON structure either by downloading it from a file or by coping/pasting it via
browser. The user can also view/edit the JSON document via browser with guidance from
the interface. The import screen is shown below.

D1.5b Description of demonstrator for production process optimization
Public

19

Once the users log in, they can import the
metadata of a new digital twin to the
integrator via its JSON structure either by
downloading it from a file or by
coping/pasting it via browser. The user can
also view/edit the JSON document via
browser with guidance from the interface.
The import screen is shown on the left.

In addition to basic copy-paste, as an integrator of DTW, Twinaide currently supports
exporting twins from Twinbase and KMAC. The users currently can pull data from these
systems. However, more digital twin document servers can be integrated by using the same
approach we have used. The following figures below show the screens for DTD export from
Twinbase and KMAC, respectively.

Twinaide allows the user view/monitor a digital twin via browser. The digital twin monitor
page consists of three components. On the left, the metadata information of the node
selected on the graph appears on a JSON editor and users can update and delete
information from that component. In the middle, the hierarchical structure of the digital
twin appears on a graph. Users can change the layout format of this graph. The component
on the right displays the 3D visual information of the selected node on the graph. By means
of the button appearing on the graph, users can upload 3D model files to the system and
match them with the relevant element.

D1.5b Description of demonstrator for production process optimization
Public

20

After the user selects a node of the field type on the graph, s/he can focus on the sensor data
of this field streaming from 3rd party brokers and display them on the graphs by means of a
modifiable chart as shown on the left. The stream process can be stopped and resumed from
the screen. In addition, the type of the chart can be changed from top-left and multiple fields
streaming from different sensors/twins can be displayed.

Creating and Managing Meta Digital Twins

As an integrator, Twinaide allows the users to combine multiple Digital Twins and create a
Meta Digital Twin (of the virtual factory). To do this, the twins imported to the system can be
combined and integrated into a single meta digital twin by using the screen on the left. All the
metadata and relevant information can be inserted/edited through the browser. As a small

D1.5b Description of demonstrator for production process optimization
Public

21

note, a user can only
view/add the digital twins
with the appropriate
visibility behavior. That is
only the public twins and
the ones private to the user
can be combined within the
meta twin.

Similar to the Digital Twin
Pool screen, all the meta
digital twins registered to
the system can be seen
through the Meta Digital
Twin Pool screen as shown
below.

3.3.2. Data Querying and Visualization
3.3.2.1. Streaming DB – Influx and Flux
InfluxData is an open source time series database built from the ground up to handle high
speed write and query loads. It consists of an architecture called TICK Stack (Telegraf,
InfluxDB, Chronograph, Kapacitor). InfluxData is a dedicated high-performance data store
written specifically for timestamped data and particularly useful for use cases such as DevOps
monitoring, IoT monitoring, and real-time analytics. By configuring InfluxDB to store data for
a certain period of time and automatically delete unwanted data from the system, storage
capacity savings can be achieved on servers. InfluxDB also provides an advanced query
language called Flux to query and manage data.

• Telegraf is a plugin-oriented server tool for collecting and reporting metrics/data.
Telegraf plugins obtain various metrics directly from the systems they work on,
metrics from third-party APIs, and even listen for metrics via a Kafka consumer service.
Telegraph, in other words, is a data collection tool.

D1.5b Description of demonstrator for production process optimization
Public

22

• Chronograph is the stack's admin user interface and visualization engine. Monitoring
data simplifies the creation and maintenance of alerts. It is easy to use and allows real-
time visualization of data. Chronograph includes ready-made templates and libraries
that allow you to quickly create dashboards, alerts and rules.

• Kapacitor is a native data processing engine. It can handle both streaming and batch
data from InfluxDB. Capacitor allows specifying user-defined functions to handle alerts
with dynamic thresholds, match metrics for patterns, calculate statistical anomalies,
and perform alert-based actions such as dynamic load balancing.

Within the scope of the project, it was decided to use InfluxDB due to the above-mentioned
features. For this purpose, source codes were downloaded from InfluxDB's github page and
installed on the project's server. It is aimed to store the numerical data coming from the
sensors on InfluxDB. Since InfluxDB is an open-source software, we can easily make changes
on the Chronograph, which is the user interface, in line with our own needs.

With Flux, the data query language of InfluxDB, queries can be created and matching data
can be retrieved. Below is the data explorer page of the chronograph. users can set the data
they want to display via this tool. As an additional option, users can filter the data with the
flux query language.

D1.5b Description of demonstrator for production process optimization
Public

23

3.3.2.2. NLP-based data query
To let users query database using natural language we use spaCy library. Using spaCy’s
“textcat” pipeline (text categorizer) first we decide which database to query. We use
InfluxDB for sensor data and MongoDB for metadata.

After deciding on the database, using “NER” pipeline (named entity recognizer), we decide
machine, component, sensor and the time range to build the flux query or MongoDB query.
After creating queries, we query the database and return the results to the user in overlay.

3.3.2.3. Dashboards
Users can create their own dashboards or we have, also, automatically created dashboards
for assets. In these dashboards users can view sensors values in different graphs such as,
single stat, scatter, histogram, line or they can see the values in table format.

https://spacy.io/

D1.5b Description of demonstrator for production process optimization
Public

24

In the above screen shot, we have factory card. By clicking “Show Dashboards” button users
can see the automatic dashboard we created for the factory level.

Here we have “Machines Panel” where we list all the machines under the selected production
line. Each machine represented as cards. In these cards, by clicking “Show Dashboards” text
users can view the created automatic dashboard for the selected machine.

D1.5b Description of demonstrator for production process optimization
Public

25

In the above screen shots, we have automatically created dashboards. These dashboards
show the sensors values and group them based on the selection level.

D1.5b Description of demonstrator for production process optimization
Public

26

In the “Dashboards” page, by clicking the “Create Dashboard” button users can start to
create their own dashboards.

In the new dashboard page, by clicking “Add Cell” button, users can create new graphs.

In the “Add Cell” overlay users can select values they want to show, the graph style, the
colors etc.

D1.5b Description of demonstrator for production process optimization
Public

27

In the above image, we have a custom dashboard with different graphs.

3.3.3. ML-based from Processing
3.3.3.1. Machine Health
For each machine, the frontend has a “Health Assessment” page where users can see all
models related to that machine and their logs. For the anomaly detection models, users can
see model logs in a data graph, go to a selected timestamp and give feedback to the model
logs. Also, users can add any missing anomaly by clicking the graph in selected timestamp.

All the created models are shown under “ML Models” section. Models are represented by
cards and their last log is shown in the cards. Cards have buttons that let users to start/stop
the model, view AutoML process results, view the model’s logs in a graph, view the model’s

D1.5b Description of demonstrator for production process optimization
Public

28

performance report and
delete the model.

The users can create new
machine learning models
using “Add Model” button.
They just need to select the
task, the data they want to
use and the failure records
to start a ml process. If users
want to change advanced
settings of AutoML process,
they can change them in the
“AutoML Settings” overlay.

D1.5b Description of demonstrator for production process optimization
Public

29

3.3.3.2. Anomaly detection
Anomaly detection tasks are controlled through two different pages. First one is the

advanced machine learning page where the users have the option to control training
parameters and the data channels to be used in training as well as the time range the data
will be coming from. The other way is to use the AutoML page designed for users with minimal
machine learning knowledge. On this page users select which components they want to
perform these tasks on and then the optimal model is trained with respect to the most recent
data. This page is also used for Remaining Useful Lifetime Estimation (RULE) and Probability
of Failure (PoF) calculation both of which are detailed later on in the document.
Training Page

The Machine Learning Page is designed for the users with minimal knowledge of the
training process for an ML model. The users can select which type of task they want their
model to handle, use-case-specific parameters for each task, the components they want to
use, and then train their models. When a training job is issued through this page, an
automated hyperparameter tuning is performed in the background to be able to train the
best possible model with the given resources. These trained models then show up in a table
right by the control panel from where the users can engage with the models by
enabling/disabling them. They can also observe the metadata for the training process the
model went through.

D1.5b Description of demonstrator for production process optimization
Public

30

Advanced Training Page

The Advanced Training Page is used for training multiple ML models suited for various
jobs and it provides ultimate control over the training parameters. “Database” dropdown is
for selecting the database name. When the database is selected, the components contained
in the database are listed in the section below. All of them are top-level nodes of a dropdown
tree, where their children are the sensors installed on those components. The data provided
in the given time range by the selected sensors are used in the training process. The “Selected
Models” button forwards the user to a table where they can interact with the models they
have trained and accepted as valid. The “Train” button starts the training process.

When the training process starts and the related collections are updated, cards
representing the models show up. These cards have buttons showing up when hovered over
and one shows the parameters being used in training and the training progress (if is
applicable) and the other is a “Cancel” button that lets the user cancel the training process
for that model. After a model is trained, the card is updated with information that could help
the user decide the quality, and two buttons that would enable the user to either accept or
discard the trained model. Accepting the models enables further interactions with the model
which can be accessed from the “Selected Models” button. Accepted models can be rejected
to be idle again. The “Discard” button deletes the model.

D1.5b Description of demonstrator for production process optimization
Public

31

Anomaly Detection Methods

We have used various anomaly detection techniques from literature:

• The Mahalanobis Distance is a multivariate distance metric between a vector and a
distribution. Thresholding the distance between the extracted time-series vectors and
the mean value of the overall set is the main idea behind while detecting the
anomalies. No training is involved; just the necessary statistical values are calculated
which makes this approach lightweight in terms of required resources and the ease of
implementation. Our approach is to define a distribution using two or more features
and calculate the mean value of this set and use these values to threshold the
distances.

• Isolation Forests are ensembles of isolation trees. An isolation tree is built upon the
assumption that anomalous points are rare and few, which means they are
susceptible to isolation. When a tree is built, the points which have smaller path
lengths have a higher anomaly score. A forest made of these trees is used to choose
the anomalous points based on the average anomaly score of a point generated by
the trees. We used the Isolation Forest implementation found in the ensemble
module of the widely known scikit-learn library.

• The LSTM network is a type of neural network that is good at utilizing the unique
aspects of time-series data such as seasonality, non-stationarity, and long and short-
term dependencies within data. These networks are used to forecast time-series
data to compare the predicted (expected) values to the real-world observations and
if the difference between them exceeds a certain threshold an alert is raised. In the
picture below, an example of how a finely-tuned LSTM network can forecast
sequential data is shown. This picture also implies the significance of the correct
hyper-parameter selection.

D1.5b Description of demonstrator for production process optimization
Public

32

• ARIMA stands for AutoRegressive Integrated Moving Average. It is a statistical model
used to forecast time-series data using past observations. It has a lightweight
preparation phase and is controlled by three parameters. One drawback is that the
data needs to be stationary because the model involves linear regression. This means
before using ARIMA the data should be transformed in a way that it becomes
stationary. The anomaly detection process is the same as when LSTM networks are
used, meaning points with high forecast errors are flagged as anomaly points. The
following image shows how ARIMA performs when parameters are selected correctly,
together with the error values and how they behave with respect to the sequential
nature of the data.

• Variational Autoencoders are networks that try to learn compressed
representations of original data and reconstruct the data using the learned
representations. They are a subclass of autoencoders where instead of learning a
direct representation, they learn distributions and reconstruct the data sampling
from these distributions. If the margin between the reconstruction and the
observation is larger than a set threshold an alert is raised. See the figure on the
right for the original and reconstructed data streams via variational autoencoders.

D1.5b Description of demonstrator for production process optimization
Public

33

• Semi-supervised learning is a term used to define methods where unlabeled data is
used together with supervised learning techniques. These approaches are very
suitable for anomaly detection problems where most of the time unlabeled data is
found a lot more than labelled data but where even a small amount of labelled data
can provide valuable information for the task. Our approach to semi-supervised
learning is based on Variational Autoencoders. We train two different encoders, one
of whose output is a regular latent representation obtained from unlabelled samples,
and the other label predictions for those samples. The decoder part of the network
takes as input these two encoder outputs together with known ground-truth labels,
and produces a reconstruction of the input using the knowledge.
(https://bjlkeng.github.io/posts/semi-supervised-learning-with-variational-
autoencoders/) The image below is a visual representation of the process detailed
above, taken from Brian Keng’s GitHub page shared.

https://bjlkeng.github.io/posts/semi-supervised-learning-with-variational-autoencoders/
https://bjlkeng.github.io/posts/semi-supervised-learning-with-variational-autoencoders/

D1.5b Description of demonstrator for production process optimization
Public

34

3.3.3.3. Remaining Useful Lifetime Estimation (RULE)
The Remaining Useful Lifetime is a subjective estimate of the number of remaining cycles that
an item, component, or system is estimated to be able to function in accordance with its
intended purpose before warranting replacement. We have used deep learning techniques
to obtain a cost-saving predictive maintenance schedule. To study the effectiveness of the
used techniques, we used Microsoft Azure Team’s Predictive Maintenance implementation
as our template (published on 31 July 2017).

Among the deep learning methods, we have learned that Long Short Term Memory (LSTM)
networks are especially appealing to the predictive maintenance domain due to the fact that
they are very good at learning from sequences. Below is a figure of a simple LSTM node.

To test our implementation, we take Microsoft Azure’s Deep Learning for Predictive
Maintenance template that they used to predict the remaining useful life of aircraft engines
using the Turbofan Engine Degradation Simulation Data Set from NASA.

Preparing Data: Data is labeled based on the selected window size. The last w days of the
engine data are labeled as 1 and 1 and the others are labeled as 0. Also, RULE labels, as cycles,
are added to data. As the last step, the data is normalized before the modeling phase.

Modeling: Since we have the time-series data and have lots of sensor values, using a deep
learning algorithm, i.e., LSTM, has certain benefits for us.

• These networks can automatically extract the right features from the data, therefore
eliminates the need for manual feature engineering

• LSTMs ability to remember from long-term sequences

We used 2 LSTM layers followed by Dropout layers to control overfitting. The final layer is a
Dense output layer with a single unit and sigmoid activation since this is a binary classification
problem.

The number of units in the LSTM layer is chosen by our AutoML module. With the AutoML
module, we create multiple models with different hyperparameters like units of LSTM

https://github.com/Azure/lstms_for_predictive_maintenance
https://github.com/Azure/lstms_for_predictive_maintenance
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-1-of-3-data-preparation-and-feature-engineering-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-1-of-3-data-preparation-and-feature-engineering-2

D1.5b Description of demonstrator for production process optimization
Public

35

layers, batch size, or number of epochs. This module’s main purpose is to let users free from
adjusting hyperparameters for the best model outcome. Users don’t have to deal with
technical stuff. The AutoML module finds the hyperparameters for the best model and
creates that model for users.

Results on NASA Data: We have a test dataset in NASA data as well. Using this data, we get
the following results:

In NASA data, our model nearly works perfectly. Recall indicates that the model finds all
failure instances. Thus, we are not missing any failures. On the other hand, the precision score
indicates the model label some non-failure cycles as a failure.

From these metrics, we can deduce that our model labels cycles as failures more than needed.
This way it never misses a failure but gives false alarms sometimes. Depending on the user’s
objective, not missing any failure but getting some false alarms from time to time can be ideal
since these false alarms actually warn the user of a future failure so they can do some
maintenance tasks.

In the regression side of this problem, we want to get the number of time cycles left for the
selected asset. For the implementation, we used Compose’s, open-source ML tool for
automated prediction engineering, tutorial for predicting turbofan engine degradation as our
template. We implemented a model using Compose, Featuretools, and EvalML. Compose is
for structuring data, Featuretools is for feature creation and extraction (feature engineering)
and EvalML is for evaluating machine learning pipelines and finding the most optimal one in
an AutoML process.

https://compose.alteryx.com/en/stable/
https://compose.alteryx.com/en/stable/examples/predict_turbofan_degredation.html
https://compose.alteryx.com/en/stable/
https://www.featuretools.com/
https://evalml.alteryx.com/en/stable/

D1.5b Description of demonstrator for production process optimization
Public

36

Results on NASA Data: Using the same NASA dataset above, we trained our model and tested
its results. Then we get some metric based on the results.

First, we sorted the results based on the difference in predicted and real data’s time cycles.
The sorted absolute differences are given on the right.

Here we see that some predictions are really close but we have predictions that are really off
to the truth data. To get a better understanding then we split the result based on late
(difference<0) and early (difference>0) failure predictions. We got 49 late predictions and 51
early predictions.

When we check the first and last batch of results of late predictions (on the left and right,
respectively, below):

Similarly, the first and last batch of results of early predictions are:

D1.5b Description of demonstrator for production process optimization
Public

37

After that, we calculated some metrics: average distance, minimum distance, maximum
distance, mean squared error, root mean squared error, mean absolute error, mean
absolute percentage error, first quartile, second quartile (median), third quartile.

The average difference is 20 lifetime cycles whereas the median is 15-17 cycles. Looking at
these results, we can say that the model's performance is not excellent. However, looking at
the third quartile (~33) and the maximum error (~65) we can say that results are not so bad
either. Some improvements are needed here.

Now let's look at the results based on absolute differences divided by truth data.

The worst results are different from the ones we first looked at. The first and last batch results
of late predictions (left) and the first and last results of early predictions (right) are given
below:

D1.5b Description of demonstrator for production process optimization
Public

38

We then calculated some metrics for absolute_difference/truth data: average
absolute_difference/truth, minimum absolute_difference/truth, maximum
absolute_difference/truth, first quartile, second quartile (median), third quartile.

Looking at the results, again the average error is ~35 which is not great for failure prediction.
However, looking at third quartile (~45) and maximum errors (120-220) we can say that the
errors are not high for ¾ of the results.

This model clearly needs some adjustments and improvements to get better results.

3.3.3.4. Probability of Failure (PoF) estimation
Probability of failure estimation is an important problem for practical predictive maintenance.
We used Egil Martinsson’s WTTE-RNN : Weibull Time To Event Recurrent Neural Network
(published in 2017) paper as our template

Using step-to-step LSTM-architecture with a 2-dimensional positive output layer predict
parameters of Weibull Distribution for engine. Weibull Distribution distribution is widely
used in reliability engineering and calculating time to event (TTE) problems. Churn prediction,
survival analysis, time-to-failure etc. The structure of the ML model is given below:

https://publications.lib.chalmers.se/records/fulltext/253611/253611.pdf

D1.5b Description of demonstrator for production process optimization
Public

39

We want users to select an asset and enter the lifetime cycles, e.g. days, as input and return
a probability of that asset to fail in that given cycle. For this implementation we use Egil
Martinsson’s paper and this source as our template. We take all sensor data and label them
as 1 if the machine is known to fail at the end of the last data point.

The main idea is to design a model that can look at a timeline of historical features (sensor
data) leading up to the present, and predict a distribution describing the likelihood that a
failure will happen as time moves into the future. The chosen distribution to predict is Weibull
Distribution which is widely used in survival analysis, reliability engineering and failure
analysis to find time to event probabilities. In order to accomplish this, we designed a model
that predicts the two parameters, alpha and beta, that control the shape of the Weibull
distribution. We used a neural network that can look at some historical data, and output two
parameters describing a distribution. In order to train a neural network, yweou need a loss
function that lets us evaluate model performance and backpropagate cost information
through the network. We have used a weibull log-likelihood function for this purpose.

We used 1 LSTM layer followed by a Dense layer with 2 units to output alpha and beta
parameters and an Activation layer that uses a custom activation function to find alpha and
beta. The LSTM layer’s units are determined by our AutoML module. Using the loss function
as our metric, AutoML finds the best number of units for the LSTM layer.

Results on NASA Data: Using the same NASA dataset, we trained our model and tested its
results. Since our model gives alpha and beta parameters of Weibull Distribution using this
formula we found the probabilities:

https://publications.lib.chalmers.se/records/fulltext/253611/253611.pdf
https://github.com/daynebatten/keras-wtte-rnn

D1.5b Description of demonstrator for production process optimization
Public

40

For t, we used 100 which means we get the probability of failure in 100 cycles of each engine.
Then we calculated a distance for each engine. If the engine is going to fail in 100 days the
distance is (1-probability) and if not, it is probability. Sorting the test results based on this
distance we get the following results on the right:

Then we did some calculations on this data: total distance, average distance, minimum
distance, maximum distance, first, second and third quartile.

• Total distance: 31.138109183310988
• Average distance: 0.31138109183310986
• Minimum distance: 0.11234524020931036
• Maximum distance: 0.8130683947724363
• First quartile: 0.1927447331777519
• Second quartile(median): 0.19765620207882723
• Third quartile: 0.282159741283545

The engine with the minimum distance estimation is:

The engine with the maximum distance estimation is:

Inspecting these results, we can conclude the following:

D1.5b Description of demonstrator for production process optimization
Public

41

• Based on the quartiles, total and average distance, we can say that the model has
decent results for estimating the probability of failure.

• The current model doesn’t give perfect results but, in the future, we will make it better
once we use it with real data. Even if the engine has more lifetime than 100 cycles the
probability is not very close to zero or if the engine has definitely failed in 100 cycles
the probability is not very close to 1. The minimum distance value of 0.112345 also
shows that.

• The model gave high distance results when the failure cycle is above 100 apart from
the one engine data where the failure cycle was 98 in which model gives 0.189111
probability to fail in 100 cycles. Estimating engines to fail when they actually have
more cycle lifetime can be tolerable based on some cases. However, missing the
failure cycle has a more detrimental effect. Our model gives more false alarms than
missing failure cycles. If we make the correlation with the RULE binary classification
model we can say that the same results can be seen here as well.

3.3.3.5. Evaluating the success of ML models

Evaluating the model's success is an important task so that users can decide whether or not
to trust the model’s logs. For this purpose, using Evidently library we designed a page where
users can see model’s performance in detailed graphs based on their feedback to the
model’s logs.

https://evidentlyai.com/

D1.5b Description of demonstrator for production process optimization
Public

42

In the above screen shots, we have a RUL model’s (binary classification model) performance
results.

D1.5b Description of demonstrator for production process optimization
Public

43

In the above screen shots, we have a regression model’s performance results.

D1.5b Description of demonstrator for production process optimization
Public

44

3.4. Data Acquisition and Data Processing (TEKNOPAR)

Data acquisition and processing refers to the studies related to collect, compile and process
data. In the Ermetal case, data is collected from the sensors by means of an OPC Router. The
fields of the OPC Router are mapped to the related database fields for storage purposes. The
main elements for data acquisition and processing are operating systems, message brokers
and databases.

The working environment for data acquisition can be built on physical or virtual computers.
Before deciding on the environment type to be used for the Ermetal’s use case, pros and cons
of having virtual or physical environments were studied. The differences between physical
and virtual computers have been evaluated, and it was decided to install the system entirely
on virtual servers in order to minimize physical failures and possible connection problems.

The operating system of the platform has been selected to be the Windows Operating System.
The selection of the operating system is based on the OPC Router documentation. The
supported Windows Operating systems are listed below:

In order to store data, the selected database InfluxDB was installed on the Linux operating system.
InfluxDB does not have a Windows installation. For InfluxDB to be installed on the Windows operating
system is to use Docker technologies. In the project, instaed of using Docker and Windows, Linux
operating system was selected for database installation.

Installation of Database
InfluxDB 2.0 was installed on the Linux system using the VPN accounts set by Ermetal. The connection
was tested and it was confirmed that the database was successfully installed.

D1.5b Description of demonstrator for production process optimization
Public

45

OPC Router was installed on the Windows operating system that is set in a virtual computer. After
providing the necessary information for connection to the Ermetal’s server, the acquired PLC
information fields have been defined to the OPC Router. Thus, the correct operation of the physical
installation in the factory has been ensured by providing the connection between the PLC and the OPC
Router. After accessing the PLC, the relevant data blocks (sensor and energy analyzer data) are defined
to the OPC Router.

Following the setups in the PLC and the OPC Router, the next step is to install the database. InfluxDB
2.0, has been installed in order to record the sensor data that is flowing from the field into the
database. The installation of the InfluxDB 2.0 database was performed on the Linux virtual computer.
In order to ensure data flow, the network structure established between 2 virtual computers has been
verified. After it was verified that the servers were communicating with each other, the necessary
definitions were made for the InfluxDB plugin of the OPC Router. At this stage, the IP and port
information of the virtual server where the database is installed are defined. Errors were encountered
while connecting to the database by the OPC Router. As a result of the interviews with OPC Turkey
and OPC Global, it was determined that the OPC Router-InfluxDB plugin does not support the use of
InfluxDB 2.0. Since it was stated by OPC Global that the development of the plugin compatible with
InfluxDB 2.0 would take a long time and there might be some errors, it was foreseen that it might
cause disruption in the business plan. Thereupon, the alternatives in the system architecture were
investigated, and the suitability of the InfluxDB 1.8 database for the solution was evaluated and it was
concluded that the use of InfluxDB 1.8 would be sufficient.

The InfluxDB 2.0 database installed on the Linux virtual server was stopped, and the InfluxDB 1.8
database running on the Docker container structure was installed. In the installation of InfluxDB 1.8,
virtualization was preferred with the use of Docker container in order to provide easier management,
scaling operations and instant log tracking. The path of the files that the database will create is
predefined. Thus, in cases where crashes or critical errors are encountered, data is kept separate from
the container. Deleting the container will not affect the data, as the data is independent of the
container.

Two users, admin and user, are defined in the database. The main database is named “machinaide”.
After database operations, the connection to the database was verified using the OPC Router plugin.
After this stage, the values from the defined data blocks were recorded in the database.

D1.5b Description of demonstrator for production process optimization
Public

46

Recording sensor data into database, items are mapped to Database fields and tags

Energy Analyzer data mapped to Database tags

D1.5b Description of demonstrator for production process optimization
Public

47

Recording real time data of OPC Router

To confirm the collected data and to determine that the data was recorded in the database without
any problems, Chronograph was installed. Chronograph enables to monitor the InfluxDB database,
view the system status (RAM, CPU, network, disk), query on the database and display the results on
the dashboards. Chronograph was also installed on the Docker container structure. By taking Docker
containers into the same network, Chronograph has been connected to InluxDB 1.8. A portainer has
been installed to monitor and easily manage 2 separate Docker containers. Portainer provides a very
useful web interface for management.

A Screenshot of Chronograph

The connection information of the Cronograph was shared with the Ermetal team to confirm
the collected data. After the data was collected, the error “Execution time: Transfer not
recorded.“max-series-per-database” limit exceeded (1000000) dropped=1” was
encountered. By changing the necessary parameters in the InfluxDB settings file, the data
recording limit has been removed. It was decided to use InfluxDB 2.0 with the partners of the
Turkish consortium. Since the OPC Router does not have Influx DB 2.0 direct plug-in, it was
decided to activate the Kafka plug-in.

D1.5b Description of demonstrator for production process optimization
Public

48

Kafka plug-in was purchased. Data has been written to InfluxDB using the Line Protocol over
Kafka. The collected data is redefined on the OPC Router in accordance with the Line Protocol
structure. Sensor mapping process was performed once again for InfluxDB2.0, and it was
ensured that the data were transferred to the appropriate Kafka topics in the desired format
with the Key.

Line Protocol Definition

Transferring Data to Kafka
Apache Kafka installation which was also made onto a virtual Windows computer was also made on
Linux. During this operation, data connection information was updated for OPC Router.

D1.5b Description of demonstrator for production process optimization
Public

49

3.5. HMI Applications (DOĞRU)

Human-machine interaction (HMI) or human-computer interaction (HCI), is the way in
which humans interact with machines in order to accomplish certain tasks in a human-
machine system consisting of humans i.e. users, machines, interfaces between them and the
environment in which they operate. . A sound and functional HMI is a key point in designing
such systems and empowers users to perform operations on the machines by designing
modes of interactions via instruction and information exchange.

The difficulties and expectations for human operators in the factory space will change
as the complexities of manufacturing systems increase with rising autonomous and self-
organizing production systems. With this Industry 4.0 transformation, humans need to be
integrated into the cyber-physical structure. To facilitate this integration, user interfaces for
mobile devices like smartphones, tablets, smart glasses, overhead displays with multi-touch,
voice and gesture-based control are already introduced in the industrial domain.

In Industry 4.0, information from multiple components will be aggregated, analyzed
and visualized making use of these devices and interfaces. The role of the human operator
will be to interpret this information, supervise and monitor the production systems and
intervene in potential critical events. Bilberg and Malik, demonstrated how a simulation-
based digital-twin can drive a human-robot automated assembly line.

Human-machine interface (HMI) is in a key role for implementing smart manufacturing
and optimization process, which comprises the issues of communication, interaction and
cooperation between humans and machines. HMIs exist throughout the product lifecycle
including product design, manufacturing, and service. Efficiency and safety are primary
concerns that increase the requirements. New emerging technologies such as big data, AI,
digitalization and augmented reality (AR) take place in HMI activities gradually for smart
manufacturing. New technologies used in HMI applications (already widely used in consumer
products e.g. smartphones, gaming industry) are gesture recognition, touch interaction, voice
interaction, virtual reality and augmented reality. The major expectation from HMI
technology is to meet the user needs and provide the latest technological capabilities to
facilitate operations/tasks, enhances safety and yield correct decisions (decision support
systems and informed decision making).

In this project was investigate the possible usage of the advantage from the know-how
and excellent usability reached by the mobile industry (smartphone, tablets, web apps, etc.)
of using classical industrial devices. By means of innovative HMIs we have developed so far
and that we are developing, will move a huge diversity of interfaces and interaction concepts
to a simpler / more intuitive and direct one.

• Hand Gestures
Hand gestures are important for our mobile applications that we are developing.

Because in the factory environment, personnel work in oily or noisy environments. They can
directly switch to the interface they want to access with hand gestures without touching the
mobile device.

D1.5b Description of demonstrator for production process optimization
Public

50

Hand gestures detected with machine learning in both apps. 21 joint positions in
fingers detected by machine learning. As a result of the calculation of the joints according to
the Y coordinate, the distance measurement was made against the finger mark and it was
displayed to the end user. Hand movements were detected by uploading videos, pictures or
camera.

Screenshot 1 - Hand gestures detected with machine learning

• Blink Gestures

Also, blink gestures are important for our mobile applications that we are developing.
Working machine, vehicle, forklift etc. blink gestures are integrated to make it easy to use.
They can directly switch to the interface they want to access with blink gestures without
touching the mobile device. Face network line created with machine learning. A total of 30
points in the left and right eyes were located by machine learning algorithm. Distance
measurement was calculated according to the Y coordinate.

D1.5b Description of demonstrator for production process optimization
Public

51

Screenshot 2 – Blink gestures detected with machine learning

• Speech To Text

D1.5b Description of demonstrator for production process optimization
Public

52

Another feature our apps have is speech-to-text translation. For Android, we use
Google Speech to Text technology and for IOS, Swift Speech technology. The Overlay
Foreground service is used. In this way, we can use this service even if the application is not
open.

Our mobile applications are developed on 2 different platforms. Native Android and
Native IOS. We have done research to ensure that our application is the only platform or cross
platform. According to our researched, we realized that cross platforms (flutter etc.) do not
support hand gestures or blink gestures. But now, our applications have this features.
3.5.1. Android Application
 Android application was developed in Kotlin language.
 Relevant libraries were included using the MVVM architecture, which is one of the

design pattern architectures.
 Room library was used to maintain database independence.
 Improvements were made in accordance with SOLID principles.
 A factory structure was established for the transition between activities in order to

provide View-Model communication.
 The design of the mobile application, menu icons and fonts were created.
 We added Turkish and English language packs to our application.
 We provided access to the digital twin API.
 API results are provided with the “Retrofit” library by parsing the final data types.
 User login screen was completed.

D1.5b Description of demonstrator for production process optimization
Public

53

Screenshot 3 - Login (Android)

 The homepage was designed.

D1.5b Description of demonstrator for production process optimization
Public

54

Screenshot 4 – Home Page (Android)

 Detailed Sensor Filtering page has been created. Taking into account the mandatory
fields in the API, the details of the sensor's information are displayed. Sensor data is
calculated by filling in critical fields. For example; After selection in minutes, hours or
days, the request is sent to the API. In this way, the user can easily access the data
they want to see without entering the start and end date ranges.

D1.5b Description of demonstrator for production process optimization
Public

55

Screenshot 5 - Filter Detail Sensor Page (Android)

 The sensor area movements page has been created. Sensor field movements; It was
designed as 2 Tab menus, list and graphic. In the Graphics tab, 3 color types are
specified. Grey, green and red. Gray color was selected for data below the threshold
value. The green color was chosen for the data in the threshold range. Red color was
determined for data above the threshold value. In the motion list tab, the detailed
information of the relevant sensor value is listed.

D1.5b Description of demonstrator for production process optimization
Public

56

Screenshot 6 - Sensor Field Movements : List and Graphic Page (Android)

 By creating BaseActivity, the top menu is shown in each module. If the current page is
Home Page, the back button has been removed. Back button and home button have
been activated in all modules except the homepage. Icons related to voice command,
hand and blink gestures were displayed in the top menu. Voice command service,
hand and blink gestures icons were created and a modular structure was established
for direct access.

D1.5b Description of demonstrator for production process optimization
Public

57

Screenshot 7 – Top Menu (Android)

 Local database is created. In this way, Features can be customized on a user basis. For
example, 2 finger gestures can redirect to the settings menu for one user, while 2
finger gestures can redirect to the sensor list for another user.

D1.5b Description of demonstrator for production process optimization
Public

58

Screenshot 8 – Features Can Be Customized On A User Basis (Android)

 Shortcut page created and Navigation Component yapısı kuruldu. Created 3 submenus
on the shortcut page. Hand gestures list, blink gestures list and voice command list.
Features available in these menus are associated with pages containing HMI headers.

D1.5b Description of demonstrator for production process optimization
Public

59

Screenshot 9 – Shortcut assignment pages (Android)

 Another association method is the contents in the Digital Twin hierarchy from the API.
In order to define, the list content is moved to the left, and operations are performed
with hand, blink and voice command. Digital Twin hierarchy :

o Production line list
o Contents list
o Machine list
o Sensor list

D1.5b Description of demonstrator for production process optimization
Public

60

Screenshot 10 – Production Line List (Android)

 Calculated hand movements based on machine learning. Data associated with finger
movements are listed. The top menu corresponding to 5 different finger movements
was designed and the list was created with the associated module. If there is no
associated module in the list, a "No Match" message has been added to the page.

D1.5b Description of demonstrator for production process optimization
Public

61

Screenshot 11 – Finger Definitions (Android)

 Blink gestures list page created. The top menu has been designed for the right and left
blink movements.

D1.5b Description of demonstrator for production process optimization
Public

62

Screenshot 12 – Blink Definitions (Android)

 Voice command service was created and voice analysis was performed. Voice analysis
was performed with Google Speech to Text technology. The Overlay Foreground
service is started when the voice command icon is selected. A list page of the contents
defined using the voice command service has been created.

D1.5b Description of demonstrator for production process optimization
Public

63

Screenshot 13 – Voice Definitions (Android)

3.5.2. IOS Application
 IOS app developed with SwiftUI. It was preferred because it facilitates the

establishment of dynamic structures and data management in the formation of front-
end and back-end architectures.

 The MVVM architecture was created. Separation of Business Logic and View module
has been ensured.

 The design of the mobile application, menu icons and fonts were created.
 We added Turkish and English language packs to our application. The language option

can be changed by selecting the Machinaide application from the settings menu of the
device.

 We provided access to the digital twin API.
 Warning messages have been created for mandatory fields.
 User login screen was completed.

D1.5b Description of demonstrator for production process optimization
Public

64

Screenshot 14 - Login (IOS)

 The homepage was designed.

D1.5b Description of demonstrator for production process optimization
Public

65

Screenshot 15 – Home Page (IOS)

 Production line, content, machine, sensor, sensor fields pages were designed.

D1.5b Description of demonstrator for production process optimization
Public

66

Screenshot 16 – Production Line, Machine and Sensor List (IOS)

 The sensor area movements page has been created. Sensor field movements; It was
designed as 2 Tab menus, list and graphic. In the Graphics tab, 3 color types are
specified. Grey, green and red. Gray color was selected for data below the threshold
value. The green color was chosen for the data in the threshold range. Red color was
determined for data above the threshold value. In the motion list tab, the detailed
information of the relevant sensor value is listed.

D1.5b Description of demonstrator for production process optimization
Public

67

Screenshot 17 – Sensor Field Movements : List and Graphic Page (IOS)

 The top menu is shown in each module. If the current page is Home Page, the back
button has been removed. Back button and home button have been activated in all
modules except the homepage. Icons related to voice command, hand and blink
gestures were displayed in the top menu. Voice command service, hand and blink
gestures icons were created and a modular structure was established for direct
Access.

D1.5b Description of demonstrator for production process optimization
Public

68

Screenshot 18 – Top Menu (IOS)

 Was calculated hand movements based on machine learning with Vision library. Data
associated with finger movements are listed. The top menu corresponding to 5
different finger movements was designed and the list was created with the associated
module. If there is no associated module in the list, a "No Match" message has been
added to the page.

 "Swift Speech" service was used for the 'Speech Textizer' operation and integrated
into the top menu search bar.

D1.5b Description of demonstrator for production process optimization
Public

69

Screenshot 19 – Voice commands (IOS)

3.5.3. Unity
With Unity, it is aimed to display the machine models and the sensors of the models through our
mobile applications with augmented reality.
First of all, online trainings on Unity program and machine model design were received. Thanks to
these trainings, a machine model on the internet was modeled in the Unity program, for example, and
sensor data for testing purposes were added to the machine.

Screenshot 20 – Example Machine Model With AR(Unity)

D1.5b Description of demonstrator for production process optimization
Public

70

After understanding the programming logic with Unity, our R&D activities continued as dynamically
fetching data from API and creating models of machines imported with Unity. Thus, the data source
will be single and we have ensured that the files uploaded by Er-Metal as .dae or .glb format can be
opened with the Unity program.
We provided access to GET/POST methods related to machine models in the Machinaide API via Unity.
After our meeting with DAKİK, they added a method to the API and enabled this method to send files
in .dae format. We downloaded the .dae file from the API and opened it in Unity. However, we have
seen that the coating data of the machines (machine paint, color, materials, if any, pictures on it, etc.)
is not included in the content of the file with the .dae extension. For this reason, we decided that the
file format we will receive is .glb and we asked DAKİK and Er-Metal for help in this regard. They shared
their .glb formatted files containing the exterior view of the Er-Metal factory. We enabled this file to
be read with Unity and displayed it in our mobile application by providing the output with augmented
reality data.
We aim to show the coordinate-based sensor data with augmented reality by ensuring that this work
we have done for the Er-Metal factory model is also done for the machines in the Er-Metal company.

Screenshot 21 – Er-Metal Factory Model (Unity)

3.6. Implementation Schedule for Demonstration (ERMETAL)

Action Start Term End/Planned Term Responsible
Usecase and
Requirements
definition

2019/2 2020/1 ERMETAL

Determination of
sensors and data
collection equipments

2019/2 2020/1 ERMETAL

Determination of PLC
needs

2019/2 2020/1 ERMETAL

Determination of PC
needs

2020/2 2020/2 ERMETAL, TEKNOPAR

D1.5b Description of demonstrator for production process optimization
Public

71

Determination of
required software and
platforms and (inc:
OPC-UA / Influx DB,
plug-in)

2020/2 2020/2 ERMETAL, TEKNOPAR

Purchasing and
installation of sensors
on one press (1x800T)

2020/2 2020/2 ERMETAL

Purchasing and
installation of sensors
on one robot

2020/2 2020/2 ERMETAL

Purchasing and
installation of
required software and
platforms (inc: OPC-
UA / Influx DB, plug-
in)

2020/2 2020/2 ERMETAL

Purchasing and
installation of energy
modules on one press
(1x800T)

2021/1 2021/1 ERMETAL

Establishing data flow
from sensors

2020/2 2020/2 ERMETAL

Establishing data flow
from energy modules

2021/1 2021/1 ERMETAL

Data collection 2021/1 2023/1 ERMETAL, TEKNOPAR
Creation of Digital
Twin

2020/2 2021/1 DAKIK,ERSTE

Development of
Digital Twin

2021/1 2023/1 DAKIK,ERSTE

Creation of HMI 2020/2 2021/1 DOĞRU
Development of HMI 2021/1 2023/1 DOĞRU
Machine learning and
prediction

2021/2 2023/1 DAKIK,ERSTE

Realization of
demonstration

2022/2 2023/1 ERMETAL & ALL

Solving detected
problems / Making
improvements

2023/1 2023/1 ERMETAL & ALL

Validation of
demonstration**

2023/1 2023/1 ERMETAL & ALL

** Validation of demonstration will be evaluated and reported through the deliverable D1.6b
‘’Evaluation report and lessons learned for production process optimization demonstrator’’.

Figure 4: Schedule for Description of demonstrator for production process optimization

	Contributors:
	Table of Contents
	Tables
	Figures
	Figures
	1. Revision History
	2. Abstract
	3. Description of demonstrator for production process optimization (ERMETAL)
	3.1. Description and covered Use Cases
	3.2. Outline of the demonstration of ‘‘Production Process Optimization Use Case’’
	3.3. Creation of Digital Twin (DAKIK- ERSTE)
	3.3.1. DTDL Standards – creation
	3.3.1.1. Azure DTDL
	3.3.1.2. Example JSON from the Turkish use-case
	3.3.1.3. Tree hierarchy and its management/visualization
	3.3.1.4. Complex twins, interoperability and TWINAIDE
	The User Interface and Flow
	Creating and Managing Meta Digital Twins

	3.3.2. Data Querying and Visualization
	3.3.2.1. Streaming DB – Influx and Flux
	3.3.2.2. NLP-based data query
	3.3.2.3. Dashboards

	3.3.3. ML-based from Processing
	3.3.3.1. Machine Health
	3.3.3.2. Anomaly detection
	Training Page
	Advanced Training Page
	Anomaly Detection Methods

	3.3.3.3. Remaining Useful Lifetime Estimation (RULE)
	3.3.3.4. Probability of Failure (PoF) estimation
	3.3.3.5. Evaluating the success of ML models

	3.4. Data Acquisition and Data Processing (TEKNOPAR)
	3.5. HMI Applications (DOĞRU)
	3.5.1. Android Application
	3.5.2. IOS Application
	3.5.3. Unity

	3.6. Implementation Schedule for Demonstration (ERMETAL)

