
Deliverable D11 Version 1.2 1

ITEA 2 - 09033

TIMMO-2-USE
Timing Model – Tools, algorithms, languages, methodology, USE cases

Report type Deliverable D11

Report name Language syntax,
semantics, metamodel V2

Report status Public

Version number Version 1.2

Date of preparation 2012-08-30

Deliverable D11 Version 1.2 2

TIMMO-2-USE Partners

AbsInt Angewandte Informatik GmbH

Arcticus Systems AB

Chalmers University of Technology

Continental Automotive GmbH

Delphi France SAS

dSpace GmbH

INCHRON GmbH

Institute National de Recherche en Informatique et Automatique
INRIA

Mälardalen University

Rapita Systems Ltd, UK

RealTime-at-Work

Robert Bosch GmbH

Symtavision GmbH

Technische Universität Braunschweig

University of Paderborn

Volvo Technology AB

Project Coordinator

Dr. Daniel Karlsson

Volvo Group Trucks Technology

Advanced Technology & Research

Dept 6260, M2.7

SE-405 08 Göteborg

Sweden

Tel.: +46 31 322 9949

Email: Daniel.B.Karlsson@volvo.com

© Copyright 2010-2012: The TIMMO-2-USE Consortium

mailto:Daniel.B.Karlsson@volvo.com

Deliverable D11 Version 1.2 3

Authors

Hans Blom, Volvo Technology AB

Dr Lei Feng, Volvo Technology AB

Dr Henrik Lönn, Volvo Technology AB

Dr Johan Nordlander, Chalmers University of Technology

Stefan Kuntz, Continental Automotive GmbH

Dr Björn Lisper, Mälardalen University

Dr Sophie Quinton, Technische Universität Braunschweig

Dr Matthias Hanke, Technische Universität Braunschweig

Dr Marie-Agnès Peraldi-Frati, Institute National de Recherche en
Informatique et Automatique INRIA

Dr Arda Goknil, Institute National de Recherche en Informatique et
Automatique INRIA

Dr Julien Deantoni , Institute National de Recherche en Informatique
et Automatique INRIA

Gilles Bertrand Defo, University of Paderborn

Kay Klobedanz, University of Paderborn

Mesut Özhan, INCHRON GmbH

Olha Honcharova, AbsInt Angewandte Informatik GmbH

Deliverable D11 Version 1.2 4

Document History

Version Date Description

1.2 2012-08-30 Public version. Corrected typo in chapter 3.6.2.

1.1 2012-08-20 Typos corrected in chapter 3.6.7 and 12.1.1.

1.0 2012-07-10 Result from TIMMO-2-USE WP2

Deliverable D11 Version 1.2 5

Table of contents

TIMMO-2-USE Partners .. 2

Authors .. 3

Document History .. 4

Table of contents ... 5

1 Executive Summary ... 8

2 Introduction .. 9

2.1 Parts of this Deliverable .. 9

2.2 Motivation and Overview of TADL2 9

3 TADL2 Specification of Syntax and Semantics 12

3.1 Events and occurrences .. 12

3.2 Notations ... 12

3.3 Event classes .. 14

3.3.1 Event ... 14

3.3.2 AUTOSAREvent .. 14

3.3.3 EASTADLEvent ... 14

3.3.4 ExternalEvent .. 14

3.3.5 EventChain .. 15

3.4 ArithmeticExpression ... 15

3.5 TimingExpression .. 17

3.6 TADL2 Constraints .. 17

3.6.1 DelayConstraint ... 17

3.6.2 StrongDelayConstraint 18

3.6.3 RepeatConstraint ... 19

3.6.4 RepetitionConstraint .. 20

3.6.5 SynchronizationConstraint 21

3.6.6 StrongSynchronizationConstraint 22

3.6.7 ExecutionTimeConstraint 23

3.6.8 OrderConstraint ... 25

3.6.9 ComparisonConstraint 26

3.6.10 SporadicConstraint .. 27

3.6.11 PeriodicConstraint.. 28

3.6.12 PatternConstraint ... 29

3.6.13 ArbitraryConstraint ... 30

3.6.14 BurstConstraint .. 31

3.6.15 ReactionConstraint .. 32

3.6.16 AgeConstraint .. 33

Deliverable D11 Version 1.2 6

3.6.17 OutputSynchronizationConstraint 34

3.6.18 InputSynchronizationConstraint 35

4 Mode Dependency ... 37

5 Multiple Time Bases and Symbolic Timing Expressions 39

5.1 Requirements and Examples for Symbolic Timing
Expressions... 39

5.2 Multiple Time Bases .. 40

5.2.1 Dimension .. 40

5.2.2 TimeBase .. 41

5.2.3 TimeBaseRelation.. 43

5.3 TimingExpression .. 43

6 Probabilistic Timing Constraints ... 47

6.1 Constructs for Probabilistic Constraints 47

6.1.1 Definition of Time Distributions 47

6.1.2 Constructs for Weakly-Hard Constraints 48

6.2 Probabilistic Extension of Timing Constraints 49

6.2.1 Probabilistic Extension of the
ExecutionTimeConstraint 49

6.2.2 Probabilistic Extension of the
StrongDelayConstraint 50

6.2.3 Probabilistic Extension of the RepeatConstraint 51

6.2.4 Probabilistic Extension of the RepetitionConstraint
 .. 51

7 Example User Model .. 53

7.1 Brake-By-Wire Example .. 53

7.1.1 The Functional Decomposition of the Braking
Functionality ... 53

7.1.2 Hardware Architecture and Allocation 54

7.1.3 Timing Constraints Applied on the BBW System 54

7.1.4 Dimension, Time Base and Time Base Relation
Declarations in TADL2 for the BBW System 55

7.1.5 Timing Expressions in TADL2 for the BBW
System ... 57

7.2 BSG-E Example .. 58

7.2.1 Functional/Hardware Architecture of the BSG-E 58

7.2.2 BSG-E Requirements Including Timing
Characteristics ... 60

7.3 Timing Constraint and Symbolic Timing Expressions 64

8 Language Modeling Environment ... 67

9 References ... 68

10 Appendix A - Current modeling of timing 70

Deliverable D11 Version 1.2 7

10.1 EAST_ADL and AUTOSAR ... 70

10.2 UML_OCL ... 71

10.3 PSL Property Specification Language 73

10.4 Expressing TADL2 Constrints using PSL 73

10.5 MARTE-Clock Constraint Specification Language 76

11 Appendix B – TADL2 Metamodel ... 80

11.1 TADL2 ... 80

11.1.1 Overview .. 80

11.1.2 Element Descriptions ... 81

11.2 TimingConstraints ... 85

11.2.1 Overview .. 85

11.2.2 Element Descriptions ... 89

11.3 MultipleTimeBases .. 103

11.3.1 Overview .. 103

11.3.2 Element Descriptions 103

11.4 ProbabilisticTiming .. 109

11.4.1 Overview .. 109

11.4.2 Element Descriptions 109

12 Appendix C – Relationships ... 115

12.1 Relation to AUTOSAR 4.0.3 Timing Extension 115

12.1.1 Comparison ... 117

12.2 Relationship to EAST-ADL .. 123

Deliverable D11 Version 1.2 8

1 Executive Summary

Work package 2 (WP2) of the TIMMO-2-USE project defines a
language called TADL2 (Timing Augmented Description Language
Version 2) for advanced handling of timing information. It is based on
the existing TADL, developed in the TIMMO project.

Project requirements and use cases from WP1 serve as the definition
of the needed updates. Additional features are documented as the
result of interaction with other project work packages.

Harmonization with EAST-ADL Timing from the MAENAD project and
the AUTOSAR 4.0 Timing Extensions has been performed. This gave
an updated and integrated syntax and semantic definition of TADL2.
These results may lead to improvement suggestions for these related
standards.

Semantics of mode dependency to be used in timing constraints have
been defined.

Syntax for symbolic time expressions will allow for advanced
expressions in constraints; this also includes the use of multiple time
bases.

In close cooperation with WP3 (Tools and Algorithms), the need for
introduction of probabilistic timing information is included for TADL2.

Deliverable D11 Version 1.2 9

2 Introduction

The main goal of WP2 in TIMMO-2-USE is to provide a modeling
framework for timing information in the early steps of the design
process of embedded real-time systems in the automotive industry.
Following this idea, it is expected that test effort, development time,
and cost will be reduced. A language is developed to formalize the
information related to timing; this language is the Timing Augmented
Description Language Version 2, TADL2.

The scope of TADL2 is the definition of timing constraints and the
description on how these relate to events exposed by a system. The
system is described by models using EAST-ADL and AUTOSAR
concepts. This concept of relating timing constraints with events that
can be observed in a system described by EAST-ADL and
AUTOSAR is shown in Figure 1.

Figure 1. Events connect TADL2 to the system design modeled with EAST-ADL and
AUTOSAR.

2.1 Parts of this Deliverable

The deliverable D11 consists of two parts:

 This document with introduction and background, description of
language syntax and semantics. And new concepts in TADL2 are
described. In this document Appendix A gives the justification for
symbolic time extensions and Appendix B presents the TADL2
metamodel.

 Metamodel, which is supplied separately as an XMI export of the
metamodel in Enterprise Architect. This metamodel should be
imported in an Enterprise Architect model of EAST-ADL and
AUTOSAR 4, see [3] and ‎[8]. The elements in the metamodel are
documented, which facilitates the generation of documentation from
the metamodel

2.2 Motivation and Overview of TADL2

Deliverable D11 Version 1.2 10

TADL was first defined in the TIMMO project [1]. These results were
integrated in EAST-ADL by the ATESST2 project [2]. The metamodel
was contained in the package Timing [3]. In this process there was
some renaming of the events connected to the EAST-ADL function
concepts. This was due to the renaming of ADLFunctionType to
FunctionType in EAST-ADL. Hence the “ADL” part of the name was
also removed from the events.

The set of different events defined for particular flow ports in EAST-
ADL were replaced by one concept EventFunctionFlowPort. One
single concept EventFunctionClientServerPort replaced two separate
concepts for client and server ports.

These events remain in use by TADL2, however it has been realized
that the semantics of the specific events belong to the model
describing the structure of the solution or proposed solution. This
semantics is therefore not defined by TADL2. Rather, only the
concepts of abstract events and event chains, and the definition of
constraints belong to TADL2, see Figure 2. To avoid modification of
EAST-ADL and AUTOSAR, the references are consistently defined
from TADL2 to EAST-ADL and AUTOSAR respectively.

Figure 2. Different events are defined to refer to structural elements of EAST-ADL
and AUTOSAR.

Since the TIMMO project ended, there has been an extension added
in AUTOSAR that deals with timing [4]. AUTOSAR belong in the
Implementation abstraction layer as defined by EAST-ADL. However,
TADL2 still spans all the abstraction levels as defined in EAST-ADL.
This is to provide a common semantics for all levels. See Figure 3.

Deliverable D11 Version 1.2 11

Figure 3. This figure shows how TADL and TADL2 spans the abstraction levels of
EAST-ADL where AUTOSAR is available in the implementation level. AUTOSAR 4
includes a timing extension.

TADL2 as developed by TIMMO-2-USE differs from TADL from
TIMMO in a number of ways:

 The semantics of TADL is updated w.r.t. timing constraints
and mode dependency.

 TADL2 adds new concepts for multiple time bases, symbolic
time expressions and probabilistic timing.

Details on the differences between the timing constraints in TADL2
and EAST-ADL and AUTOSAR Timing Extensions are described in a
later chapter.

Deliverable D11 Version 1.2 12

3 TADL2 Specification of Syntax and Semantics

This chapter defines the syntax and semantics for TADL2. By the
semantics of a constraint we mean the unambiguous interpretation of
the conditions that must hold for the constraint to be satisfied.

As mentioned in the introduction, the natural border of responsibilities
between the TADL2 constraint language and the models it constrains
goes through the definition of events. This chapter therefore begins
with a section on the semantics of events, and the assumptions
TADL2 makes on event occurrences in running systems or simulated
system models. An introduction to the notations used then follows, as
well as descriptions of the classes used to express events and
arithmetic expressions, before the topic moves on to the different
constraints and their semantic interpretations.

3.1 Events and occurrences

An event denotes a distinct form of state change in a running system,
taking place at distinct points in time called occurrence of the event.
That is, a running system can be observed by identifying certain
forms of state changes to watch for, and for each such observation
point, noting the times when changes occur. This notion of
observation also applies to a hypothetical predicted run of a system
or a system model — from a timing perspective, the only information
that needs to be in the output of such a prediction is a sequence of
times for each observation point, indicating the times that each event
is predicted to occur.

In system models, events appear syntactically as names indicating
the state changes of interest. Semantically, an event name is a
variable standing for some statically unknown set of occurrences.
Note that this connection is purely conceptual; occurrences never
exist concretely in any system model as they are a purely semantic
notion representing the state changes that can be observed when a
system is executed, or simulated, or perhaps only mathematically
predicted.

In the TADL2 semantics, an occurrence is basically just a timestamp
— a real value of the SI unit seconds. However, a few constraints will
also make use of an additional piece of information for each
occurrence: a color annotation set by the producer of an event, which
a constraint may utilize to identify related occurrences (those that are
causally connected, for example). Colors are drawn from some
abstract, possibly infinite type whose only restriction is that it must
support an equality test on its values. This reveals that semantically
an occurrence is really a (timestamp, color) pair, although in most
contexts, the color component may be ignored and the occurrence
simply identified with its timestamp.

3.2 Notations

Syntactic and semantic objects like events, constraints and time, will
be referenced by simple variable names in this chapter; for example,

Deliverable D11 Version 1.2 13

a constraint c, an occurrence x, or a set of occurrences Y. To denote
attributes of such an object an object-oriented notation will be used,
where for example c.jitter means the attribute jitter of constraint c.

If ev is an event name, its dynamic occurrences are referenced in
constraint definitions by reference to a variable x that is a member of
ev. Variable x thus stands for a particular occurrence, which in all
arithmetic contexts simply means its timestamp value. When the
color annotation of an occurrence x is intended, it is explicitly written
as x.color.

The following standard logical connectives and set operators on will
be used in the formal semantic definitions:

 c1c2 constraints c1 and c2 both true

 c1c2 implication (c1 is false, or c1 and c2 are both true)

 c1c2 equivalence (c1 and c2 have the same truth value)

 x : c c is true for all possible values of x

 x : c c is true for at least one value of x
 |Y| the number of elements in set Y

 X  Y the elements that are in both X and Y

 X  Y the elements that are in either X or Y
 X \ Y the elements in X that are not elements of Y

 C(X) complement (all elements that are not in X)

 X  Y all elements in X are also in Y

 xY x is an element of Y

 xY : c for each x in Y, c is true

 xY : c there is an x in Y such that c is true

Because occurrences are ordered via their timestamps, a set of
occurrences might just as well be thought of as a sequence of
occurrences. This gives rise to a sub-sequence relation between
such sets, as well as the notion of indexing:

 X ≤ Y X is a sub-sequence of Y
 x = Y(i) x is element number i in Y (counting from 0)

Just as events are semantically understood as sets of occurrences,
time intervals can also be seen as occurrence sets, with the
important characteristic that any non-empty interval will contain
infinitely many dense occurrences. The following interval operators
will play a role in coming definitions:

 [x..Y] the set of all occurrences from x to the nearest
 greater element of Y
 [X..Y] the set of all occurrences between any x in X to its
 nearest greater element in Y (may result in
 alternating intervals and gaps)
 [X] the set of all occurrences between the smallest and
 greatest occurrences in X

 (X) the total length of all continuous intervals in X, such
 that if X contains all occurrences between times 3

 and 5, as well as between times 6 and 8, (X) is 4.

It should be noted since both events and intervals correspond to sets

of occurrences, expressions like X  Y or X  Y are perfectly valid,
even if X is an event and Y stands for an interval.

A full definition of the interval and sequence operators above is
contained in a separate technical paper [5]. For a thorough

Deliverable D11 Version 1.2 14

explanation on the logic and set notations used, the reader is referred
to any undergraduate text in mathematical logic, for example [6].

3.3 Event classes

TADL2 events include all events expressible in AUTOSAR, all events
expressible in EAST-ADL, as well as events of the external physical
world not part of a particular system model. This is all captured by a
common abstract superclass Event, which is specialized in three
different ways: AUTOSAREvent, EASTADLEvent, and ExternalEvent.
Any event can furthermore be part of an EventChain, which is a class
referencing two Event instances.

3.3.1 Event

Description

The Event class stands for all the forms of identifiable state
changes that are possible to constrain with respect to timing using
TADL2.

Attributes

(none)

3.3.2 AUTOSAREvent

Description

An AUTOSAREvent instance refers to an event of the form
defined by AUTOSAR.

Generalization

Event

Attributes

ref : AUTOSAR::TimingDescription::TimingDescriptionEvent

3.3.3 EASTADLEvent

Description

An EASTADLEvent instance refers to an event of the form defined
by EAST-ADL.

Generalization

Event

Attributes

ref : EAST-ADL::Timing::Event

3.3.4 ExternalEvent

Description

Deliverable D11 Version 1.2 15

An ExternalEvent instance stands for some particular form of state
change.

Generalization

Event

Attributes

description : String

Note

It is implied that the attribute description uniquely identifies the
intended form of state change. It is also assumed that a
description string is sufficiently informative to determine an
unambiguous set of occurrences for each observation.

This event is named ExternalEvent as it does not refer to an
element in the model. Events referring to structural elements in the
model, as e.g. ports, are defined and available in EAST-ADL and
AUTOSAR.

3.3.5 EventChain

Description

An EventChain is a container for a pair of events that must be
causally related.

Attributes

stimulus : Event
response : Event

Semantic implications

A system behavior is consistent with respect to an event chain ec
if and only if

for each occurrence x in ec.stimulus,
 for each occurrence y in ec.response,
 if x.color = y.color then x < y

Logic formulation

x  stimulus : x  response : x.color = y.color  x < y

3.4 ArithmeticExpression

Description

An arithmetic expression, denoted aexp, is a term built from
literals, arithmetic variables and arithmetic operators. It stands for
a value in the real number system extended with positive and
negative infinity.

Grammar

aexp ::= LIT
 | VAR

 | - aexp1

Deliverable D11 Version 1.2 16

 | aexp1 + aexp2

 | aexp1 - aexp2

 | aexp1 * aexp2

 | aexp1 / aexp2

 | (aexp1)

 | infinity

The grammar notation used here and in subsequent sections is
the standard BNF form, with keywords in boldface and non-
terminal symbols written using lower-case names.

LIT is a terminal symbol standing for a non-negative real-valued
literal.

VAR is a terminal symbol standing for an alphanumeric identifier.

For more information on formal grammars and the BNF notation,
see for example reference[7].

Variable assignments

The meaning of an arithmetic expression is defined relative to
some assignment of values to all referenced arithmetic variables.
Such a variable assignment is part of the constrained system
behavior; that is, every system behavior will define a particular
variable assignment and thus ascribe a particular meaning to the
arithmetic expressions it references in its constraints.

Semantics

Given a particular variable assignment, the meaning of an
arithmetic expression aexp in that assignment is a value in the real
number system extended with positive and negative infinity.
Depending on the form of aexp, this value is defined as follows:

 If aexp is of the form LIT, its meaning is the value denoted
by LIT.

 If aexp is of the form VAR, its meaning is the value of VAR
in the given variable assignment.

 If aexp is of the form –aexp1, its meaning is –r1, where r1 is
the meaning of aexp1 in the given variable assignment.

 If aexp is of the form aexp1 + aexp2, its meaning is r1 + r2,
where r1 is the meaning of aexp1, and r2 is the meaning of
aexp2, in the given variable assignment.

 If aexp is of the form aexp1 - aexp2, its meaning is r1 - r2,
where r1 is the meaning of aexp1, and r2 is the meaning of
aexp2, in the given variable assignment.

 If aexp is of the form aexp1 * aexp2, its meaning is r1 * r2,
where r1 is the meaning of aexp1, and r2 is the meaning of
aexp2, in the given variable assignment.

 If aexp is of the form aexp1 / aexp2, its meaning is r1 / r2,
where r1 is the meaning of aexp1, and r2 is meaning of
aexp2, in the given variable assignment.

 If aexp is of the form (aexp1), its meaning is the meaning
of aexp1 in the given variable assignment.

Deliverable D11 Version 1.2 17

 If aexp is of the form infinity, its meaning is the infinite

value .

3.5 TimingExpression

Description

A TimingExpression is identical to an arithmetic expression for
what this chapter is concerned. However, in chapter 5, the
TimingExpression grammar is extended to allow for expressions
that use alternative time bases and a variety of units. The
semantics of this extension is provided as a reduction of any
TimingExpression to a form equivalent to a simple arithmetic
expression, so the constraint definitions of the current chapter
remain valid in spite of the expression forms added in chapter 5.

Whenever a TimingExpression attribute is referenced in the
subsequent semantic definitions, it is the meaning of the attribute
– i.e., an extended real value, given the variable assignment
defined by a particular system behavior – that is implied.

3.6 TADL2 Constraints

TADL2 offers a palette of means to constrain the time occurrences of
events. These can roughly be grouped into restrictions on the
recurring delays between a pair of events, restrictions on the
repetitions of a single event, and restrictions on the synchronicity of a
set of events. All constraints provided by TADL2 are defined in this
section.

Each constraint is documented using the following headings:

 Description.

 Attributes of the constraint, referencing Events as described
in the previous sections, and the TimingExpressions that will
be defined in detail in chapter 5. For the purposes of this
chapter, TimingExpressions can be understood as a synonym
for the ArithmeticExpressions introduced in chapter 3.4.
Default attribute values, which apply in a right-to-left manner
whenever a constraint argument list is too short to match all
defined attributes, are given when applicable.

 Semantics, that defines which event occurrence patterns that
satisfy the constraint and which do not.

 Logic equivalence, which expresses the constraint semantics
using an equivalent first-order logic formula.

 Notes, which gives some motivation and intuitions to the
constraint definition.

 There is also an illustrating figure showing a trace of event
occurrences fulfilling the constraint.

3.6.1 DelayConstraint

Deliverable D11 Version 1.2 18

Description

A DelayConstraint imposes limits between the occurrences of an
event called source and an event called target.

Attributes

source : Event
target : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity

Semantics

A system behavior satisfies a DelayConstraint c if and only if

for each occurrence x of c.source,
 there is an occurrence y of c.target such that
 c.lower ≤ y – x ≤ c.upper

Logic equivalence

DelayConstraint (source, target, lower, upper)



x  source : y  target : lower ≤ y – x ≤ upper

Note

This notion of delay is entirely based on the distance between
source and target occurrences; whether a matching target
occurrence is actually caused by the corresponding source
occurrence is of no importance. This means that one-to-many and
many-to-one source-target patterns are allowed, and so are stray
target occurrences that are not within the prescribed distance of
any source occurrence.

Figure 4. A set of event occurrences satisfying a DelayConstraint. Note the stray target occurrences outside the
bounds set by the constraint.

3.6.2 StrongDelayConstraint

Description

A StrongDelayConstraint imposes limits between each indexed
occurrence of an event called source and the identically indexed
occurrence of an event called target.

Attributes

Deliverable D11 Version 1.2 19

source : Event
target : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity

Semantics

A system behavior satisfies a StrongDelayConstraint c if and only
if

c.source and c.target have the same number of occurrences,
and for each index i,
 if there is an i:th occurrence of c.source at time x
 there is also an i:th occurrence of c.target at time y
 such that
 c.lower ≤ y – x ≤ c.upper

Logic equivalence

StrongDelayConstraint (source, target, lower, upper)



|source| = |target| 

i : x : x = source(i)  y : y = target(i)  lower ≤ y – x ≤ upper

Note

The strong delay notion requires source and target occurrences to
appear in lock-step. Only one-to-one source-target patterns are
allowed, and no stray target occurrences are accepted.

Figure 5. A set of event occurrences satisfying a StrongDelayConstraint. Note that no stray target occurrences are
allowed outside the bounds set by the constraint.

3.6.3 RepeatConstraint

Description

A RepeatConstraint describes the repeated distribution of the
occurrences of a single event.

Attributes

event : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity
span : int = 1

Semantics

Deliverable D11 Version 1.2 20

A system behavior satisfies a RepeatConstraint c if and only if

for each subsequence X of c.event,
 if X contains span + 1 occurrences then
 e is the distance between the outermost
 occurrences in X
 and
 c.lower ≤ e ≤ c.upper

Logic equivalence

RepeatConstraint (event, lower, upper, span)



X ≤ event : |X| = span+1  lower ≤ λ([X]) ≤ upper

Note

This constraint defines the basic notion of repeated occurrences. If
the span attribute is 1 and the lower and upper attributes are
equal, the accepted behaviors must be strictly periodic. If span is
still 1 but lower is strictly less than upper, the pattern may deviate
from a periodic one in an accumulating fashion, making the
window within which occurrence number N may appear as wide as
N(upper-lower) time units. A span attribute greater than 1 similarly
constrains every sequence of span+1 occurrences, but places no
restriction on the distances within shorter sequences.

Figure 6. A set of event occurrences satisfying a RepeatConstraint with a span of 2.

3.6.4 RepetitionConstraint

Description

A RepetitionConstraint describes the distribution of the
occurrences of a single event, including the allowance for jitter.

Attributes

event : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity
span : int = 1
jitter : TimingExpression = 0

Semantics

A system behavior satisfies a RepetitionConstraint c if and only if

Deliverable D11 Version 1.2 21

the same system behavior concurrently satisfies
 RepeatConstraint { event = X,
 lower = c.lower,
 upper = c.upper,
 span = c.span }
and
 StrongDelayConstraint { source = X,
 target = c.event,
 lower = 0,
 upper = c.jitter }

Logic equivalence

RepetitionConstraint (event, lower, upper, span, jitter)



X : RepeatConstraint (X, lower, upper, span)

  StrongDelayConstraint (X, event, 0, jitter)

Note

The RepetitionConstraint extends the basic notion of repeated
occurrences by allowing local deviations from the ideal repetitive
pattern described by a RepeatConstraint. Its jitter, lower and upper
attributes all contribute to the width of the window in which
occurrence number N is accepted, according to the formula
N(upper-lower) + jitter. That is, with lower = upper, the uncertainty
of where occurrence N may be found does not grow with an
increasing N, unlike the case when lower differs from upper by a
similar amount and jitter is 0. By adjusting all three attributes, a
desired balance between accumulating and non-accumulating
uncertainties can be obtained.

Figure 7. A set of event occurrences satisfying a RepetitionConstraint with a span of 2.

3.6.5 SynchronizationConstraint

Description

A SynchronizationConstraint describes how tightly the occurrences
of a group of events follow each other.

Attributes

Deliverable D11 Version 1.2 22

event : Event [2..*]

tolerance : TimingExpression = infinity

Semantics

A system behavior satisfies a SynchronizationConstraint c if and
only if

there is a set of times X such that for each c.event index i, the
same system behavior concurrently satisfies
 DelayConstraint { source = X,
 target = c.eventi,
 lower = 0,
 upper = c.tolerance }
and
 DelayConstraint { source = c.eventi,
 target = X,
 lower = -c.tolerance,
 upper = 0}

Logic equivalence

SynchronizationConstraint (event1, …, eventn, tolerance)



X : i : DelayConstraint (X, eventi, 0, tolerance)

  DelayConstraint (eventi, X, -tolerance, 0)

Note

This form of synchronization only takes the width and
completeness of each occurrence cluster into account; it does not
care whether some events occur multiple times within a cluster or
whether some clusters overlap and share occurrences. In
particular, event occurrences are not partitioned into clusters
according to their role or what has caused them. Stray
occurrences of single events are not allowed, though, since these
would just count as incomplete clusters according to this
constraint.

Figure 8. A set of event occurrences of three events satisfying a SynchronizationConstraint.

3.6.6 StrongSynchronizationConstraint

Deliverable D11 Version 1.2 23

Description

A StrongSynchronizationConstraint describes how tightly the
occurrences of a group of events follow each other.

Attributes

event : Event [2..*]

tolerance : TimingExpression = infinity

Semantics

A system behavior satisfies a StrongSynchronizationConstraint c if
and only if

there is a set of times X such that for each c.event index i, the
same system behavior satisfies
 StrongDelayConstraint { source = X,
 target = c.eventi,
 lower = 0,
 upper = c.tolerance }

Logic equivalence

StrongSynchronizationConstraint (event1, …, eventn, tolerance)



X : i : StrongDelayConstraint (X, eventi, 0, tolerance)

Note

Strong synchronization differs from the ordinary form (section
3.6.5) by grouping event occurrences into synchronization clusters
strictly according to their index. This means that multiple
occurrences of a single event cannot belong to a single cluster,
and clusters may not share occurrences. Strong synchronization
tightens the requirements compared to ordinary synchronization in
much the same way as strong delay (section 3.6.2) refines the
ordinary delay constraint (section 3.6.1).

Figure 9. A set of event occurrences of three events satisfying a StrongSynchronizationConstraint.

3.6.7 ExecutionTimeConstraint

Deliverable D11 Version 1.2 24

Description

An ExecutionTimeConstraint limit the time between the starting
and stopping of an executable entity (function), not counting the
intervals when the execution of such an executable entity
(function) has been interrupted.

Attributes

start : Event
stop : Event
preempt : Event
resume : Event
lower : TimingExpression
upper : TimingExpression

Semantics

A system behavior satisfies an ExecutionTimeConstraint c if and
only if

for each occurrence x of event c.start,
 E is the set of times between x and the next c.stop
 occurrence, excluding the times between any c.preempt
 occurrence and its next c.resume occurrence,
and
 c.lower ≤ length of all continuous intervals in E ≤ c.upper

Logic equivalence

ExecutionTimeConstraint (
 start, stop, preempt, resume, lower, upper)



x  start : lower ≤ λ([x..stop] \ [preempt..resume]) ≤ upper

Note

The execution time of a task (function, runnable) is defined as the
time from each activation of the task to the point of the
corresponding task termination, not counting the intervals where
the task has been preempted. TADL2 assumes that all points of
interest in this respect are available as events. The length operator
λ(X) plays a crucial role in this definition, as it computes the sum
of the length of all continuous intervals in set X. A discontinuous
series of intervals will typically result if the times belonging to any
preemption interval (that is, elements of [preempt..resume]) are
removed from the interval describing a task activation (i.e.,
[x..stop]).

Deliverable D11 Version 1.2 25

Figure 10. A set of event occurrences satisfying an ExecutionTimeConstraint.

3.6.8 OrderConstraint

Description

An OrderConstraint imposes an order between the occurrences of
an event called source and an event called target.

Attributes

source : Event
target : Event

Semantics

A system behavior satisfies an OrderConstraint c if and only if

c.source and c.target have the same number of occurrences,
and for each index i,
 if there is an i:th occurrence of c.source at time x, there is
 also an i:th occurrence of c.target at time y such that
 x < y

Logic equivalence

OrderConstraint (source, target)



|source| = |target| 

i : x : x = source(i)  y : y = target(i)  x < y

Note

The OrderConstraint is a minor variant of an application of

StrongDelayConstraint with lower set to 0 and upper to infinity;

Deliverable D11 Version 1.2 26

the difference being that the OrderConstraint does not allow
matching target and source occurrences to coincide.

Figure 11. A set of event occurrences satisfying an OrderConstraint.

3.6.9 ComparisonConstraint

Description

A ComparisonConstraint states that a certain ordering relation
must exist between two timing expressions.

Attributes

leftOperand : TimingExpression
rightOperand : TimingExpression
operator : ComparisonOperator

Semantics

A system behavior satisfies a ComparisonConstraint c if and only
if

c.leftOperand and c.rightOperand are related according to the
ordering relation given by c.operator.

Logic equivalences

ComparisonConstraint
 (leftOperand, rightOperand, LessThanOrEqual)


leftOperand ≤ rightOperand

ComparisonConstraint (leftOperand, rightOperand, LessThan)


leftOperand < rightOperand

ComparisonConstraint
 (leftOperand, rightOperand, GreaterThanOrEqual)


leftOperand ≥ rightOperand

ComparisonConstraint (leftOperand, rightOperand, GreaterThan)


leftOperand > rightOperand

ComparisonConstraint (leftOperand, rightOperand, Equal)


leftOperand = rightOperand

Deliverable D11 Version 1.2 27

Note

This constraint is special in that it does not reference any events.
Its main purpose is to express relations between arithmetic
variables used in other constraint; for example, stating that the
sum of the variables denoting segment delays in a time-budgeting
scenario must be less than the maximum end-to-end deadline
allowed.

3.6.10 SporadicConstraint

Description

A SporadicConstraint describes an event that occurs sporadically.

Attributes

event : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity
jitter : TimingExpression = 0
minimum : TimingExpression = 0

Semantics

A system behavior satisfies a SporadicConstraint c if and only if

the same system behavior concurrently satisfies
 RepetitionConstraint { event = c.event,
 lower = c.lower,
 upper = c.upper,
 jitter = c.jitter }
and
 RepeatConstraint { event = c.event,
 lower = c.minimum }

Logic equivalence

SporadicConstraint (event, lower, upper, jitter, minimum)


RepetitionConstraint (event, lower, upper, jitter)

 RepeatConstraint (event, minimum)

Note

The SporadicConstraint is just an application of the
RepetitionConstraint with a default span attribute of 1, combined
with an additional requirement that the effective minimum distance
between any two occurrences must be at least the value given by
minimum (even if lower-jitter would suggest a smaller value).

Deliverable D11 Version 1.2 28

Figure 12. A set of event occurrences satisfying a SporadicConstraint.

3.6.11 PeriodicConstraint

Description

A PeriodicConstraint describes an event that occurs periodically.

Attributes

event : Event
period : TimingExpression
jitter : TimingExpression = 0
minimum : TimingExpression = 0

Semantics

A system behavior satisfies a PeriodicConstraint c if and only if

the same system behavior satisfies
 SporadicConstraint { event = c.event,
 lower = c.period,
 upper = c.period,
 jitter = c.jitter,
 minimum = c.minimum }

Logic equivalence

PeriodicConstraint (event, period, jitter, minimum)


SporadicConstraint (event, period, period, jitter, minimum)

Note

The PeriodicConstraint is a mere synonym for an application of the
SporadicConstraint with equal values for the lower and upper
attributes (i.e., not accumulating uncertainties). See sections 3.6.3
and 3.6.4 for further discussions on the use of attributes lower,
upper and jitter.

Deliverable D11 Version 1.2 29

Figure 13. A set of event occurrences satisfying a PeriodicConstraint.

3.6.12 PatternConstraint

Description

A PatternConstraint describes an event that exhibits a known
pattern relative to some periodic points in time.

Attributes

event : Event
period : TimingExpression
offset : TimingExpression [1..*]
jitter : TimingExpression = 0
minimum : TimingExpression = 0

Semantics

A system behavior satisfies a PatternConstraint c if and only if

there is a set of times X such that the same system behavior
concurrently satisfies
 PeriodicConstraint { event = X,
 period = c.period }
and for each c.offset index i,
 DelayConstraint { source = X,
 target = c.event,
 lower = c.offseti,
 upper = c.offseti + c.jitter }
and
 RepeatConstraint { event = c.event,
 lower = c.minimum }

Logic equivalence

PatternConstraint
 (event, period, offset1, …, offsetn, jitter, minimum)



X : PeriodicConstraint (X, period)

  (i : DelayConstraint (X, event, offseti, offseti+jitter))

  RepeatConstraint(event, minimum)

Note

A PatternConstraint requires the constrained event occurrences to
appear at a predetermined series of offsets from a sequence of

Deliverable D11 Version 1.2 30

reference points in time that are strictly periodic. The exact
placement of these reference points is irrelevant; if one placement
exists that is periodic and allows the event occurrences to be
reached at the desired offsets, the constraint is satisfied.

Figure 14. A set of event occurrences satisfying a PatternConstraint.

3.6.13 ArbitraryConstraint

Description

An ArbitraryConstraint describes an event that occurs irregularly.

Attributes

event : Event
minimum : TimingExpression [1..*]
maximum : TimingExpression [1..*]

Syntactic constraints

The number of elements in minimum and maximum must be
equal.

Semantics

A system behavior satisfies an ArbitraryConstraint c if and only if

for each c.minimum index i, the same system behavior satisfies
 RepeatConstraint { event = c.event,
 lower = c.minimumi,
 upper = c.maximumi,
 span = i }

Logic equivalence

ArbitraryConstraint (event, minimum1, …, minimumn,
 maximum1, …, maximumn)



i : RepeatConstraint (event, minimumi, maximumi, i)

Deliverable D11 Version 1.2 31

Note

An ArbitraryConstraint is equivalent to a combination of Repeat
constraints, each one constraining sequences of i+1 occurrences
(that is, i repetition spans), with i ranging from 1 to some given n.

Figure 15. A set of event occurrences satisfying an ArbitraryConstraint.

3.6.14 BurstConstraint

Description

A BurstConstraint describes an event that occurs in semi-regular
bursts.

Attributes

event : Event
length : TimingExpression
maxOccurrences : int
minimum : TimingExpression = 0

Semantics

A system behavior satisfies a BurstConstraint c if and only if

the same system behavior concurrently satisfies
 RepeatConstraint { event = c.event,
 lower = c.length,

 upper = infinity,
 span = c.maxOccurrences }
and
 RepeatConstraint { event = c.event,
 lower = c.minimum }

Logic equivalence

BurstConstraint (event, length, maxOccurrences, minimum)



RepeatConstraint (event, length, infinity, 0, maxOccurrences)

 RepeatConstraint (event, minimum)

Note

Deliverable D11 Version 1.2 32

A BurstConstraint expresses the maximum number of event
occurrences that may appear in any interval of a given length,
which is equivalent to constraining the same number of repeat
spans (which count one extra occurrence at the end) to have a
minimum width of length.

Figure 16. A set of event occurrences satisfying a BurstConstraint with maxOccurrences = 3.

3.6.15 ReactionConstraint

Description

A ReactionConstraint defines how long after the occurrence of a
stimulus a corresponding response must occur.

Attributes

scope : EventChain
minimum : TimingExpression = 0

maximum : TimingExpression = infinity

Semantics

A system behavior satisfies a ReactionConstraint c if and only if

for each occurrence x in c.scope.stimulus,
 there is an occurrence y in c.scope.response such that
 y.color = x.color
 and
 y is minimal in c.scope.response with that color
 and
 c.minimum ≤ y – x ≤ c.maximum

Logic equivalence

ReactionConstraint (scope, minimum, maximum)



x  scope.stimulus : y  scope.response :
 x.color = y.color

  (y’  scope.response : y’.color = y.color  y ≤ y’)

  minimum ≤ y – x ≤ maximum

Note

Deliverable D11 Version 1.2 33

This constraint provides an alternative to the ordinary
DelayConstraint (section 3.6.1) for situations where the causal
relation between event occurrences must be taken into account. It
differs from the DelayConstraint in that it applies to an event chain,
and only looks at the response occurrences that have the same
color as each particular stimulus occurrence. It is the earliest of
these response occurrences that is required to lie within the
prescribed time bounds. If the roles of stimulus and response are
swapped, and the time bounds negated, an AgeConstraint is
obtained (see section 3.6.16).

Figure 17. A set of event occurrences satisfying a ReactionConstraint. Causally connected event occurrences are
shown by the same line style. Two sets are shown, one by a solid line and one by a dashed line.

3.6.16 AgeConstraint

Description

An AgeConstraint defines how long before each response a
corresponding stimulus must have occurred.

Attributes

scope : EventChain
minimum : TimingExpression = 0

maximum : TimingExpression = infinity

Semantics

A system behavior satisfies an AgeConstraint c if and only if

for each occurrence y in c.scope.response,
 there is an occurrence x in c.scope.stimulus such that
 x.color = y.color
 and
 x is maximal in c.scope.stimulus with that color
 and
 c.minimum ≤ y – x ≤ c.maximum

Logic equivalence

AgeConstraint (scope, minimum, maximum)



y  scope.response : x  scope.stimulus :
 x.color = y.color

  (x’  scope.stimulus : x’.color = x.color  x’ ≤ x)

  minimum ≤ y – x ≤ maximum

Deliverable D11 Version 1.2 34

Note

This constraint provides an alternative to the ordinary
DelayConstraint (section 3.6.1) for situations where the causal
relation between event occurrences must be taken into account. It
differs from the DelayConstraint in that it applies to an event chain,
and only looks at the stimulus occurrences that have the same
color as each particular response occurrence. It is the latest of
these stimulus occurrences that is required to lie within the
prescribed time bounds. If the roles of stimulus and response are
swapped, and the time bounds negated, a ReactionConstraint is
obtained (see section 3.6.15).

Figure 18. A set of event occurrences satisfying an AgeConstraint. Causally connected event occurrences are
shown by the same line style. Two sets are shown, one by a solid line and one by a dashed line.

3.6.17 OutputSynchronizationConstraint

Description

An OutputSynchronizationConstraint defines how far apart the
responses that belong to a certain stimulus may occur.

Attributes

scope : EventChain[2..*]

tolerance : TimingExpression = infinity

Syntactic constraints

All scopes must reference one common stimulus event.

Semantics

A system behavior satisfies an OutputSynchronizationConstraint c
if and only if

for each occurrence x in c.scope1.stimulus,
 there is a time t such that for each c.scope index i,
 there is an occurrence y in c.scopei.response such that
 y.color = x.color
 and
 y is minimal in c.scopei.response with that color
 and
 0 ≤ y – t ≤ c.tolerance

Logic equivalence

Deliverable D11 Version 1.2 35

OutputSynchronizationConstraint (scope1, …, scopen, tolerance)



x  scope1.stimulus : t : i : y  scopei.response :
 x.color = y.color

  (y’  scopei.response : y’.color = y.color  y ≤ y’)

  0 ≤ y – t ≤ tolerance

Note

This constraint provides an alternative to the ordinary
SynchronizationConstraint (section 3.6.5) for situations where the
causal relation between event occurrences must be taken into
account. It differs from the SynchronizationConstraint in that it
applies to a set of event chains, and only looks at the response
occurrences that have the same color as each particular stimulus
occurrence. It is the earliest of these response occurrences for
each chain that are required to lie no more than tolerance time
units apart. If the roles of stimuli and responses are swapped, an
InputSynchronizationConstraint is obtained (see section 3.6.18).

Figure 19. A set of event occurrences satisfying an OutputSynchronizationConstraint. Response event occurrences
that are causally connected to a stimulus event occurrence are shown by the same line style as the stimulus event
occurrence. Four sets are shown with different line styles.

3.6.18 InputSynchronizationConstraint

Description

An InputSynchronizationConstraint defines how far apart the
responses that belong to a certain stimulus may occur.

Attributes

scope : EventChain[2..*]

tolerance : TimingExpression = infinity

Syntactic constraints

All scopes must reference one common response event.

Deliverable D11 Version 1.2 36

Semantics

A system behavior satisfies an InputSynchronizationConstraint c if
and only if

for each occurrence y in c.scope1.response,
 there is a time t such that for each c.scope index i,
 there is an occurrence x in c.scopei.stimulus such that
 y.color = x.color
 and
 x is maximal in c.scopei.stimulus with that color
 and
 0 ≤ x – t ≤ c.tolerance

Logic equivalence

InputSynchronizationConstraint (scope1, …, scopen, tolerance)



y  scope1.response : t : i : x  scopei.stimulus :
 x.color = y.color

  (x’  scopei.stimulus : x’.color = x.color  x’ ≤ x)

  0 ≤ x – t ≤ tolerance

Note

This constraint provides an alternative to the ordinary
SynchronizationConstraint (section 3.6.5) for situations where the
causal relation between event occurrences must be taken into
account. It differs from the SynchronizationConstraint in that it
applies to a set of event chains, and only looks at the stimulus
occurrences that have the same color as each particular response
occurrence. It is the latest of these stimulus occurrences for each
chain that are required to lie no more than tolerance time units
apart. If the roles of stimuli and responses are swapped, an
OutputSynchronizationConstraint is obtained (see section 3.6.17).

Figure 20. A set of event occurrences satisfying an InputSynchronizationConstraint. Stimuli event occurrences that
are causally connected to a specific response event occurrence are shown by the same line style as the response
event occurrence. Four sets are shown with different line styles.

Deliverable D11 Version 1.2 37

4 Mode Dependency

Modes capture certain states in a system where it is supposed to
operate in a certain way. For instance, if the hazard warning signal is
turned on, then the warning lights would be flashed synchronously
with a certain periodicity and when the signal is turned off then the
system should return to its usual mode, where the lights do not flash.
Obviously, timing constraints should also be possible to associate
with modes since different modes of operation have different timing
requirements on different events.

TADL2 therefore allows a timing constraint c to be dependent on a
mode by setting c.mode to a mode identifier M (or, in the logic format,
by writing c % M). When a mode is turned on then all its dependent
timing constraints become active and they remain so until the mode
is turned off and they- the constraints are again deactivated.

TADL2 does not provide any means to define modes: it assumes
that, for each mode M, there is a special event turning M on
(semantically denoted M) and another event turning M off (written
M). These events provide the interface of TADL2 for modes,
according to Figure 21. A time interval between an event occurrence
turning on M, and the subsequent event occurrence turning it off, is a
mode window for M; the timing constraints that depend on M are
active exactly in these windows.

TADL2 does not require the modes that are mutually exclusive.
However, a timing constraint can only be dependent on one mode. If
a constraint is to be active in several modes, then a mode
corresponding to the union of these modes has to be defined outside
TADL2, such that it’s on and off events delimit the desired combined
mode windows.

Semantics

Assume c is a mode-dependent constraint that is an instance of
class Constr, has Event parameters event1,…,eventn and
additional parameters par1,…,parm, and that c.mode = M.

Then, a system behavior satisfies c if and only if

for each occurrence x of event M,
 Y is the interval from x to the next M occurrence
and
 X1,…,Xn are freely chosen sets of occurrences outside Y
and

 Constr { event1 = (c.event1 ∩ Y) ∪ X1,

 …

 eventn = (c.eventn ∩ Y) ∪ Xn,

 par1 = c.par1,
 …
 parm = c.parm }

Logic Equivalence

Constr (event1, …, eventn, par1, …, parm) % M



Deliverable D11 Version 1.2 38

x  M : Y = [x..M] : X1,…,Xn ⊆ C(Y) :

Constr ((event1 ∩ Y) ∪ X1, …, (eventn ∩ Y) ∪ Xn, par1, …, parm

)

Note

The mode-restricted version of the constraint C holds exactly
when-for each mode window, an instance of C holds where each
constrained event is first restricted to the mode interval, then
extended in some arbitrary way outside the mode interval to make
the constraint hold. The occurrences extending an event do not
have to occur, they are only "imaginary" occurrences showing that
the part of an event that intersect the mode window could have
been part of an event fulfilling the mode-unrestricted constraint.
Note that we do not care about the actual occurrences of such an
event outside each mode window.

Figure 21. The mode window with three occurrences of event E.

Figure 21 illustrates the semantics of mode-dependent constraints.
For simplicity, consider a mode that is active only in a single mode
window. The three occurrences of the event E that occur within the
mode window all occur periodically, with a constant distance in time
between each consecutive occurrence. Thus, they can be extended
with "hypothetical" occurrences belonging to some event X, outside
the mode window, in such a way that the combined event is periodic
also outside the mode window. This shows that E satisfies a mode-
dependent periodic constraint. For modes with several mode
windows, the event E must be possible to extend in this way for each
mode window separately.

Deliverable D11 Version 1.2 39

5 Multiple Time Bases and Symbolic Timing Expressions

This work on symbolic time expression is twofold: firstly, it concerns
the concepts of TADL2 to manage in a same design, time bases of
multiple types (universal time – i.e. chronometric time, angular time,
etc.). The second aspect concerns with the extension of constant
time expressions and the possibility to define time as an algebraic
expression that is able to manipulate symbolic identifiers. So, a value
expression in a TADL2 time constraint may refer to an expression
made of a suitable set of arithmetic operators mixing symbolic
identifiers and referring to different time bases.

A typical use for this feature is to capture unknown configuration
parameters; another one is to relate constraints in different time-
bases to each other. Inherent to this work is also the study of the
allowable ranges for symbolic values that are dictated by a set of
constraints, using both logic reasoning and systematic simulations of
event patterns.

5.1 Requirements and Examples for Symbolic Timing Expressions

Depending on the abstraction level in a design, timing requirements
could refer to different time bases (continuous, discrete or logical).

Some examples of typical requirements which refer to different time
bases are given below:

Time Measured on Multiple Time Bases

 The language should be capable of expressing constraints with
different time bases. It is supposed that time bases are explicit model
elements and the language can refer to these elements.

 The spark ignition correction should be within the interval [-15 °
CRK ; +15 ° CRK] from the reference Top Dead Center (TDC)

 A phase in a 4-stroke engine lasts after 90°CAM

 The knock control shall be computed each 720 ° CRK/number of
cylinders

 The offset of the time bases relative to a global time base needs
to be specified. For example, if t=0 on one ECU actually represents
t=2 on a global time scale due to start up delays.

Relation between Time Bases

 The expected drift in time bases defined per ECU. For instance, if
1 ms elapsed time on one ECU represents 1.2 ms on another.

 Time bases can be related to each other by either constant values
or dynamic relations (example dependency between °crk and RPM).

Parameterized Timing Expression and Intervals

 Expressing time budgeting: “the budget for this part is the whole
minus the time for the other part”.

Deliverable D11 Version 1.2 40

 Expressing time budgets: An overall response time is shared with
30% for the sensor segment, 50% for the controller and 20% for the
actuator. Resp_Total=250 ms, parts are 0.3* Resp_Total, 0.5*
Resp_Total and 0.3* Resp_Total

 Expressing harmonic periods: A period of a sensor is
oversampled whereas a period of an actuator is undersampled for a
50 Hz process: T=20ms, Tsensor=0.5*T, Tcontroller=T, Tactuator=2*T

 During design, it could be useful to be able to place constraints
such as period < delay/2 in order to “automatically” fulfill a delay
constraint.

 Knock control on the cycle n shall be performed before the engine
cycle n+2

 Reaction time is unknown but shall be minimized and smaller than
50ms

 Reaction time is unknown but shall be maximized (leaving max
margins for implementation while meeting overall requirements)

 The acquisition of the knock signal shall be performed in less than
X ms;

 Like “upper = 1.1*nominal”, i.e. in this example the language
needs to allow for references to the nominal value of a constraint.
There are two ways of doing this, 1) define nominal as 0.1 seconds
and define a model parameter “nominalTime” for this, use the
parameter in upper. 2) Refer directly to the nominal value from the
upper attribute.

 Express “x seconds if n, y seconds if m”, where n and m may be
expressions containing references to model attributes or defined
parameters.

 Acquisition duration = MIN {sampleNb*10 ms, 30 on crkClk} i.e.
the duration time of a function should not exceed the minimum
between a constant expression value and a value linked to the
dynamic of the system.

5.2 Multiple Time Bases

This section presents new extensions in TADL2 to manage, time
bases of multiple types (universal time, angular time, etc.). A second
aspect concerns the extension of constant time expressions with the
possibility to define time as an algebraic expression that can
manipulate symbolic identifiers and of a suitable set of arithmetic
operators mixing symbolic identifiers and referring to different time
bases.

5.2.1 Dimension

The type of TimeBase is Dimension. Dimension defines the set of
units that can be used to express duration measured on a given
TimeBase. The Dimension can be seen as the type of a TimeBase.
Each Unit relates to another unit to enable conversions. The factor,
offset and the reference attributes in Unit are used for such

Deliverable D11 Version 1.2 41

conversions. Only linear conversions between units of the same
dimension are allowed. As a unit conversion example, the unit
second = 1000 * millisecond so factor = 1000 and offset = 0. Because
a TimeBase is a discrete set of instants, a discretization step is
specified with the precisionFactor attribute which relies on a
precisionUnit.

Description

Dimension is an identifier introduced in a dimension declaration.

Grammar

DimensionDecl ::= Dimension DI { UnitDecl+ }

UnitDecl ::= UN : LIT

Here DI and UN are terminal symbols standing for alphanumeric
identifiers, and LIT is a real-valued literal.

Syntactic constraints

Every dimension declaration must introduce a unique DI identifier.

The UN identifiers within a single dimension declaration must be
locally unique.

A dimension declaration with the name universal must exist.

Terminology

If Dimension DI { UN1 : LIT1, …, UNn : LITn } is a dimension
declaration, we say that the factor of UNi in DI is LITi.

5.2.2 TimeBase

TimeBase has been introduced to cope with the need of modeling
various temporal referential used in an automotive distributed
systems design (clocks from different ECUs, motor position, etc.).

TADL2 timing expressions may contain an explicit TimeBase which
represents a discrete and totally ordered set of instants. An instant
can be seen as an event occurrence called a “tick”. It may represent
any repetitive event in a system. Events may refer even to “classical”
time dimension or to some evolution of a mechanical part like the
rotation of crankshaft, distance, etc. Figure 22 presents the modeling
elements and their relationships.

Deliverable D11 Version 1.2 42

Figure 22: Extension of the metamodel with explicit time bases.

Textual Syntax for TimeBase

TimeBase is an identifier introduced in a TimeBase declaration.

Grammar

TimeBaseDecl ::= TimeBase TB1 : DI { LIT UN on TB2 = texp }

Here TB1 and TB2 are terminal symbols standing for alphanumeric
identifiers and texp is an expression which evaluates to a time
value (see section 5.3), and LIT is a real-valued literal.

Syntactic constraints

For a time base declaration of the form above, it must hold that:

1. TB1 is a globally unique identifier ≠ Universal.

2. TB1 is identical to TB2.

3. DI has a matching dimension declaration.

4. texp does not directly or indirectly (via some other time
base declaration) refer to time base TB1.

Terminology

For a time base declaration of the form above, we say the
dimension of TB1 is DI. The dimension of the predefined time base
Universal is universal.

Semantics

Given a time base declaration of the form above, the meaning of
time base identifier TB1 in some given variable assignment, is a

Deliverable D11 Version 1.2 43

function that maps every value r to (r*m) / (k1*k2), where m is the
meaning of texp in the given variable assignment, k1 is the literal
denoted by LIT, and k2 is the factor of UN in dimension DI.

5.2.3 TimeBaseRelation

Expressing relation between time bases is mandatory to build a
global perception of time. When timing constraints refer to multiple
time bases, it results in a partially ordered set of instants from these
time bases and corresponds to the global temporal perception of
system behavior.

Metamodel for TimeBaseRelation

Figure 23: Metamodel Showing TimeBase Relations.

TimeBaseRelation is used to give equivalence between different time
bases. More precisely, it specifies equality between left and right
timing expressions.

Syntax Description

See TimingExpression section 5.3

5.3 TimingExpression

Timing Expression Capabilities

A Symbolic Timing Expression (STE) is a way to specify
parameterized expressions between different time bases as
motivated in the previous section. TimingExpression provides free

Deliverable D11 Version 1.2 44

variables, constants, values and operators to express timing
constraints made of a suitable set of arithmetic operators mixing
constant values and symbolic identifiers. The language integrates
basic arithmetic operators with timing values represented either by
constant values or variables.

Timing expressions are used by the timing constraints in TADL2 in
order to express the duration such as maximum/minimum delay,
period, jitter and tolerance duration.

There are three different timing expressions: ValueTimingExpression,
VariableTimingExpression and SymbolicTimingExpression. Figure 24
shows the part of the TADL2 metamodel representing timing
expression.

Metamodel for Timing Expressions

Figure 24 Part of the TADL2 metamodel Representing Timing Expressions.

ValueTimingExpression can have a unit and a time base as type.
TADL2 is aimed to be a declarative language. Therefore, we have
only free variables, constants and values. Please note that
ValueTimingExpression does not have a name.

VariableTimingExpression stands for free variables and constants.
When a value is assigned to a variable, the variable becomes a
constant.

In SymbolicTimingExpression, the language integrates basic
arithmetic operators such as addition, subtraction, and multiplication
associated with timing values. There are some implicit constraints in
the TADL2 metamodel which are not shown in Figure 24. The

Deliverable D11 Version 1.2 45

constraints can be written in OCL [9] form in order to check them in
the metamodel. These constraints are the following.

 SymbolicTimingExpression cannot have both an Operator and
a reference to VariableTimingExpression (the association
variable in Figure 24). It is not allowed to have an expression
like {((X + Y), Z)}.

 The left hand side of TimeBaseRelation cannot be
SymbolicTimingExpression with Operator. It can only be
VariableTimingExpression or ValueTimingExpression with
Unit and TimeBase.

Syntax Description

A Timing Expression, denoted by texp, is a term built from an
arithmetic expression by applying an optional unit and referencing
an optional time base. It stands for a value in the real number
system extended with positive and negative infinity.

Grammar

texp ::= aexp
 | aexp UN

 | aexp on TB

 | aexp UN on TB

Semantics

Given a particular variable assignment, the meaning of a timing
expression texp in that assignment is a value in the real number
system extended with positive and negative infinity. Depending on
the form of texp, this value is defined as follows:

 If texp is of the form aexp, its meaning is the meaning of
aexp in the given variable assignment.

 If texp is of the form aexp UN, its meaning is r * k, where r
is the meaning of aexp in the given variable assignment,
and k is the factor of UN in the Universal time base.

 If texp is of the form aexp on TB, its meaning is f (r), where
f is the meaning of TB in the given variable assignment,
and r is the meaning of aexp in the same assignment.

 If texp is of the form aexp UN on TB, its meaning is f (r *
k), where f is the meaning of TB in the given variable
assignment, r is the meaning of aexp in the same
assignment, k is the factor of UN in DI, and DI is the
dimension of TB.

Examples

Declaration of an angular dimension:

 Dimension angle { degree: 1,
 rotation: 360 }

Declaration of the required universal dimension:

 Dimension universal { sec: 1000000000,
 ns: 1,

Deliverable D11 Version 1.2 46

 micros: 1000,
 ms: 1000000 }

Declaration of time bases with different scalings:

 TimeBase Ecu1 : universal

 { 100 micros on Ecu1 = 96 micros }

 TimeBase Ecu2 : universal

 { 1 ms on Ecu2 = 1500 micros on Ecu1 }

 TimeBase Slow : universal

 { 1 ms on Slow = 1 sec }

Examples of equivalent expressions:

 3 ms on Ecu1 = 3 * 1000 * 96 / 100 = 2880 = 2880 micros

 3 ms on Ecu2 = 3 * 1500 micros on Ecu1 = 4320 micros

 3 ms on Slow = 3 * 1000 * 1000000 / 1000 = 3000000 micros

An angular time base, connected to the universal dimension via
Ecu1:

 TimeBase Crank: angle

 { 1 rotation on Crank = speed ms on Ecu1 }

An angular clock running at twice the speed of Crank:

 TimeBase Cam: angle

 { 2 degree on Cam = 1 degree on Crank }

Equivalent expressions:

 3 degree on Crank = 3 * speed / 360 ms on Ecu1
 = (3 * speed / 360) * 1000 * 99 / 100
 = speed * 8 micros

 3 degree on Cam = 2 * 3 degree on Crank
 = (6 * speed / 360) * 1000 * 99 / 100
 = speed * 16 micros

Alternative declaration of universal with twice the semantic
precision:

 Dimension universal { sec: 2000000000,
 ns: 2,
 micros: 2000,
 ms: 2000000 }

Ill-formed timing expressions:

 3 degree on Slow

 2 micros on Cam

Deliverable D11 Version 1.2 47

6 Probabilistic Timing Constraints

This section presents the extension of the basic timing constraints of
TADL2 with probabilistic parameters, which can be either based on
distributions or follow the weakly-hard approach, which was
introduced to express that not more than a given number of
deadlines may be missed within a time window [12][13]. The goal of
these additional parameters is to allow the expression of more fine-
grain information than the usual interval between the best case and
the worst case.

6.1 Constructs for Probabilistic Constraints

Probabilistic timing information can be used in different ways to
represent different abstractions. For example, one may be interested
in probabilistic information based on distributions or instead in
weakly-hard constraints which express that not more than a given
number of deadlines may be missed within a time window.

In the following paragraphs we present separately time distributions
and weakly-hard expressions. Then we show how basic constraints
can be extended with such a probabilistic expression and what their
semantics then becomes.

Grammar

ProbabilisticExpression ::= TimeDistribution

 | WeaklyHardExpression

6.1.1 Definition of Time Distributions

In order to offer flexibility to the designer, we propose two different
representations for distributions. First, it is possible to define a
distribution function by choosing it from a predefined set which
contains the standard distribution functions, namely the uniform,
normal (also known as Gaussian), Gumbel, Fréchet and Weibull
distribution functions. The other option is to provide a histogram
representation of distributions, where only the intervals defined by a
given partition of [lower, upper] are associated with probability values.

Grammar

TimeDistribution ::= uniform

 | normal Real Real

 | gumbel Real LIT

 | frechet LIT LIT

 | weibull Real LIT LIT

 | ProbaInterval+

ProbaInterval ::= pr [TimingExpression ;

TimingExpression] =
ProbaValue

Deliverable D11 Version 1.2 48

ProbaValue ::= LIT[0;1]

Real ::= LIT

 | -LIT

A ProbaValue is a real number between 0 and 1 used to express
probability values.

Note that all parameters of the predefined distributions are
unitless. This means that a conversion must be performed from
quantities of type TimingExpression to Float. This can be done by
converting any TimingExpression into the universal TimeBase and
then remove the unit.

Semantics

Time distributions can only be defined within constraints (such as
StrongDelayConstraint) having as attributes two TimingExpression
denoted mostly lower and upper, with lower ≤ upper. These
attributes are used to define the definition domain of the
distribution. In other words, the semantics of a time distribution is
parameterized by lower and upper. It is important to note here that
we will also use Time distributions to describe jitter, and in this
case the bounds will be 0 and jitter instead of lower and upper.
The following explanations also apply to these distributions.

The semantic of the predefined distributions is as usual. For
example, the semantics of a ‘uniform’ distribution between lower
and upper (which have been rendered unitless as explained in the
previous paragraph) is a function that associates with every
interval [t1;t2] included in [lower, upper] a probaValue equal to (t2-
t1) / (upper-lower). The only difference concerns situations where
the predefined distributions may have values outside the bounds
defined by lower and upper. In that case it is assumed that these
values will be ignored and therefore to ensure that the sum of all
remaining probability values P (formally defined as the definite
integral of the probability distribution between lower and upper) is
equal to 1, we adapt the standard semantics as follows: the
probability of any interval between lower and upper is divided by P.

We now give the semantics of distributions defined by a
histogram. Consider a list of probaInterval { pr [t0;t1] = p1, … , pr [tn-

1;tn] = pn } where t0 = lower, tn = upper and t0 ≤ t1 ≤ … ≤ tn.

If the sum of all probability values P = p1 + ... + pn is equal to 1, as
must be the case by definition of a probability distribution, then our
distribution is such that the probability to obtain a value in the

interval [ti-1;ti] (for i[1, n]) is equal to pi.

If the sum of all probability values P = p1 + ... + pn is larger than 1,
then we consider the distribution to be an over-approximation of
the exact distribution. That is, the probability to obtain a value in

the interval [ti-1;ti] (for i[1, n]) is smaller than or equal to pi. We
proceed similarly if P is smaller than 1.

6.1.2 Constructs for Weakly-Hard Constraints

The timing constraints defined in TADL2 are strongly-hard in the
sense that they must hold for each occurrence of some designated

Deliverable D11 Version 1.2 49

event. For example, the DelayConstraint requires that for each
occurrence of the source event, there is at least one occurrence of
the target event within a fixed interval relative to the source. It only
takes one absent response occurrence to render the whole
DelayConstraint violated.

In many situations, a system may in fact work correctly even if a
strongly-hard constraint is not satisfied for a bounded number of

occurrences. Therefore, TADL2 generalizes the concept of weakly-

hard constraints (which was originally introduced for describing
allowed deadline misses) to formalize scenarios in which a bounded
number of occurrences are allowed to violate the constraint
requirements.

Grammar

WeaklyHardExpression ::= Int Int

The parameters of a weakly-hard expression are denoted m and
k.

Semantics

The semantics of a weakly-hard expression (m, k) is that the

behavior must satisfy the given constraint at least m times out of k
consecutive occurrences.

6.2 Probabilistic Extension of Timing Constraints

We offer in TADL2 probabilistic extensions for the following timing
constraints: the ExecutionTimeConstraint, the StrongDelayConstraint,
the RepeatConstraint, and the RepetitionConstraint (therefore also
the PeriodicConstraint).

6.2.1 Probabilistic Extension of the ExecutionTimeConstraint

Description

An ExecutionTimeConstraint limits the time between the starting
and stopping of an executable entity (task, function), not counting
the intervals when the executable entity (task, function) has been
interrupted. Its probabilistic extension allows a quantitative
description of the repartition of the execution time.

Attributes

start : Event
stop : Event
preempt : Event
resume : Event
lower : TimingExpression
upper : TimingExpression
probabilisticExecutionTime : ProbabilisticExpression

Semantics

Remember the non-probabilistic semantics of this constraint:
ExecutionTimeConstraint (
 start, stop, preempt, resume, lower, upper)

Deliverable D11 Version 1.2 50



x  start : lower ≤ | [x..stop] \ [preempt..resume] | ≤ upper

The semantics of its probabilistic extension depends on whether
the probabilisticExecutionTime parameter is defined as a
TimeDistribution or a WeaklyHardExpression.

In the first case (probabilisticExecutionTime is a TimeDistribution),

x  start, the probability of the corresponding execution time,
namely
| [x..stop] \ [preempt..resume] |, to be in a given time interval is
defined by the distribution probabilisticExecutionTime.

In the second case (i.e., if probabilisticExecutionTime is a
WeaklyHardExpression with parameters m and k), out of k

consecutive occurrences x  start, at least m satisfy

lower ≤ | [x..stop] \ [preempt..resume] | ≤ upper

6.2.2 Probabilistic Extension of the StrongDelayConstraint

A probabilistic StrongDelayConstraint will typically be used for
describing the probabilistic information on response time delays
obtained by analysis of probabilistic information on execution times.

Description

A StrongDelayConstraint imposes limits between the occurrences
of an event called source and an event called target. Only one-to-
one occurrence patterns are allowed, and no stray target
occurrences are accepted.

Attributes

source : Event
target : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity
probabilisticDelay : ProbabilisticExpression

Semantics

Remember the non-probabilistic semantics of this constraint:

StrongDelayConstraint (source, target, lower, upper)



|source| = |target| 

i ≤ |source| : x = source(i) : y = target(i) : lower ≤ y – x ≤ upper

The semantics of its probabilistic extension depends on whether
the probabilisticDelay parameter is defined as a TimeDistribution
or a WeaklyHardExpression.

In the first case (probabilisticDelay is a TimeDistribution), x 
source such that x = source(i) for some i ≤ |source|, the probability
of the corresponding delay target(i) - x to be in a given time
interval is defined by the distribution probabilisticDelay.

In the second case (probabilisticDelay is a WeaklyHardExpression
with parameters m and k), out of k consecutive occurrences x of
source, that is, source(i) to source(i+k), at least m satisfy

Deliverable D11 Version 1.2 51

lower ≤ target(i) - x ≤ upper

6.2.3 Probabilistic Extension of the RepeatConstraint

Description

A RepeatConstraint describes the distribution of the occurrences
of a single event without jitter.

Attributes

event : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity
span : int = 1
probabilisticDistance : ProbabilisticExpression

Semantics

Remember the non-probabilistic semantics of this constraint:

RepeatConstraint (event, lower, upper, span)



X ≤ event : |X| = span+1  lower ≤ | [X] | ≤ upper

The semantics of its probabilistic extension depends on whether
the probabilisticDistance parameter is defined as a
TimeDistribution or a WeaklyHardExpression.

In the first case (probabilisticDistance is a TimeDistribution), x 
event the probability that the length of the sub-sequence X of
event starting at x and that has span+1 occurrences is in a given
interval is defined by the distribution probabilisticDistance.

In the second case (that is, if the probabilisticDistance is a
WeaklyHardExpression with parameters m and k), out of k
consecutive occurrences x of event, at least m sequences X of
event starting at x and containing span+1 occurrences of event
have a length bounded by lower and upper.

6.2.4 Probabilistic Extension of the RepetitionConstraint

Description

A RepetitionConstraint describes the distribution of the
occurrences of a single event including jitter.

Attributes

event : Event
lower : TimingExpression = 0

upper : TimingExpression = infinity
span : int = 1
jitter : TimingExpression = 0
probabilisticDistance : ProbabilisticExpression
probabilisticJitter : ProbabilisticExpression

Semantics

The probabilistic semantics of this constraint is directly derived
from its non-probabilistic semantics.

Deliverable D11 Version 1.2 52

RepetitionConstraint (event, lower, upper, span, jitter,
probabilisticDistance, probabilisticJitter)



X :

RepeatConstraint (X, lower, upper, span, probabilisticDistance)



StrongDelayConstraint (event, X, 0, jitter, probabilisticJitter)

Remember that the jitter distribution is bounded by 0 and jitter
while the distance distribution is bounded by lower and upper.

Deliverable D11 Version 1.2 53

7 Example User Model

The following subsections provide some example systems and
illustrate how TADL2 is used to provide timing models for those
systems.

7.1 Brake-By-Wire Example

A distributed Brake-By-Wire (BBW) application with anti-lock braking
functionality is given to illustrate the use of TADL2.

7.1.1 The Functional Decomposition of the Braking Functionality

Brake By Wire Functionality

Speed_rpm
Rotation
RearRightWheel

Speed_rpm
Rotation
RearLeftWheel

Speed_rpm
Rotation
FrontRightWheel

Speed_rpm
Rotation
FrontLeftWheel

PositionAngle
Position

BrakePedal

DriverTorq
PositionAngle

BrakeTorque

Brake

Controller

RRW_ABS

RLW_ABS

FLW_ABS

FRW_ABS

BrakeTorq
TorqCmd
RearRightBrake

BrakeTorq
TorqCmd
RearLeftBrake

BrakeTorq
TorqCmd

FrontRightBrake

BrakeTorq
TorqCmd
FrontRightBrake

TC.1: Delay.XVL =[180ms - 200ms]

st
im

ul
us

re
s
p
o
n
s
e

TC.4: Delay.YAL= 0.60*XVL TC.3: Synchronization= 5 ms

response 1..4

TC.2: Repetition= 10 ms

Figure 25. Brake-By-Wire Functional View.

The BBW is composed of two mains functions. Firstly, a brake
controller reads wheel speed sensors and a brake pedal sensor. The
brake controller computes the desired brake torque to be applied at
the four wheels. In addition to this basic brake controller functionality,
a second function Anti blocking System ABS adapts the brake force
on each wheel if the speed of one wheel is significantly smaller than
the estimated vehicle speed. In this case, the brake force is reduced
on that wheel until it regains speed that is comparable with the
estimated vehicle speed. The ABS takes as inputs the sensors
values on each wheel and the estimated vehicle speed.

Deliverable D11 Version 1.2 54

7.1.2 Hardware Architecture and Allocation

The hardware architecture and the allocation of BBW functions on
this architecture are represented in Figure 26.

ABS

70ms

RRWSacq

20ms
RLWSacq

20ms
FWRSacq

20ms
FLWSacq

20ms

BrakContDelay

YDL=YAL-20 ms

Brake

10ms
Brake

10ms
Brake

10ms
Brake

10ms

ABS

70ms
ABS

70ms ABS

ZDL=ZAL-10ms
BPacq

15ms

ECU1

ECU2
ECU3

ECU4

ECU5

Allocated to

Figure 26. Hardware Architecture and Allocation of BBW Functions.

The hardware platform consists of sensors/actuators and computing
parts (five electronic control units connected by a communication
bus). Each ECU runs independently with their own temporal
references (time base), which is not necessarily (well) synchronized
with the other one and the communication between them is still
mainly asynchronous (despite the use of Time Triggered buses).

7.1.3 Timing Constraints Applied on the BBW System

Figure 27 gives examples of timing constraints (TC) applied to this
functional description:

TC. 1: A Delay constraint XVL is bounded with a minimum value of
180ms and a maximum value of 200ms. This delay is measured from
brake pedal stimulus to brakes response. Here, activation of the
brake pedal sensor is the stimulus and brake actuation is the
response.

TC. 2: A Periodic acquisition of wheel sensors must be done with a

Repetition constraint of 10 ms.

TC. 3: The tolerated maximum Synchronization constraint between
first and last wheel brake actuation is 5 ms.

TC. 4: The Delay constraint applied on sensor acquisitions and brake
controller is a percentage of the initial time budget XVL.

Deliverable D11 Version 1.2 55

In the design process based on EAST-ADL and AUTOSAR, the
functional description is refined while passing different development
levels.

Figure 27 shows a complemented view of BBW timing constraints
that follows the functional decomposition through the levels.

Vehicle Level

EAST_ADL

Analysis Level

EAST_ADL

Design Level

EAST_ADL

BrakeByWireTime Budget

XVL ms =[180 ms – 200 ms]

MasterNodeBrake

YAL=0,60 *XVL ms

ABS

70ms

RRWSacq

20ms
RLWSacq

20ms
FWRSacq

20ms
FLWSacq

20ms

BrakContDelay

YDL=YAL-20 ms

Brake

10ms
Brake

10ms
Brake

10ms
Brake

10ms

ABSatWheels

ZAL=0,40 *XVL ms

ABS

70ms
ABS

70ms ABS

ZDL=ZAL-10ms

BPacq

15ms

BrakeByWire

YAL+ZAL < XVL

Figure 27. Brake-By-Wire Time Budgeting.

TC. 5: At the vehicle level, a timing budget of XVL ms is assigned by
the supplier. An interval value of [180ms-200ms] should be assigned
to XVL.

TC. 6: At the analysis and design levels time budgets are split into
segments that could be values or percentages of the initial time
budget (XVL).

Additional constraints coming from the hardware characteristic (see
Figure 26) should be part of the design such as the potential drifts
between time bases of computing hardware parts (ECU clocks) or
latencies in communication parts (bus, memory access, etc.):

TC. 7: ECU5 has a drift of 0.02 millisecond for each second
compared to the universal time.

TC. 8: ECU5 time base goes 2 times faster than time bases of ECU
1 to 4.

7.1.4 Dimension, Time Base and Time Base Relation Declarations in TADL2 for
the BBW System

Referring to the timing constraints TC. 1 to TC. 8, there are up to
three different time bases in the system. The time bases are based
on a common Dimension (physicalTime).

1 TimingSpecification ts1 {

2

3 Dimension physicalTime {

4 Units {

Deliverable D11 Version 1.2 56

5 micros{factor 1.0 offset 0.0},

6 ms{factor 1000.0 offset 0.0 reference micros}

7 second{factor 1000000.0 offset 0.0 reference micros}

8 }

9 }

10……..

Listing 1. Example Dimension in the BBW System.

Listing 1 shows the dimension declaration. A list of units and
attributes for their conversion expression are given saying that there
is a conversion for micros, millisecond (ms) and second in the
physicalTime dimension (see lines 5 - 7).

Based on this dimension type, the TimingSpecification declares three
TimeBases (see Listing 2).

10 ………

11 TimeBase chrono_time {

12 dimension physicalTime

13 precisionFactor 0.1

14 precisionUnit micros

15 }

16

17 TimeBase universal_time {

18 dimension physicalTime

19 precisionFactor 0.1

20 precisionUnit micros

21 }

22

23 TimeBase Ecu<x> {

24 dimension physicalTime

25 precisionFactor 0.1

26 precisionUnit micros

27 }

28

Listing 2. Example TimeBases in the BBW System.

The chrono_time time base is declared with a type physicalTime (see
lines 11-15). The second time base is universal_time time base which
is the reference time base for the whole system (see lines 17-21).
The third time base model the ECUs' clocks.

For all time bases, a precisionFactor and a precisionUnit are given.
For the universal_time time base, the precision means that this time
base is able to specify value with a precision of 0.1 micro second.

Time bases can be related to each other by either constant values or
dynamic relations (example dependency between °CRK and engine
round per minute speed). Expressing relationship between time
bases is mandatory for building a global perception of time and
ensuring a time safe cooperation over the platform.

28

29 TimeBaseRelation tbr2 {

30 (1.0 second on universal_time) = (1.00002 second on ecu5)

31 }

32

33 TimeBaseRelation tbr3 {

34 (1.0 ms on ecu1) = (2.0 ms on ecu5)

35 }

36

Listing 3. Example TimeBase Relations in the BBW System.

Listing 3 shows the time base relations. As stated in Listing 1 and
Listing 2, ecu5 has a drift of 0.02 ms for each second compared to

Deliverable D11 Version 1.2 57

the universal time. Also, the ecu5 time base goes 2 times faster than
time bases of ecu1 to 4.

7.1.5 Timing Expressions in TADL2 for the BBW System

Listing 4 extends the timing specification ts1 with examples of timing
expressions for the time budgeting in Figure 27.

37

38 var XVL ms on universal_time // variable timing expression

39 { (XVL < (200 ms on universal_time)) }

40 { (XVL > (180 ms on universal_time)) }

41

42 var YAL ms on universal_time // variable timing expression

43 { (YAL := 0.60* XVL) } // STE

44

45 var ZAL ms on universal_time // variable timing expression

46 { (ZAL := 0.40* XVL) } // STE

47

48 { (YAL + ZAL ≤ XVL) } // STE

49

50 var YDL ms on universal_time // variable timing expression

51 { (YDL := YAL - (20 ms on universal_time)) } // STE

52

53 var ZDL ms on universal_time // variable timing expression

54 { (ZDL := ZAL - (10 ms on universal_time)) } // STE

55

56 var FLWSacq ms on universal_time := 20

57 var BPacq ms on universal_time := 15

58 var Brake ms on universal_time := 10

59

Listing 4. Example Timing Expressions in the BBW System.

The var keyword is used for defining both free variables and
constants. Free variables are useful for characterizing parameters or
variant in timing expression or when referring to already existing
timing expression. Line 42 gives the variable YAL declared and
accessed in the symbolic Timing expression line 43.

A Symbolic Timing Expression allows the assignment of intervals to
variables The variable XVL comes from the timing constraint TC. 1,
TC. 5, TC. 6. XVL is defined in line 38 with a value interval which
comprises between 180 and 200 ms on universal time. Please note
that different time bases can be used in upper and lower bounds of
the value interval. In this case, the time base relations are used to
calculate the time interval for a single time base. FLWSacq, BPacq
and Brake used for allocation of functions to ECUs are expressed as
constants in Listing 4. The scope of all free variables and constants is
the ts1 timing specification.

Listing 5 gives an example synchronization constraint (see the timing
constraint TC.3).

59

60 Event firstWheelBrakeActuation { }

61 Event secondWheelBrakeActuation { }

62 Event thirdWheelBrakeActuation { }

63 Event fourthWheelBrakeActuation { }

64

65 SynchronizationConstraint sc1 {

66 events firstWheelBrakeActuation,

67 secondWheelBrakeActuation,

68 thirdWheelBrakeActuation,

Deliverable D11 Version 1.2 58

69 fourthWheelBrakeActuation

70

71 tolerance = (5 ms on universal_time)

72

73 }

74 }// end of the timing specification ts1

Listing 5. Example Synchronization Constraint in the BBW System.

The constraint is about the maximum tolerated time difference
between the first and last wheel brake actuation. The brake actuation
is defined for each wheel as an event (see lines 60-63). For these
events, the synchronization constraint sc1 has the attribute tolerance
which is ValueTimingExpression (see line 71).

7.2 BSG-E Example

We take as example an industrial application provided by Delphi: a
Box Service Generic-External (BSG-E). This industrial use case
illustrates timing constraints coming from both hardware and software
parts of the system. BSG-E means in French “Boîtier de Servitude
Externe” (Box Service Generic - External). One of the main functions
of the product is the management of vehicle front fog lights which is a
critical functionality. These lights are also used as cornering lights.
Moreover, the BSG-E covers the following main functions:

 Function 1. Ensure the dialogue with the main car ECU BSI
(Box Servitude Internal) by a CAN low speed communication
network

 Function 2. Ensure the internal and output diagnostic

 Function 3. Management and storage of local defects

 Function 4. The electrical protection of downstream wires
(not loads).

These functions require handling of real-time performance and some
timing characteristics of the system.

7.2.1 Functional/Hardware Architecture of the BSG-E

At the Design Level, two different views are proposed to separate the
competency concerns: the Functional Design Architecture (see
Figure 28) and the Hardware Design Architecture (see Figure 29).

The Functional Design Architecture focuses on the Software (SW)
part of the system. It shows components and their interfaces (input
and output ports).

Deliverable D11 Version 1.2 59

Figure 28. Functional Design Architecture of the BSG-E System.

The BSG-E receives orders from the BSI (Box Servitude Internal)
which is the main ECU that communicates with the BSG-E via CAN
bus. Communication with the BSI is handled, at the software level, by
the Com_Can_Ls_Sensor component (see Function 1). The
POWER_SUPPLY component in Figure 28 ensures the acquisition of
the alimentation. The FogLights_Command component is the main
software component. It receives all messages from the main ECU
(BSI) through the CAN frames and manages them for executing the
functionalities of the system. Starting from it, the Fail_Mode_Logic
component can manage the protection and diagnostic functions (see
Function 2) and the Smart_Actuator component receives orders for
activating the front fog lights. The State_Manager component
handles the internal mode changes of the system.

Figure 29. Hardware Design Architecture of the BSG-E System

Deliverable D11 Version 1.2 60

The Hardware Design Architecture in Figure 29 represents the
physical architecture of the system. Each element in the Functional
Design Architecture is allocated to one element in the Hardware
Design Architecture. One or many SW components are allocated on
each Hardware (HW) component.

The MICRO component realizes the FogLights_Command,
State_Manager and the Fail_Mode_Logic functions which appear in
Figure 28. The SMART, POWER_SUPPLY and Com_Can_Ls are
hardware components. The SMART is a driver to complete output
command control and the POWER_SUPPLY ensures the
alimentation distribution. The Com_Can_Ls is a bus used for the
network management and control. Thus, these components manage
the first two functions of the BSG-E (see Function 1 and Function 2).
Another two functions are specifically managed at the HW level by
the EEPROM and WATCHDOG components. The EEPROM, a
memory component, is used to manage the SMART defect counter
memorization and also to store the configuration data of the BSG-E
(see Function 3). The WATCHDOG is an ASIC that triggers the
system reset if the MICRO quits the “normal” mode operation (see
Function 4).

Connectors between components are also refined regarding the
system architecture. Output and input lines in the Functional and
Hardware Design Architectures are submitted to timing requirements.

7.2.2 BSG-E Requirements Including Timing Characteristics

Some hardware components (together with the software functions
they realized) are subjects of timing constraints. The BSG-E system
contains timing constraints of different nature such as delay,
synchronization and arbitrary constraints. In this section, we present
the textual timing requirements for the BSG-E system obtained
during the requirements analysis phase and the formalization of
these requirements in TADL2. We use the TADL2 textual concrete
syntax.

Timing Requirements for the POWER_SUPPLY

When the vehicle is under tension, all the components including the
BSG-E are switched on. The internal power supply acquisition is
done periodically through the EMA_PERM3 line after filtering of the
initial voltage read (see Figure 29). Requirements PWS_1 and
PWS_2 are about timing characteristics of the power supply
acquisition.

Requirement

ID

Description

PWS_1 PERM3 (+BAT_COUPE) - Analog Input

5

3
3_

PERM
PERMEMA




The power supply needs to be monitored to manage the diagnostics
link with its value.

Deliverable D11 Version 1.2 61

In Listing 6, we give the TADL2 specification for the PWS_1 and
PWS_2 requirements. The specification has two periodic constraints.
Please note that we use the dimension and time base declarations
given in the BBW example.

1 var AcqPerm ms on universal_time :=5.0

2

3 Event HAD_PowerSupply_PERM3 { }

4 Event HAD_PowerSupply_EMA_PERM3 { }

5

6 PeriodicConstraint pc1{

7 event HAD_PowerSupply_PERM3

8 period = AcqPerm

9 minimum = 0.0

10 jitter = 0.0

11 }

12

13 PeriodicConstraint pc2{

14 event HAD_PowerSupply_EMA_PERM3

15 period = (3*AcqPerm)

16 minimum = 0.0

17 jitter = 0.0

18 }

Listing 6. TADL2 Specification for the PWS_1 and PWS_2 Requirements.

We have two periodic constraints (the pc1 for the PWS_1 and the
pc2 for the PWS_2). The events HAD_PowerSupply_PERM3 and
HAD_PowerSupply_EMA_PERM3 are declared for power supply
monitoring and acquisition (see lines 3 and 4). These events are
attached to the corresponding input and/or output ports of the
FDA/HDA.

The period value for the events is declared as a constant (see line 1).
The pc1 and pc2 periodic constraints describe periodic occurrence of
the events for power supply monitoring and acquisition with periods
AcqPerm and 3*AcqPerm. The variable AcqPerm is used twice in two
different constraints.

Timing Requirements for the MICRO

The MICRO is the component which realizes the State_Manager
whose role is to handle internal mode changes of the system. After
power is switched ON, the BSG-E is initialized and it gets into the
transitory mode INIT. When the system gets into a stable mode, it
carries out its associated functions. It can also get into the
DEGRADED or RESET mode if an abnormal operation is detected.
The following MICRO_1 requirement is the timing requirement for the
mode transitions.

Requirement

ID

Description

PWS_2 The acquisition period should be 5ms with a filtering done on 3
samples. So the EMA_PERM3 voltage value must be evaluated every
15ms to determine its level.

Deliverable D11 Version 1.2 62

L
isting 7 gives the TADL2 specification for the MICRO_1 timing
requirement.

1 Event EMA_PERM3 { }

2 Event CAR_CDE_BSE { }

3 Event RESET { }

4

5 var T_init ms on universal_time := 40.0

6

7 DelayConstraint dc1_a {

8 source EMA_PERM3

9 target CAR_CDE_BSE

10 lower = 0.0

11 upper = T_init

12 }

13

14 DelayConstraint dc1_b {

15 source RESET

16 target CAR_CDE_BSE

17 lower = 0.0

18 upper = T_init

19 }

Listing 7. TADL2 Specification for the MICRO_1 Requirement.

The specification has two delay constraints with three events. The
minimum and maximum duration between the occurrences of target
and source events are given by the attributes lower and upper. The
dc1_a delay constraint states that the duration between the detection
of the rising edge of the power supply in the EMA_PERM3 and the
consumption of the first frame CAR_CDE_BSE should be less than
40 ms. The dc1_b delay constraint states the same timing constraint
between the RESET activation and the consumption of the first frame
CAR_CDE_BSE.

Timing Requirements for the SMART

The SMART driver is the component that completes the output
control commands S_BROUIL_AV_D and S_BROUIL_AV_G (see
Figure 29). In case of normal operation, i.e. the system is in the
NORMAL mode, the fog lights are activated with the outputs
S_BROUIL_AV_D and S_BROUIL_AV_G.

Requirement ID Description

MICRO_1 - When the BSGE enters into the INIT mode, its initialization must
be performed.

- BSG_E must stay in the INIT mode for a maximum time of

T_init.

- T_init represents the time for the following transitions:

 OFF=>INIT=>NORMAL or RESET=>INIT=>NORMAL.

- The BSG_E initialization time T_init corresponds to the time
between the detection of rising edge of power supply present on
EMA_PERM3 (EMA_BAT_COUPE) and the consumption of the
first frame CAR_CDE_BSE.

- This must be lower than 40 ms.

- In case of reset, T_init is the duration calculated between the
reset activation and the consumption of the first frame
CAR_CDE_BSE.

Deliverable D11 Version 1.2 63

In Listing 8, we give the TADL2 specification for the SMART_1 timing
requirement. The specification has two delay constraints with three
events.

1 var BSG_E_O_Delay ms on universal_time := 10.0

2

3 Event CAR_CDE_BSE { }

4 Event S_BROUIL_AV_D { }

5 Event S_BROUIL_AV_G { }

6

7 DelayConstraint dc2_a{

8 source CAR_CDE_BSE

9 target S_BROUIL_AV_D

10 lower = 0.0

11 upper = BSG_E_O_Delay

12 }

13

14 DelayConstraint dc2_b{

15 source CAR_CDE_BSE

16 target S_BROUIL_AV_G

17 lower = 0.0

18 upper = BSG_E_O_Delay

19 }

Listing 8. Example TADL2 Specification for the SMART_1 Requirement.

The dc2_a delay constraint is for the activation of the
S_BROUIL_AV_D. After the consumption of the first frame
CAR_CDE_BSE (see lines 3 and 8 for the event CAR_CDE_BSE),
the S_BROUIL_AV_D should be activated in less than 10 ms. The
dc2_b is a similar delay constraint for the activation of the
S_BROUIL_AV_G.

The two outputs S_BROUIL_AV_D and S_BROUIL_AV_G
correspond to the left and right fog lights respectively. When they are
commuted, the driver must see them simultaneously activated. The
minimum dephasing time between the two signals should be very low
(see the SMART_2 requirement).

Listing 9 gives the TADL2 specification for the SMART_2 timing
requirement with a synchronization constraint.

1 var dephasing_GD ms on universal_time := 25.0

2

3 SynchronizationConstraint sc1 {

4 events S_BROUIL_AV_G, S_BROUIL_AV_D

5 tolerance = dephasing_GD

6 }

Listing 9. TADL2 Specification for the SMART_2 Requirement.

The sc2 constraint is about the maximum tolerated time difference
between the activation of left and right fog lights (the
S_BROUIL_AV_D and the S_BROUIL_AV_G). The activation of left
and right fog lights is defined by two events (see line 4). For these

Requirement ID Description

SMART_1 The BSG_E outputs (S_BROUIL_AV_D and
S_BROUIL_AV_G) have to be activated or deactivated in less

than 10 ms for the CAR_CDE_BSE frame reception. This time is
calculated between the end of the reception of the frame and the
real output commutation.

Requirement ID Description

SMART_2 For S_BROUIL_AV (“Brouillards AV allumés”), the dephasing time

between right and left outputs must be lower than 25 ms

Deliverable D11 Version 1.2 64

events, the synchronization constraint sc1 has the attribute tolerance
with the constant dephasing_GD which is 25 ms (see line 5).

Timing Requirements for the WATCHDOG

The WATCHDOG drives the following operations:

 Drive to specific value of the buffer outputs in order to drive
some specific BSG outputs using the WD_UC line (see Figure
29).

 The WATCHDOG safe mode: reset the BSG µC through the
input line RESET.

The WD_UC line is being triggered periodically. It is falling edge
sensitive, i.e. the signal on the line is read only at the low state.
Furthermore, this signal must be present for a minimum time.
Otherwise, it is too short to be handled correctly by the WATCHDOG.

In Listing 10, we give the TADL2 specification for the WD_1 and
WD_2 requirements with a delay constraint.

1 var WD_UC_Hold micros on universal_time := 6.0

2 var infinity second on universal_time := 100000000000.0

3

4 Event WD_UC_fallingEdge { }

5 Event WD_UC_risingEdge { }

6

7 DelayConstraint dc4 {

8 source WD_UC_fallingEdge

9 target WD_UC_risingEdge

10 lower = WD_UC_Hold

11 upper = infinity

12 }

Listing 10. TADL2 Specification for the WD_1 and WD_2 Requirements.

The dc4 delay constraint states that the WD_UC line should be
maintained at a lower state for at least 6 microsecond (see lines 7 -
12).

7.3 Timing Constraint and Symbolic Timing Expressions

Consider time budgeting as an example of a model where event
chains and timing constraints from chapter 3 are used together with
timing expressions from chapter 5.

Short Description

A time budget is the breakdown of an end-to-end latency constraint
according to the internal structure of the constrained system. If the
signal path from stimulus to response consists of a sequence of
subsystems, a time budget assigns latency constraints to each of
these in such a way that the original end-to-end latency constraint is
not violated.

Requirement ID Description

WD_1 The WD_UC line is falling edge sensitive.

Requirement ID Description

WD_2 The WD_UC signal must be present at low state for at least 6μs
to be taken into account by the WATCHDOG.

Deliverable D11 Version 1.2 65

For the time budget concept to be meaningful, the sequence of
subsystems involved must be constructed such that the response
event of one subsystem is the stimulus of the next one, and so on.

Example

The logical connection between a stimulus and a response event can
be expressed using an EventChain construct:

c = EventChain {

stimulus = EventFunctionFlowPort { port = PedalIn },
response = EventFunctionFlowPort { port = BrakeOut }

}

To express a maximal reaction time of 200 ms for the event chain c
one writes:

r = ReactionConstraint {

scope = c,
maximum = 200 ms

}

To express that an event chain c actually consists of internal two
segments c1 and c2 joined by a common event, one may write:

c = EventChain {

stimulus = EventFunctionFlowPort { port = PedalIn },
response = EventFunctionFlowPort { port = BrakeOut },
segment = < c1, c2 >

}

c1 = EventChain {
stimulus = EventFunctionFlowPort { port = PedalIn },
response = EventFunctionFlowPort { port = TorqueOut },

}

c2 = eventChain {
stimulus = EventFunctionFlowPort { port = TorqueOut },
response = EventFunctionFlowPort { port = BrakeOut },

}

If the end-to-end reaction time for chain c is given by constraint r
above, a valid time budget for c might consist of the following
reaction constraints:

r1 = ReactionConstraint {

scope = c1,
maximum = 120 ms

}

r2 = ReactionConstraint {
scope = c2,
maximum = 80 ms

}

Deliverable D11 Version 1.2 66

This sequence of reaction constraints is equivalent to the end-to-end
constraint r because the sum r1.maximum + r2.maximum equals
r.maximum. A similar equivalence condition applies if the lower
attribute is used as well. The values in the maximum attributes are
modeled by instances of ValueTimingExpression with the unit ms.

By using symbolic time expressions and the order constraint, it is
possible to express the dependencies between attributes that makes
a time budget valid:

r1 = ReactionConstraint {

scope = c1,
maximum = T1

}

r2 = ReactionConstraint {
scope = c2,
maximum = T2

}

o = ComparisonConstraint {
leftOperand = r1.maximum + r2.maximum,
rightOperand = r.maximum,
operator = LessThanOrEqual

}

T1 and T2 are variables standing for unknown (yet to be negotiated)
timing parameters, these are modeled by instances of
VariableTimingExpression. They may be replaced with any values as
long as constraint o is satisfied. Fixing just one of the variables
results in a more direct constraint on the other one – information that
may be crucial during time budget negotiations.

The leftOperand of the constraint o is a SymbolicTimingExpression
with an Addition operator and the operands are references to the
same VariableTimingExpression instances already modeled in the
reaction constraints r1 and r2.

Deliverable D11 Version 1.2 67

8 Language Modeling Environment

TADL2 is formalized in a metamodel that is connected to the
combined metamodels of EAST-ADL and AUTOSAR. This provides
the basis for the definition of an exchange format in the same way as
is defined for AUTOSAR [14]. As a part of this deliverable you find
the metamodel XMI, which is an export from the Enterprise Architect
UML tool. The documentation of each metaclass in the model has
been exported and is found in Appendix A. An XML schema (XSD)
can be generated from the metamodel and this serves as a
description of the format of the exchanged timing information
between tools using XML containing TADL2. The TADL2 semantics
is instructing the supporting tools on how to interpret the information,
see the schematic overview in Figure 30.

Figure 30. Tools operating on TADL2 use XML as exchange format.

Deliverable D11 Version 1.2 68

9 References

[1] TIMMO D6 TADL: Timing Augmented Description
Language, https://svn-vu-4.c-
lab.de/svn/T2U/20_TIMMO/01_Deliverables/TIMMO_D6.p
df

[2] ATESST2 2008—2010 http://www.atesst.org/

[3] D4.1.1 EAST-ADL2 Language definition,
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.
1_EAST-ADL2-Specification_2010-06-02.pdf

[4] AUTOSAR 4 Timing extension,
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_
TimingExtensions.pdf

[5] Björn Lisper and Johan Nordlander. “A Simple and Flexible
Timing Constraint Logic”. In 5th International Symposium
On Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA), 15-18 October 2012,

Amirandes, Heraklion, Crete.

[6] Walicki, Michał (2011), Introduction to Mathematical Logic,
Singapore. World Scientific Publishing, ISBN 978-981-
4343-87-9.

[7] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman (2006). Compilers: Principles, Techniques, and
Tools (2nd Edition). Prentice Hall, ISBN 978-0321486813.

[8] AUTOSAR 4 Metamodel,
http://www.autosar.org/download/R4.0/AUTOSAR_MMO
D_MetaModel.zip

[9] Object Constraint Language: OMG Available Specification
Version 2.0 formal/06-05-01

[10] Maria Victoria Cengarle and Alexander Knapp. Towards
OCL/RT. In Lars-Henrik Eriksson and Peter Lindsay,
editors, Proc. 11th Int. Symp. Formal Methods Europe,
volume 2391 of Lecture Notes in Computer Science,
pages 390-409. Springer- Verlag, 2002.

[11] AUTOSAR: Generic Structure Template (V3.0.0 R4.0 Rev
1),
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_
GenericStructureTemplate.pdf

[12] G. Bernat, “Specification and Analysis of Weakly Hard
Real-Time Systems,” PhD thesis, Departament de
Ciències Matemàtiques i Informàtica. Universitat de les
Illes Balears. Spain, Jan. 1998.

[13] Guillem Bernat, Alan Burns, and Albert Llamosi. 2001.
“Weakly Hard Real-Time Systems”. IEEE Trans. Comput.
50, 4 (April 2001), 308-321.

[14] AUTOSAR Metamodeling rules and exchange format,
http://www.autosar.org/download/R4.0/AUTOSAR_TR_X
MLPersistenceRules.pdf

https://svn-vu-4.c-lab.de/svn/T2U/20_TIMMO/01_Deliverables/TIMMO_D6.pdf
https://svn-vu-4.c-lab.de/svn/T2U/20_TIMMO/01_Deliverables/TIMMO_D6.pdf
https://svn-vu-4.c-lab.de/svn/T2U/20_TIMMO/01_Deliverables/TIMMO_D6.pdf
http://www.atesst.org/
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_MMOD_MetaModel.zip
http://www.autosar.org/download/R4.0/AUTOSAR_MMOD_MetaModel.zip
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TR_XMLPersistenceRules.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TR_XMLPersistenceRules.pdf

Deliverable D11 Version 1.2 69

[15] “ACC: Adaptive Cruise Control – The Bosch Yellow
Jackets” Edition 2003

Deliverable D11 Version 1.2 70

10 Appendix A - Current modeling of timing

10.1 EAST_ADL and AUTOSAR

Current Definition of Time Bases

EAST-ADL and AUTOSAR give the possibility to model different units
and types of units in a TimeDuration class for EAST-ADL and in the
MultidimensionalTime for AUTOSAR. References to these units are
attributes of this class (cf. Figure 31).

EAElement

TimeDuration

+ cseCode: CseCodeType = Time

+ cseCodeFactor: int = 1

+ value: Float = 0.0

Figure 31: EAST-ADL metamodel for Units in timing constraints.

It is possible to have in a single design, multiple constraints with
lower/upper values expressed by a TimeDuration/
MultidimensionalTime element of different types: cseCodeType

 cseCodeType are enumerations.

 cseCodeType are units referring implicit clocks, namely universal
time and the engine rotation angle.

 Relation between units can be obtained via the cseCodeFactor
attribute for units of the same type.

Main Issues with this Definition

The notion of unit is not easily extendable. Current time bases are
the chronometric time and, the angular degree. For any other time
bases (distance, temperature …) new enumerations lists should be
added which will modify the metamodel.

The relation between second and millisecond is very simple to
express, because we manage types (and not explicit timebases) but

a big issue is that relation between these units should be

computed for each TimeDuration/MultidimensionalTime

expression in the model by using the cseCodeFactor.

Main Issues concerning the Relation between Time Bases

The last issue concerns the relation between cseCodeType of
different nature. For example s, ms, and angular degree. In this case,
due to the implicit nature of time base, it is not possible to express
relation between these different time bases.

Timing Expression with AUTOSAR

AUTOSAR has a concept for writing formulas [11] which relates to
other model elements in an unambiguous way. This makes
dependencies explicit and ensures that the right parameter is

Deliverable D11 Version 1.2 71

referenced also in a type-prototype hierarchy. For example, one
timing constraint may be based on parameters of the left door-lock
control while another timing constraint uses the same parameter of
the right door lock control. These may have different values, although
having the same type definition.

The Formula Language is based on the atpMixedString concept
which allows mixing strings (operators and arguments) and model
elements (references).

Its specialization to strings containing formulas is called
FormulaExpression. The syntax and semantics of FormulaExpression
is compliant with C expressions and defined using the ANTLR
grammar notation. The FormulaExpression supports arithmetic and
logic expressions such as +, -, *,/, &&, ||, &, |, sin,

cos, floor, etc.

Parameters in the expression are identified using references
according to the AUTOSAR structural concepts. The role name of the
association is used in the formula and the path to the referenced
element is inlined.

10.2 UML_OCL

The Object Constraint Language (OCL) [9] is a declarative and semi-
formal specification language for describing rules that apply to any
MetaObject Facility (MOF) model or metamodel that cannot
otherwise be expressed by diagrammatic notation. For UML, OCL
supplements the language by providing expressions that have neither
the ambiguities of natural language nor the inherent difficulty of using
complex mathematics.

OCL is a precise text language based on first-order predicate logic
and using a syntax similar to programming languages that provides
constraint and object query expressions. These expressions typically
specify invariant conditions that must hold for the system being
modeled, queries over objects described in a model and the
transformation of system states by means of pre- and post-conditions
for operations. An invariant is a Boolean expression that must be true
for every instance of some type at any time. A pre-condition is a
condition that must always be true just prior to the execution of an
operation in order to get the expected effect. A post-condition is a
condition that must always be true just after the execution of an
operation. The language also allows the definition of variables and
operations that can be used within expressions and action clauses,
indicating that actions will be taken when some condition becomes
satisfied.

OCL statements are constructed in four parts:

 a context that defines the limited situation in which the
statement is valid

 a property that represents some characteristics of the context
(e.g., if the context is a class, a property might be an attribute)

 an operation (e.g., arithmetic, set-oriented) that manipulates or
qualifies a property, and

 Keywords (e.g., if, then, else, and, or, not, implies) that are
used to specify conditional expressions.

Deliverable D11 Version 1.2 72

Examples

Consider the example where the system must enforce that an
operation opX never takes longer than 5 seconds to execute. This
timing constraint is invariant.

Context System::opX()

Inv: self.durT <= 5*Sec

Consider an ATM system. Every time the operation spend is invoked,
the ATM must not be on an error state, it must have a card, the
amount of money to be withdrawn must be positive and the depot
must cover the withdrawal. After spend has been executed, the right
amount of money must have been spent or some error has occurred.

context ATM::spend(amount : Integer)

pre: (state = #ok) and (cardId <> 0) and (amount >

0) and (depot > amount+100)

post: (depot = depot@pre-amount) or (state =

#error)

We can also define time expressions in guards. For example, we
could define a transition with a guard that rejects all eventXs that are
dispatched less than 3 seconds after the previous event that entered
the source state:

[distT >= 3*Sec] eventX / action

Another example is to specify that a service be finished within certain
time bounds. An OCL solution to such a requirement would be to
define an explicit clock attribute requiring the clock to be reset to zero
in the pre-condition of the operation and putting a constraint on the
clock's value in the post-condition:

context System

pre: (clock = 0) and (state = #ok) and : …

post: (clock <= T) and : …

So far, OCL shows distinct limitations for formulating temporal
constraints as the language does not feature time or signal handling
constructs, nor is capable of expressing general liveness properties
of systems conveniently. An example is to specify when, the other
way round, the occurrence of some (external) signal is waited for
during a certain period, and if nothing happens the system has to
react in a predefined way. But OCL does not over any convenient
means to handle the occurrence of signals and thus to specify the
intended behavior.

Nevertheless, different approaches have taken OCL as a basis and
developed temporal extensions to enable modelers to specify
temporal constraints. One of them it is a temporal extension named
OCL for Real Time (OCL/RT) [10].

OCL/RT

OCL/RT is based on the notion of traces of events with timestamps,
which allows specifying the temporal behavior of a system. The
constraints are evaluated over sequences of system states (system

Deliverable D11 Version 1.2 73

execution) instead of just on a given state as OCL does. In this
context, new operators are defined extending the expressiveness of

the original language. These are modal operators always and

sometime (by abbreviating not (always (not c)) to sometime c) over
event occurrences. These can be used for specifying deadlines and
timeouts of operations and reactions on received signals.

10.3 PSL Property Specification Language

The Property Specification Language PSL, is a language for
specifying properties. It is typically used for specifying temporal
properties of systems, i.e., properties that deal with the behavior of a
system over time. The assumption is that the system has some
definition of time points, which may be points at which a system clock
ticks (if the system is synchronous), or points at which certain chosen
events occur.

PSL includes a type of regular expression called SERE (Sequential
Extended Regular Expression). SEREs are used to describe
scenarios. The simplest type of SERE is a sequence of Boolean
expressions separated by semicolons, such as {req; !ack; ack}.

This SERE describes a scenario spanning three time points, in which
req holds at the first time point, ack does not hold at the second,

and ack holds at the third.

Generally, a SERE may describe a set of scenarios. For example, the
operator [*] indicates an interval of zero or more time points, in which
anything may occur. Therefore, the SERE {start;[*];done}

describes any scenario that begins with start and ends with done.
The [*] operator may also be attached to a Boolean expression.

The expression busy[*] describes an interval of zero or more time

points in which busy is true. Additional operators serve as shorthand
for longer constructions. For example, {busy[*4]} is equivalent to

{busy; busy; busy; busy}. For any constant number n, the

expression busy[*n] describes a sequence of exactly n time points

SEREs may be used as building blocks of PSL properties. Typically,
a property may be composed of SEREs using the temporal (suffix)
implication operator |=>. For example:

{[*]; req; ack} |=> {start; busy[*]; done}

This property states that any occurrence of the left-hand side
scenario must be followed by an occurrence of the right-hand side
scenario. In this particular case, {[*]; req; ack} describes a

sequence of req followed immediately by ack, which may occur at
any time point (due to the [*] at the beginning of the SERE).

The property states that such a sequence must immediately be
followed (starting at the next time point) by a scenario matching
{start; busy[*]; done}. This property makes a requirement for

any occurrence of a {req; ack} sequence, at any time point,

including overlapping occurrences.

10.4 Expressing TADL2 Constrints using PSL

Deliverable D11 Version 1.2 74

PSL offers temporal operators like always or next, which define

when a Boolean expression must be valid. These temporal operators
combined with SEREs and their corresponding temporal implication
operators enable PSL to express and specify timing-related
properties.

Furthermore, PSL offers the expressiveness to handle timing
constraints and features of TADL2. Therefore the formal timing
requirements expressed in PSL can be transformed to TADL2
constraints.

The following examples show the expressiveness of PSL to formalize
textual requirements and how these expressions are related to
TADL2 constraints. The given timing related requirements are real
world examples for an Adaptive Cruise Control (ACC) system [15].

The first textual requirement defines the possible delays (range) for
messages from or to the ACC system integrated in the overall vehicle
network:

„The transmission of a message from or to the ACC may need 0,5 ms
to 10 ms and the transmission latency must not exceed 10 ms.“

Considering a synchronous periodic system with a clock tick rate of 1
us this example can be formalized and expressed with PSL as
follows:

property MsgDelay;

MsgDelay = always ({MsgSent} |=> {[*500:10000];

MsgRcv});

assert MsgDelay;

The property MsgDelay defines, that the reception of a message

(MsgRcv) can and must always occur 500 to 10.000 ticks

(0,5...10ms) after the message has been sent (MsgSent). The

assertion of this property is utilized to verify the property against the
implementation (e.g. during simulation).

This PSL property corresponds with the TADL Delay Constraint i.e.
can be transformed to a TADL2 Delay Constraint. Furthermore it
implicitly defines an order of the events MsgSent and MsgRcv.

The RADAR sensor of the considered ACC system scans new data
with a rate of 10Hz. To guarantee a certain controller quality and
correct system behavior we define the textual requirement for the
data age:

 „The RADAR sensor scans new data with a rate of 10Hz. To ensure
calculations based on the most recent values, the control loop cycle
duration must not exceed 100 ms.”

This example can be formalized and expressed with PSL as follows
(clock tick rate 1 us):

property CalcFinish;

CalcFinish = always ({DataScan} |=> {[*0:100000];

CalcResult});

assert CalcFinish;

Deliverable D11 Version 1.2 75

The property CalcFinish defines, that the calculation of a control

loop result (CalcResult) has to be the finished within 100 ms after

the input from the RADAR sensor (DataScan) to ensure calculations

based on most recent values. This means, that the age of an input
for a calculation may not exceed 100ms.

This PSL property expresses a TADL2 Age Constraint.

An ACC system has to perform two basic actions to fulfill its
functionality: detection and reaction. The combined time consumption
of these actions may not exceed a certain value, which depends on
the distance to an object, the current speed, scanning rate,
computation rate, and the possible value for acceleration and
deceleration. The resulting textual requirement can be formulated as:

„The acceleration/deceleration level of the ACC is limited and takes
time to build. Additionally to the acceleration/deceleration a detection
time, and a reaction time have to be considered. For a correct
“distance keeping” the sum of acceleration/deceleration time
(depending on relative speed), detection time, and reaction time
(depending on scanning rate, computation time, …) must not exceed
x ms.”

This textual requirement can be formalized and expressed with PSL
as:

property AdjustSpeed;

AdjustSpeed = always ({detection} |=>

{{[*0:MaxReact]; reaction; [*0:MaxDecel];

acceleration/deceleration}});

assert AdjustSpeed;

The property AdjustSpeed defines, that after the detection of an

object (detection) a corresponding reaction (reaction) has to be

performed within given time bounds ([*0:MaxReact]) offering

sufficient remaining time ([*0:MaxDecel]) for the system to

perform the necessary calculation of acceleration/deceleration to set
the desired speed (acceleration/decelaration) for the

“distance keeping”.

This PSL property contains TADL2 Delay Constraints for the
individual actions. Since MaxReact and MaxDecel influence each

other, it also describes the concept of time budgeting for the different
actions as described above. Furthermore, the available time budgets
depend on (relative) speed and distance, which results in “implicit”
multiform (symbolic timing) expressions.

An additional (optional) feature of ACC systems is the “emergency
mode” where the vehicle is decelerated with the maximum possible
value to avoid a collision with a “dangerous” obstacle (emergency
braking). In this case the ACC system has to detect the dangerous
situation, switch from “normal mode” to “emergency mode” and stop
the vehicle. The resulting textual requirement can be formulated as:

„In case of a detection of a ”dangerous“ obstacle the maximum value
for deceleration is switched from “normal mode” (2.5 m/s²) to
„emergency mode“ (8,0 m/s²). Depending on the relative speed and
the distance the switching must not take longer than x ms.“

Deliverable D11 Version 1.2 76

Integrated in the “detection and reaction”-requirement shown above,
this requirement can be expressed with PSL as:

Property EmergencyBrake;

Sequence SwitchMode;

SwitchMode = {isEmergency} |=> {[*0:MAX]; (MODE

==EMERGENCY)}

EmergencyBrake = always ({detection} |=>

{{SwitchMode}; [*0:MaxReact]; reaction;

[*0:MaxDecel]; deceleration}});

assert EmergencyBrake;

Here, a sequence SwitchMode is integrated in the property

EmergencyBrake, which corresponds to the property

AdjustSpeed. This means that this PSL property also covers

TADL2 delay contraints, time budgeting and “implicit” multiform
(symbolic timing) expressions. Additionally this property supports the
concept of mode dependency, since the (timing) behavior of the ACC
system depends on the current operational mode.

The examples above showed that PSL offers the expressiveness to
handle the timing constraints and features of TADL2. Therefore,
textual requirements can be formalized with PSL and transformed to
TADL2. The sequences specified in PSL correspond to events and
event chains in TADL2 and PSL expressions can be transformed to
TADL2 constraints/features and vice versa.

10.5 MARTE-Clock Constraint Specification Language

The UML Profile MARTE for Modeling and Analysis of Real-Time and
Embedded (RTE) systems has recently been adopted by the OMG.
Its Time Model extends the informal and simplistic Simple Time
Package proposed by UML2 and offers capabilities to model explicit
discrete/dense and chronometric/logical time both in a common
design.

MARTE OMG specification introduces a Time Structure inspired from
time models of the concurrency theory and proposes a new clock
constraint specification language (CCSL) to specify, within the
context of UML, usual logical and chronometric time constraints.

Deliverable D11 Version 1.2 77

Figure 32: The MARTE Time Profile.

The profile core consists of two stereotypes (ClockType and Clock).
These stereotypes provide mechanisms to create multiple time bases
of different nature (within a clock type) and to put together features
common to several clocks. By this way it is possible to create library
of time units. Relations between units (s and ms) can be expressed
with OCL. Relation between time bases of different nature (for
example ms and angle degree) is modeled with the CCSL language.

CCSL (Clock Constraint Specification Language) is a language
annexed to MARTE specification. It is a declarative language that
specifies constraints imposed on the clocks of a model. These

constraints can be classified into four categories: synchronous,

asynchronous, mixed, and non-functional.

Synchronous clock constraints rely on coincidence. Subclocking is
such a constraint: each instant of the subclock must coincide with
one instant of the superclock. Of course, the mapping must be order-
preserving. The former discretizes a dense clock. It is mainly used to
derive a discrete chronometric clock from IdealClk. IdealClk is a
dense chronometric clock, predefined in the MARTE Time Library,
and supposed to follow “physical time” faithfully.

For instance:

Clock c10 = IdealClk discretizedBy 0:0001 (1)

Eq. 1 specifies that c10 is a discrete chronometric clock whose
period is 0.0001 second, where second is the time unit associated
with IdealClk, therefore c10 is a 10 kHz clock.

From this clock others can be derived others:

Clock ECU1 isPeriodicOn Idealclk period 10 (2)

Clock ECU2 isPeriodicOn Idealclk period 12 (3)

Eq. 2 reads that there is a tick of the ECU1 every 10th ticks of
IdealClk (i.e., the ECU1 has a 1 kHz clock).

In Eq.3 we have a clock ECU2 which has a small drift with the ECU1
E.g., if 1 ms elapsed time on ECU1 represents 1.2 ms on ECU2.

These two CCSL relations create relations between 3 timebases
(idealclk, ECU1 and ECU2. These equations are solved using
algorithms that provide as a solution partial ordered of clocks
instants.

Asynchronous clock constraints are based on precedence, which
may appear in a strict or anon-strict form.

From precedence are derived four new instant relations:
Coincidence, Strict precedence, Independence and Exclusion

To express clock relations, one can then use these instant relations.
For instance, a strict clock precedence relation (denoted) between
two clocks a and b is asynchronous and specifies that for all natural
number k, the k

th
 instant of a occurs before the k

th
 instant of b:

Such relation could be used for example to express data
dependencies and to describe end to end paths.

Deliverable D11 Version 1.2 78

The coincidence relation (denoted =) between two clocks imposes a
stronger synchronous dependency: the k

th
 instant of a must be

coincident with the k
th
 instant of b:

The same mechanism applies for all relations. Informally, the

exclusion relation (denoted #) between two clocks a and b specifies
that no instants of the clock a coincide with one of the clock b.

The alternatesWith relation (denoted ~) between two clocks a and b
specifies that instants of the clock b are interleaving instants of the
clock a.

Non Functional Property constraints apply to any time base. While
IdealClk is supposed to be perfect, an actual clock may have flaws.
CCSL introduces special constraints to specify stability, drift, offset of
chronometric clocks.

For example Eq 4 and 5 model the repetition rate for a function of 5
ms with a jitter of 1ms. F_Start stands for the activation event of the
function.

F_Start is Periodic On IdealClock period 5 (5)

F_start hasStability 1E-3 (6)

Stochastic parameters are available in CCSL Non determinism
introduced by such parameters may reflect a partial knowledge about
the actual constraints. It may also be a deliberate choice for hiding
unnecessary details. Several probability distributions are provided.

The uniform distribution is often used to represent a tolerance interval
on a duration.

For example an input synchronization constraint means that when
the first acquisition is done for a data the others acquisitions should

be done within a certain delay. The same is for output

synchronization constraint where a maximum delay should elapse
between the first actuator setting and the last one.

These delays are generally a random duration. CCSL represent a
random duration with the Uniform(0::5).

Example

Finally we give an example of using CCSL for expressing relationship
between two time bases of different nature.

The relation between angle and RPM depends on modes and is
given by the two following rules:

 In mode 1: RPM=6000 => 1 angle°=27 us

 In mode 2: RPM=1000 => 1 angle°=167 us.

The introduction of mode in TADL2 is presented in ‎3.1.

The modeling of these relations is given by the two following
expressions:

In mode 1:

 In mode 2:

Deliverable D11 Version 1.2 79

Deliverable D11 Version 1.2 80

11 Appendix B – TADL2 Metamodel

The metamodel of TADL2 is available as an XMI file as a part of this
deliverable. The model is an export from Enterprise Architect and
should be imported in an EAST-ADL metamodel [3] (in turn
depending on the AUTOSAR 4.0.3 metamodel [8]).

The XMI contains only TADL2. The basis is the final language
specification from the ATESST2 project (2010-06-02) [2]. The
package Timing has been modified in a few ways to avoid clash with
TADL2:

1. The EAST-ADL Event has been renamed EventEAST-ADL

2. The EAST-ADL concepts for organize the timing information have
been replaced by concepts in TADL2 and have been removed.
These metaclasses Timing, TimingDescription, TimingConstraint
and EventChain were removed.

3. The EAST-ADL TimingConstraints package has been removed.
That package contained AgeTimingConstraint,
ArbitraryEventConstraint, DelayConstraint, EventConstraint,
InputSynchronizationConstraint,
OutputSynchronizationConstraint, PatternEventConstraint,
PeriodicEventConstraint, ReactionConstraint, and
SporadicEventConstraint. These constraints have been replaced
by concepts in TADL2 with updated semantics and syntax.

List of helper timing constraints that are not defined in the metamodel

 RepeatConstraint, instead the RepetitionConstraint is
available, where jitter = 0 corresponds to RepeatConstraint.

11.1 TADL2

11.1.1 Overview

Figure 33: Basic TADL2 elements organized in Timing, with TimingConstraints referring to EAST-ADL Mode.

Deliverable D11 Version 1.2 81

Figure 34: The Events are defined within AUTOSAR and EAST-ADL. These events refer to the structural models of
AUTOSAR and EAST-ADL respectively.

11.1.2 Element Descriptions

11.1.2.1 AUTOSAREvent (from TADL2)

Generalizations

 Event (from TADL2)

Description

An AUTOSAREvent instance refers to an event of the form defined by
AUTOSAR.

Attributes

No additional attributes

Associations

 ref : TimingDescriptionEvent [1]

Constraints

No additional constraints

11.1.2.2 EASTADLEvent (from TADL2)

Generalizations

 Event (from TADL2)

Description

An EASTADLEvent instance refers to an event of the form defined by EAST-
ADL.

Attributes

No additional attributes

Deliverable D11 Version 1.2 82

Associations

 ref : EventEAST-ADL [1]

Constraints

No additional constraints

11.1.2.3 Event (from TADL2) {abstract}

Generalizations

 TimingDescription (from TADL2)

Description

The Event class stands for all the forms of identifiable state changes that are
possible to constrain with respect to timing using TADL2.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

An event denotes a distinct form of state change in a running system, taking
place at distinct points in time called occurrence of the event. That is, a
running system can be observed by identifying certain forms of state
changes to watch for, and for each such observation point, noting the times
when changes occur. This notion of observation also applies to a
hypothetical predicted run of a system or a system model - from a timing
perspective, the only information that needs to be in the output of such a
prediction is a sequence of times for each observation point, indicating the
times that each event is predicted to occur.

In system models, events appear syntactically as names indicating the state
changes of interest. Semantically, an event name is a variable standing for
some statically unknown set of occurrences. Note that this connection is
purely conceptual; occurrences never exist concretely in any system model
as they are a purely semantic notion representing the state changes that can
be observed when a system is executed, or simulated, or perhaps only
mathematically predicted.

TADL2 assumes that occurrences are characterized by two pieces of
information: a timestamp indicating when the corresponding state change
occurred, and a color that partitions different event occurrences into groups
that should be understood as being causally related. The timestamp is a real
value of SI unit seconds, whereas the color value is drawn from some
abstract, possibly infinite type whose only restriction is that must support an
equality test on its values.

11.1.2.4 EventChain (from TADL2)

Generalizations

 TimingDescription (from TADL2)

Deliverable D11 Version 1.2 83

Description

An EventChain is a container for a pair of events that must be causally
related.

Attributes

No additional attributes

Associations

 stimulus : Event [1]

The event that stimulates the steps to be taken to respond to this
event.

 response : Event [1]

The event that is a response to a stimulus that occurred before.

 segment : EventChain [*] {ordered}

Referred EventChains in sequence refine this EventChain.

Constraints

No additional constraints

Semantics

A system behavior is consistent with respect to an event chain ec if and only
if

for each occurrence x in ec.stimulus,

 for each occurrence y in ec.response,

 if x.color = y.color then x < y

11.1.2.5 ExternalEvent (from TADL2)

Generalizations

 Event (from TADL2)

Description

An ExternalEvent instance stands for some particular form of state change.

It is implied that the attribute description uniquely identifies the intended form
of state change. It is also assumed that a description string is sufficiently
informative to determine an unambiguous set of occurrences for each
observation.

Attributes

 description : String [1]

Associations

No additional associations

Constraints

No additional constraints

11.1.2.6 ModeEvent (from TADL2)

Deliverable D11 Version 1.2 84

Generalizations

 Event (from TADL2)

Description

A mode that identifies when the mode starts or ends.

Attributes

No additional attributes

Associations

 start : Mode [*]

The mode that is started.

 end : Mode [*]

The mode that ends.

Constraints

No additional constraints

11.1.2.7 Timing (from TADL2)

Generalizations

 Context (from Elements)

Description

The collection of timing descriptions, namely events and event chains, and
the timing constraints imposed on these events and event chains. This
collection can be done across the EAST-ADL abstraction levels.

Attributes

No additional attributes

Associations

 constraint : TimingConstraint [*]

 description : TimingDescription [*]

 timingExpression : TimingExpression [*]

 timeBase : TimeBase [*]

 dimension : Dimension [*]

 timeBaseRelation : TimeBaseRelation [*]

Constraints

No additional constraints

11.1.2.8 TimingConstraint (from TADL2) {abstract}

Generalizations

 EAElement (from Elements)

Description

Deliverable D11 Version 1.2 85

This abstract element references a mode in order to indicate that the
corresponding TimingConstraint is only valid when the specified mode is
active.

Attributes

No additional attributes

Associations

 mode : Mode [0..1]

Reference to the mode in which the timing constraint is valid.

Constraints

No additional constraints

Semantics

The TimingConstraint does not describe what is classically referred to as a
"design" constraint but has the role of a property, requirement, or a validation
result. It is a requirement if this TimingConstraint refines a Requirement (by
the Refine relationship). The TimingConstraint is a validation result if it
realizes a VVActualOutcome, it is an intended validation result if it realizes a
VVIntendedOutcome, and in other cases it denotes a property.

11.1.2.9 TimingDescription (from TADL2) {abstract}

Generalizations

None

Description

An abstract metaclass describing the timing events and their relations by
event chains within the timing model.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

11.2 TimingConstraints

11.2.1 Overview

TADL2 offers a palette of means to constrain the time occurrences of events.
These can roughly be grouped into restrictions on the recurring delays
between a pair of events, restrictions on the repetitions of a single event, and
restrictions on the synchronicity of a set of events. All constraints provided by
TADL2 are defined in this package.

The semantics of some timing constraint is described by references to other
timing constraints in this package. Default attribute values, which apply in a
right-to-left manner whenever a constraint argument list is too short to match
all defined attributes, are given when applicable.

Deliverable D11 Version 1.2 86

A helper constraint RepeatConstraint is defined in TADL2, in modeling a
RepetitionConstraint with jitter = 0 is used instead.

A system behavior satisfies a RepeatConstraint c if and only if

for each subsequence X of c.event,

 if X contains span + 1 occurrences then

 e is the distance between the outermost

 occurrences in X

 and

 c.lower <= e <= c.upper

The RepeatConstraint defines the basic notion of repeated occurrences. If
the span attribute is 1 and the lower and upper attributes are equal, the
accepted behaviors must be strictly periodic. If span is still 1 but lower is
strictly less than upper, the pattern may deviate from a periodic one in an
accumulating fashion, making the window within which occurrence number N
may appear as wide as N(upper-lower) time units. A span attribute greater
than 1 similarly constrains every sequence of span+1 occurrences, but
places no restriction on the distances within shorter sequences.

Deliverable D11 Version 1.2 87

Figure 35: The first of two sets with TADL2 constraints with attributes of type TimingExpression and references to
events.

Deliverable D11 Version 1.2 88

Figure 36: The second of two sets with TADL2 constraints with attributes of type TimingExpression and references to
events. Also shown is the ComparisonConstraint with attributes of type TimingExpression.

Deliverable D11 Version 1.2 89

Figure 37: The TADL2 constraints that refer to EventChain, and have attributes of type TimingExpression.

11.2.2 Element Descriptions

11.2.2.1 AgeConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

An AgeConstraint defines how long before each response a corresponding
stimulus must have occurred.

This constraint provides an alternative to the ordinary DelayConstraint for
situations where the causal relation between event occurrences must be
taken into account. It differs from the DelayConstraint in that it applies to an
event chain, and only looks at the stimulus occurrences that have the same
color as each particular response occurrence. It is the latest of these
stimulus occurrences that is required to lie within the prescribed time bounds.
If the roles of stimulus and response are swapped, and the time bounds
negated, a ReactionConstraint is obtained.

Attributes

No additional attributes

Deliverable D11 Version 1.2 90

Associations

 scope : EventChain [1]

 maximum : TimingExpression [0..1]

Default: infinity

 minimum : TimingExpression [0..1]

Default: 0

Constraints

No additional constraints

Semantics

A system behavior satisfies an AgeConstraint c if and only if

for each occurrence y in c.scope.response,

 there is an occurrence x in c.scope.stimulus such that

 x.color = y.color

 and

 x is maximal in c.scope.stimulus with that color

 and

 c.minimum <= y - x <= c.maximum

11.2.2.2 ArbitraryConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

An ArbitraryConstraint describes an event that occurs irregularly.

An ArbitraryConstraint is equivalent to a combination of Repeat constraints,
each one constraining sequences of i+1 occurrences (that is, i repetition
spans), with i ranging from 1 to some given n.

Attributes

No additional attributes

Associations

 event : Event [1]

 maximum : TimingExpression [1..*]

 minimum : TimingExpression [1..*]

Constraints

[1] The number of elements in minimum and maximum must be equal.

Semantics

A system behavior satisfies an AribtraryConstraint c if and only if

for each c.minimum index i, the same system behavior satisfies

RepeatConstraint { event = c.event,

lower = c.minimum(i),

Deliverable D11 Version 1.2 91

upper = c.maximum(i),

span = i }

11.2.2.3 BurstConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A BurstConstraint describes an event that occurs in semi-regular bursts.

A BurstConstraint expresses the maximum number of event occurrences
that may appear in any interval of a given length, which is equivalent to
constraining the same number of repeat spans (which count one extra
occurrence at the end) to have a minimum width of length.

Attributes

 maxOccurences : Integer [1]

Associations

 event : Event [1]

 length : TimingExpression [1]

 minimum : TimingExpression [0..1]

Default: 0

Constraints

No additional constraints

Semantics

A system behavior satisfies a BurstConstraint c if and only if

the same system behavior concurrently satisfies

RepeatConstraint { event = c.event,

lower = c.length,

upper = infinity,

span = c.maxOccurrences }

and

RepeatConstraint { event = c.event,

lower = c.minimum }

11.2.2.4 ComparisonConstraint (from TimingConstraints)

Generalizations

None

Description

A ComparisonConstraint states that a certain ordering relation must exist
between two timing expressions.

This constraint is special in that it does not reference any events. Its main
purpose is to express relations between arithmetic variables used in other

Deliverable D11 Version 1.2 92

constraint; for example, stating that the sum of the variables denoting
segment delays in a time-budgeting scenario must be less than the
maximum end-to-end deadline allowed.

Attributes

 operator : ComparisonKind [1]

Associations

 rightOperand : TimingExpression [1]

 leftOperand : TimingExpression [1]

Constraints

No additional constraints

Semantics

A system behavior satisfies a ComparisonConstraint c if and only if

c.leftOperand and c.rightOperand are related according to the ordering
relation given by c.operator.

11.2.2.5 ComparisonKind (from TimingConstraints) «enumeration»

Generalizations

None

Enumeration Literals

 equal

 greaterThan

 greaterThanOrEqual

 lessThan

 lessThanOrEqual

Associations

No additional associations

Constraints

No additional constraints

11.2.2.6 DelayConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A DelayConstraint imposes limits between the occurrences of an event called
source and an event called target.

This notion of delay is entirely based on the distance between source and
target occurrences; whether a matching target occurrence is actually caused
by the corresponding source occurrence is of no importance. This means
that one-to-many and many-to-one source-target patterns are allowed, and
so are stray target occurrences that are not within the prescribed distance of
any source occurrence.

Deliverable D11 Version 1.2 93

Attributes

No additional attributes

Associations

 target : Event [1]

 source : Event [1]

 lower : TimingExpression [0..1]

Default: 0

 upper : TimingExpression [0..1]

Default: infinity

Constraints

No additional constraints

Semantics

A system behavior satisfies a DelayConstraint c if and only if

for each occurrence x of c.source,

 there is an occurrence y of c.target such that

 c.lower <= y - x <= c.upper

11.2.2.7 ExecutionTimeConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

An ExecutionTimeConstraint limits the time between the starting and
stopping of an executable entity (function), not counting the intervals when
the execution of such an executable entity (function) has been interrupted.

Attributes

No additional attributes

Associations

 preemption : Event [0..*] {ordered}

 stop : Event [1]

 start : Event [1]

 resume : Event [0..*] {ordered}

 upper : TimingExpression [0..1]

 lower : TimingExpression [0..1]

Constraints

No additional constraints

Semantics

A system behavior satisfies an ExecutionTimeConstraint c if and only if

for each occurrence x of event c.start,

 E is the set of times between x and the next c.stop

Deliverable D11 Version 1.2 94

 occurrence, excluding the times between any c.preempt

 occurrence and its next c.resume occurrence,

and

 c.lower <= length of all continuous intervals in E <= c.upper

11.2.2.8 InputSynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

An InputSynchronizationConstraint defines how far apart the responses that
belong to a certain stimulus may occur.

This constraint provides an alternative to the ordinary
SynchronizationConstraint for situations where the causal relation between
event occurrences must be taken into account. It differs from the
SynchronizationConstraint in that it applies to a set of event chains, and only
looks at the stimulus occurrences that have the same color as each
particular response occurrence. It is the latest of these stimulus occurrences
for each chain that are required to lie no more than tolerance time units
apart. If the roles of stimuli and responses are swapped, an
OutputSynchronizationConstraint is obtained.

Attributes

No additional attributes

Associations

 scope : EventChain [2..*]

 tolerance : TimingExpression [0..1]

Default: infinity

Constraints

[1] All scopes must reference one common response event.

Semantics

A system behavior satisfies an InputSynchronizationConstraint c if and only if

for each occurrence y in c.scope(1).response,

 there is a time t such that for each c.scope index i,

 there is an occurrence x in c.scope(i).stimulus such that

 y.color = x.color

 and

 x is maximal in c.scope(i).stimulus with that color

 and

 0 <= x - t <= c.tolerance

11.2.2.9 OrderConstraint (from TimingConstraints)

Generalizations

Deliverable D11 Version 1.2 95

 TimingConstraint (from TADL2)

Description

An OrderConstraint imposes an order between the occurrences of an event
called source and an event called target.

The OrderConstraint is a minor variant of an application of
StrongDelayConstraint with lower set to 0 and upper to infinity; the difference
being that the OrderConstraint does not allow matching target and source
occurrences to coincide.

Attributes

No additional attributes

Associations

 source : Event [1]

 target : Event [1]

Constraints

No additional constraints

Semantics

A system behavior satisfies an OrderConstraint c if and only if

c.source and c.target have the same number of occurrences,

and for each index i,

 if there is an i:th occurrence of c.source at time x, there is

 also an i:th occurrence of c.target at time y such that

 x < y

11.2.2.10 OutputSynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

An OutputSynchronizationConstraint defines how far apart the responses
that belong to a certain stimulus may occur.

This constraint provides an alternative to the ordinary
SynchronizationConstraint for situations where the causal relation between
event occurrences must be taken into account. It differs from the
SynchronizationConstraint in that it applies to a set of event chains, and only
looks at the response occurrences that have the same color as each
particular stimulus occurrence. It is the earliest of these response
occurrences for each chain that are required to lie no more than tolerance
time units apart. If the roles of stimuli and responses are swapped, an
InputSynchronizationConstraint is obtained.

Attributes

No additional attributes

Associations

 scope : EventChain [2..*]

 tolerance : TimingExpression [0..1]

Deliverable D11 Version 1.2 96

Default: infinity

Constraints

[1] All scopes must reference one common stimulus event.

Semantics

A system behavior satisfies an OutputSynchronizationConstraint c if and only
if

for each occurrence x in c.scope(1).stimulus,

 there is a time t such that for each c.scope index i,

 there is an occurrence y in c.scope(i).response such that

 y.color = x.color

 and

 y is minimal in c.scope(i).response with that color

 and

 0 <= y - t <= c.tolerance

11.2.2.11 PatternConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A PatternConstraint describes an event that exhibits a known pattern relative
to the occurrences of an imaginary event.

A PatternConstraint requires the constrained event occurrences to appear at
a predetermined series of offsets from a sequence of reference points in
time that are strictly periodic. The exact placement of these reference points
is irrelevant; if one placement exists that is periodic and allows the event
occurrences to be reached at the desired offsets, the constraint is satisfied.

Attributes

No additional attributes

Associations

 event : Event [1]

 jitter : TimingExpression [0..1]

Default: 0

 minimum : TimingExpression [0..1]

Default: 0

 offset : TimingExpression [1..*]

 period : TimingExpression [1]

Constraints

No additional constraints

Semantics

A system behavior satisfies a PatternConstraint c if and only if

Deliverable D11 Version 1.2 97

there is a set of times X such that the same system behavior concurrently
satisfies

PeriodicConstraint { event = X,

period = c.period }

and for each c.offset index i,

DelayConstraint { source = X,

target = c.event,

lower = c.offset(i),

upper = c.offset(i) + c.jitter }

and

RepeatConstraint { event = c.event,

lower = c.minimum }

11.2.2.12 PeriodicConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A PeriodicConstraint describes an event that occurs periodically.

Attributes

No additional attributes

Associations

 event : Event [1]

 minimum : TimingExpression [0..1]

Default: 0

 period : TimingExpression [1]

 jitter : TimingExpression [0..1]

Default: 0

Constraints

No additional constraints

Semantics

A system behavior satisfies a PeriodicConstraint c if and only if

the same system behavior satisfies

SporadicConstraint { event = c.event,

lower = c.period,

upper = c.period,

jitter = c.jitter,

minimum = c.minimum }

11.2.2.13 ReactionConstraint (from TimingConstraints)

Deliverable D11 Version 1.2 98

Generalizations

 TimingConstraint (from TADL2)

Description

A ReactionConstraint defines how long after the occurrence of a stimulus a
corresponding response must occur.

This constraint provides an alternative to the ordinary DelayConstraint for
situations where the causal relation between event occurrences must be
taken into account. It differs from the DelayConstraint in that it applies to an
event chain, and only looks at the response occurrences that have the same
color as each particular stimulus occurrence. It is the earliest of these
response occurrences that is required to lie within the prescribed time
bounds. If the roles of stimulus and response are swapped, and the time
bounds negated, an AgeConstraint is obtained.

Attributes

No additional attributes

Associations

 scope : EventChain [1]

 maximum : TimingExpression [0..1]

Default: infinity

 minimum : TimingExpression [0..1]

Default: 0

Constraints

No additional constraints

Semantics

A system behavior satisfies a ReactionConstraint c if and only if

for each occurrence x in c.scope.stimulus,

 there is an occurrence y in c.scope.response such that

 y.color = x.color

 and

 y is minimal in c.scope.response with that color

 and

 c.minimum <= y - x <= c.maximum

11.2.2.14 RepetitionConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A RepetitionConstraint describes the distribution of the occurrences of a
single event, including the allowance for jitter.

The RepetitionConstraint extends the basic notion of repeated occurrences
by allowing local devitions from the ideal repetitive pattern described by a
RepeatConstraint. Its jitter, lower and upper attributes all contribute to the

Deliverable D11 Version 1.2 99

width of the window in which occurrence number N is accepted, according to
the formula N(upper-lower) + jitter. That is, with lower = upper, the
uncertainty of where occurrence N may be found does not grow with an
increasing N, unlike the case when lower differs from upper by a similar
amount and jitter is 0. By adjusting all three attributes, a desired balance
between accumulating and non-accumulating uncertainties can be obtained.

Attributes

 span : Integer = 1 [1]

Associations

 event : Event [1]

 jitter : TimingExpression [0..1]

Default: 0

 lower : TimingExpression [0..1]

Default: 0

 upper : TimingExpression [0..1]

Default: infinity

Constraints

No additional constraints

Semantics

A system behavior satisfies a RepetitionConstraint c if and only if

the same system behavior concurrently satisfies

RepeatConstraint { event = X,

lower = c.lower,

upper = c.upper,

span = c.span }

and

StrongDelayConstraint { source = X,

target = c.event,

lower = 0,

upper = c.jitter }

11.2.2.15 SporadicConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A SporadicConstraint describes an event that occurs sporadically.

The SporadicConstraint is just an application of the RepetitionConstraint with
a default span attribute of 1, combined with an additional requirement that
the effective minimum distance between any two occurrences must be at
least the value given by minimum (even if lower-jitter would suggest a
smaller value).

Deliverable D11 Version 1.2 100

Attributes

No additional attributes

Associations

 event : Event [1]

 lower : TimingExpression [0..1]

Default: 0

 minimum : TimingExpression [0..1]

Default: 0

 upper : TimingExpression [0..1]

Default: infinity

 jitter : TimingExpression [0..1]

Default: 0

Constraints

No additional constraints

Semantics

A system behavior satisfies a SporadicConstraint c if and only if

the same system behavior concurrently satisfies

RepetitionConstraint { event = c.event,

lower = c.lower,

upper = c.upper,

jitter = c.jitter }

and

RepeatConstraint { event = c.event,

lower = c.minimum }

11.2.2.16 StrongDelayConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A StrongDelayConstraint imposes limits between each indexed occurrence of
an event called source and the identically indexed occurrence of an event
called target.

The strong delay notion requires source and target occurrences to appear in
lock-step. Only one-to-one source-target patterns are allowed, and no stray
target occurrences are accepted.

Strong synchronization differs from the ordinary form of
SynchronizationConstraint by grouping event occurrences into
synchronization clusters strictly according to their index. This means that
multiple occurrences of a single event cannot belong to a single cluster, and
clusters may not share occurrences. Strong synchronization tightens the

Deliverable D11 Version 1.2 101

requirements compared to ordinary synchronization in much the same way
as StrongDelayConstraint refines the ordinary DelayConstraint.

Attributes

No additional attributes

Associations

 source : Event [1]

 target : Event [1]

 lower : TimingExpression [0..1]

Default: 0

 upper : TimingExpression [0..1]

Default: infinity

Constraints

No additional constraints

Semantics

A system behavior satisfies a StrongDelayConstraint c if and only if

c.source and c.target have the same number of occurrences,

and for each index i,

 if there is an i:th occurrence of c.source at time x

 there is also an i:th occurrence of c.target at time y

 such that

 c.lower <= y - x <= c.upper

11.2.2.17 StrongSynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A StrongSynchronizationConstraint describes how tightly the occurrences of
a group of events follow each other.

Attributes

No additional attributes

Associations

 event : Event [2..*]

 tolerance : TimingExpression [0..1]

Default: infinity

Constraints

No additional constraints

Semantics

A system behavior satisfies a StrongSynchronizationConstraint c if and only if

Deliverable D11 Version 1.2 102

there is a set of times X such that for each c.event index i, the same system
behavior satisfies

StrongDelayConstraint { source = X,

target = c.event(i),

lower = 0,

upper = c.tolerance }

11.2.2.18 SynchronizationConstraint (from TimingConstraints)

Generalizations

 TimingConstraint (from TADL2)

Description

A SynchronizationConstraint describes how tightly the occurrences of a
group of events follow each other.

This form of synchronization only takes the width and completeness of each
occurrence cluster into account; it does not care whether som events occur
multiple times within a cluster or whether some clusters overlap and share
occurrences. In particular, event occurrences are not partitioned into clusters
according to their role or what has caused them. Stray occurrences of single
events are not allowed, though, since these would just count as incomplete
clusters according to this constraint.

Attributes

No additional attributes

Associations

 event : Event [2..*]

 tolerance : TimingExpression [0..1]

Default: infinity

Constraints

No additional constraints

Semantics

A system behavior satisfies a SynchronizationConstraint c if and only if

there is a set of times X such that for each c.event index i, the same system
behavior concurrently satisfies

DelayConstraint { source = X,

target = c.event(i),

lower = 0,

upper = c.tolerance }

and

DelayConstraint { source = c.event(i),

target = X,

lower = -c.tolerance,

upper = 0}

Deliverable D11 Version 1.2 103

11.3 MultipleTimeBases

11.3.1 Overview

This work on symbolic time expression is twofold: firstly, it concerns the
concepts of TADL2 to manage in a same design, time bases of multiple
types (universal time - i.e. chronometric time, angular time, etc.). The second
aspect concerns with the extension of constant time expressions and the
possibility to define time as an algebraic expression that is able to manipulate
symbolic identifiers. So, a value expression in a TADL2 time constraint may
refer to an expression made of a suitable set of arithmetic operators mixing
symbolic identifiers and referring to different time bases.

A typical use for this feature is to capture unknown configuration parameters;
another one is to relate constraints in different time-bases to each other.

Figure 38: TimingExpression.

Figure 39: TimeBase with Dimension and Unit.

11.3.2 Element Descriptions

Deliverable D11 Version 1.2 104

11.3.2.1 Dimension (from MultipleTimeBases)

Generalizations

 EAElement (from Elements)

Description

A Dimension defines a set of units of the same quantity dimension.

Some examples of Dimension are:

name = "Length" and quantityDimension = "L"

name = "Angle" and quantityDimension = "", i.e. the empty string as angle is
without dimension.

name = "Acceleration" and quantityDimension = "LT-2", the exponent for
length is 1 and for time it is -2.

Valid symbols in the quantityDimension attribute and their quantity names
are:

L, length

M, mass

T, time

I, electric current

K, thermodynamic temperature

J, luminous intensity

N, amount of substance

Attributes

 quantityDimension : String [1]

Associations

 unit : Unit [*]

Constraints

No additional constraints

11.3.2.2 Operator (from MultipleTimeBases)

Generalizations

None

Description

An Operator used between two TimingExpressions in a
SymbolicTimingExpression.

Attributes

 type : OperatorKind [1]

Associations

Deliverable D11 Version 1.2 105

 leftOperand : TimingExpression [1]

 rightOperand : TimingExpression [1]

Constraints

No additional constraints

11.3.2.3 OperatorKind (from MultipleTimeBases) «enumeration»

Generalizations

None

Description

An enumeration of operators.

Enumeration Literals

 addition

 division

 multiplication

 subtraction

Associations

No additional associations

Constraints

No additional constraints

11.3.2.4 SymbolicTimingExpression (from MultipleTimeBases)

Generalizations

 TimingExpression (from MultipleTimeBases)

Description

In SymbolicTimingExpression, the language integrates basic arithmetic
operators such as addition, subtraction, and multiplication associated with
timing values.

Attributes

No additional attributes

Associations

 variable : VariableTimingExpression [0..1]

 operator : Operator [0..1]

Constraints

[1] SymbolicTimingExpression cannot have both an Operator and a
reference to VariableTimingExpression.

11.3.2.5 TimeBase (from MultipleTimeBases)

Generalizations

Deliverable D11 Version 1.2 106

 EAElement (from Elements)

Description

TimeBase has been introduced to cope with the need of modeling various
temporal referential used in an automotive distributed systems design (clocks
from different ECUs, motor position, etc.).

TADL2 timing expressions may contain an explicit TimeBase which
represents a discrete and totally ordered set of instants. An instant can be
seen as an event occurrence called a "tick". It may represent any repetitive
event in a system. Events may refer even to "classical" time dimension or to
some evolution of a mechanical part like the rotation of crankshaft, distance,
etc.

Attributes

 precisionFactor : Float [1]

Because a TimeBase is a discrete set of instants, a discretization
step is specified with the precisionFactor attribute which rely on a
precisionUnit.

Associations

 type : Dimension [1]

 precisionUnit : Unit [0..1]

Constraints

[1] Every TimeBase declaration must introduce a unique timebase identifier.

[2] A TimeBase declaration with the name universal must exist.

11.3.2.6 TimeBaseRelation (from MultipleTimeBases)

Generalizations

 EAElement (from Elements)

Description

Expressing relation between time bases is mandatory to build a global
perception of time. When timing constraints refer to multiple time bases, it
results in a partially ordered set of instants from these time bases and
corresponds to the global temporal perception of system behavior.

Attributes

No additional attributes

Associations

 right : TimingExpression [1]

 left : TimingExpression [1]

Constraints

No additional constraints

11.3.2.7 TimingExpression (from MultipleTimeBases) {abstract}

Generalizations

Deliverable D11 Version 1.2 107

None

Description

A Timing Expression, denoted by texp, is a term built from an arithmetic
expression by applying an optional unit and referencing an optional time
base. It stands for a value in the real number system extended with positive
and negative infinity.

Grammar:

texp ::= aexp

 | aexp UN

 | aexp on TB

 | aexp UN on TB

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

Semantics

Given a particular variable assignment, the meaning of a timing expression
texp in that assignment is a value in the real number system extended with
positive and negative infinity. Depending on the form of texp, this value is
defined as follows:

- If texp is of the form aexp, its meaning is the meaning of aexp in the given
variable assignment.

- If texp is of the form aexp UN, its meaning is r * k, where r is the meaning of
aexp in the given variable assignment, and k is the factor of UN in the
Universal time base.

- If texp is of the form aexp on TB, its meaning is f (r), where f is the meaning
of TB in the given variable assignment, and r is the meaning of aexp in the
same assignment.

- If texp is of the form aexp UN on TB, its meaning is f (r * k), where f is the
meaning of TB in the given variable assignment, r is the meaning of aexp in
the same assignment, k is the factor of UN in DI, and DI is the dimension of
TB.

11.3.2.8 Unit (from MultipleTimeBases)

Generalizations

 EAElement (from Elements)

Description

Each Unit relates to another unit by the factor attribute to enable conversions.

As a unit conversion example:

second = 1000 * millisecond

has factor = 1000.

Deliverable D11 Version 1.2 108

Attributes

 factor : Float [1]

Associations

 reference : Unit [0..1]

Constraints

No additional constraints

11.3.2.9 ValueTimingExpression (from MultipleTimeBases)

Generalizations

 TimingExpression (from MultipleTimeBases)

Description

A ValueTimingExpression may have a unit and a time base as type. TADL2
is aimed to be a declarative language. Therefore, we have only free
variables, constants and values. Please note that ValueTimingExpression
does not have a name.

Attributes

 value : Float [1]

Associations

 timeBase : TimeBase [0..1]

 unit : Unit [0..1]

Constraints

No additional constraints

11.3.2.10 VariableTimingExpression (from MultipleTimeBases)

Generalizations

 EAElement (from Elements)

 TimingExpression (from MultipleTimeBases)

Description

The VariableTimingExpression stands for free variables and constants. If a
value is assigned to a variable, then the variable becomes a constant.

Attributes

No additional attributes

Associations

 timeBase : TimeBase [1]

 unit : Unit [1]

 value : TimingExpression [0..1]

Constraints

Deliverable D11 Version 1.2 109

No additional constraints

11.4 ProbabilisticTiming

11.4.1 Overview

This section presents the extension of the basic timing constraints of TADL2
with probabilistic parameters, which can be either based on distributions or
follow the weakly-hard approach, which was introduced to express that not
more than a given number of deadlines may be missed within a time window.
The goal of these additional parameters is to allow the expression of more
fine-grain information than the usual interval between the best case and the
worst case.

Probabilistic timing information can be used in different ways to represent
different abstractions. For example, one may be interested in probabilistic
information based on distributions or instead in weakly-hard constraints
which express that not more than a given number of deadlines may be
missed within a time window.

Figure 40: Distributions for probabilistic timing.

Figure 41: Constraints for probabilistic timing modifies timing constraints and add a distribution.

11.4.2 Element Descriptions

11.4.2.1 FrechetDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

Deliverable D11 Version 1.2 110

A FrechetDistribution, defined only for positive values. To evaluate the
probability density from this distribution the argument shall be in the universal
timebase, to correspond to the float parameters of this distribution.

Attributes

 scale : Float [1]

 shape : Float [1]

Associations

No additional associations

Constraints

No additional constraints

11.4.2.2 GumbelDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

A Gumbel distribution, defined on the entire real axis. To evaluate the
probability density from this distribution the argument shall be in the universal
timebase, to correspond to the float parameters of this distribution.

Attributes

 location : Float [1]

 scale : Float [1]

Associations

No additional associations

Constraints

No additional constraints

11.4.2.3 HistogramDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

The HistogramDistribution is The probability interval describes the probability
for each interval if the distribution is discretized.

Attributes

No additional attributes

Associations

 probabilityInterval : ProbabilityInterval [0..*]

Constraints

No additional constraints

Deliverable D11 Version 1.2 111

Semantics

Consider a given list of probaInterval of the form {pr[t_0;t_1]=p_1, ... , pr[t_n-
1;t_n]=p_n} where t_0=lower, t_n=upper and t_0 <= t_1 <= ... <= t_n.

If the sum of all probability values P=p_1+...+p_n is equal to 1, as must be
the case by definition of a probability distribution, then our distribution is such
that the probability to obtain a value in the interval [t_i-1, t_i] (for i in [1, n]) is
equal to p_i.

If the sum of all probability values P=p_1+...+p_n is larger than 1, then we
consider the distribution to be a overapproximation of the exact distribution,
that is, the probability to obtain a value in the interval [t_i-1, t_i] (for i in [1, n])
is smaller than or equal to p_i. We proceed similarly if P is smaller than 1.

11.4.2.4 NormalDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

A Normal (Gaussian) distribution.

Attributes

 mean : Float [1]

The mean value.

 sigma : Float [1]

The standard deviation.

Associations

No additional associations

Constraints

No additional constraints

11.4.2.5 ProbabilisticTimingConstraint (from ProbabilisticTiming)

Generalizations

 TimingConstraint (from TADL2)

Description

A timing constraints that modifies the associated constraints and adds a
probabilistic distribution. Valid for constraints that has a jitter and/or a lower
and upper parameter. Separate distributions can be provided for the jitter or
distance.

The semantic of the predefined distributions is as usual. For example, the
semantics of a 'uniform' distribution between lower and upper is a function
that associates with every interval [t1;t2] included in [lower, upper] a
probaValue equal to (t2-t1) / (upper-lower). The only difference concerns
situations where the predefined distributions may have values outside the
bounds defined by lower and upper. In that case it is assumed that these
values will be ignored and therefore to ensure that the sum of all remaining
probability values P (formally defined as the definite integral of the probability

Deliverable D11 Version 1.2 112

distribution between lower and upper) is equal to 1, we adapt the standard
semantics as follows: the probability of any interval between lower and upper
is divided by P.

It is important to note here that we will also use Time distributions to describe
jitter, and in this case the bounds will be 0 and jitter instead of lower and
upper. The following explanations also apply to these distributions.

Attributes

No additional attributes

Associations

 constraint : TimingConstraint [1]

 jitterDistribution : TimeDistribution [0..1]

Distribution within the window defined by the jitter parameter of
the constraint.

 distanceDistribution : TimeDistribution [0..1]

Distribution within the window defined by the lower and upper
parameter of the constraint.

Constraints

[1] constraint must have a jitter or constraint must have a lower and upper
parameter.

11.4.2.6 ProbabilityInterval (from ProbabilisticTiming)

Generalizations

None

Description

The attribute probabilityValue is the probability for the interval from lowerLimit
to upperLimit.

Attributes

 probabilityValue : Float [1]

Associations

 lowerLimit : TimingExpression [1]

 upperLimit : TimingExpression [1]

Constraints

No additional constraints

11.4.2.7 TimeDistribution (from ProbabilisticTiming) {abstract}

Generalizations

 EAElement (from Elements)

Description

The abstract concept of distributions in time, see the concrete
specializations.

Deliverable D11 Version 1.2 113

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

11.4.2.8 UniformDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

A Uniform distribution.

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

11.4.2.9 WeaklyHardDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

The timing constraints defined in TADL2 are strongly-hard in the sense that
they must hold for each occurrence of some designated event. For example,
the DelayConstraint requires that for each occurrence of the source event,
there is at least one occurrence of the target event within a fixed interval
relative to the source. It only takes one absent response occurrence to
render the whole DelayConstraint violated.

In many situations, a system may in fact work correctly even if a strongly-
hard constraint is not satisfied for a bounded number of occurrences.
Therefore, TADL2 generalizes the concept of weakly-hard constraints (which
was originally introduced for describing allowed deadline misses) to formalize
scenarios in which a bounded number of occurrences are allowed to violate
the constraint requirements.

Attributes

 k : Integer [1]

 m : Integer [1]

Associations

No additional associations

Constraints

Deliverable D11 Version 1.2 114

No additional constraints

Semantics

The semantics of a weakly-hard expression (m, k) is that the behavior must
satisfy the given constraint at least m times out of k consecutive
occurrences.

11.4.2.10 WeibullDistribution (from ProbabilisticTiming)

Generalizations

 TimeDistribution (from ProbabilisticTiming)

Description

A Weibull distribution, defined only for positive values. To evaluate the
probability density from this distribution the argument shall be in the universal
timebase, to correspond to the float parameters of this distribution.

Attributes

 location : Float [1]

 scale : Float [1]

 shape : Float [1]

Associations

No additional associations

Constraints

No additional constraints

Deliverable D11 Version 1.2 115

12 Appendix C – Relationships

Relationships between TADL2 and the AUTOSAR Timing Extension
[4], and the EAST-ADL Timing package [3] are described. This is to
facilitate the transformation of existing models and describe the
differences between the metamodels. TADL1 has been integrated in
EAST-ADL, for comparison between TADL2 and TADL1 see the
comparison with EAST-ADL.

12.1 Relation to AUTOSAR 4.0.3 Timing Extension

AR.PeriodicEventTriggering
 (event, period, jitter, minimumInterArrivalTime)



PeriodicConstraint
 (event, period, jitter, minimumInterArrivalTime)

AR.SporadicEventTriggering
 (event, period, maximumInterArrivalRate, jitter,
 minimumInterArrivalRate)



SporadicConstraint
 (event, period, maximumInterArrivalTime, jitter,
 minimumInterArrivalTime)

AR.ConcretePatternEventTriggering
 (event, offset1, …, offsetn, patternLength)



PatternConstraint
 (event, patternLength, offset1, …, offsetn, 0)

Note: The AR.ConcretePatternEventTriggering constraint lacks a
jitter attribute, which is here by default interpreted as a tolerated jitter
of 0.

AR.BurstPatternEventTriggering
 (event, patternLength, maxNumberOfOccurrences,
 minimumInterArrivalTime)



BurstConstraint
 (event, patternLength, maxNumberOfOccurrences,
 minimumInterArrivalTime)

Deliverable D11 Version 1.2 116

AR.ArbitraryEventTriggering
 (event, minimumDistance1, …, minimumDistancen,
 maximumDistance1, …, maximumDistancen, confidenceInterval)



ArbitraryConstraint
 (event, minimumDistance, maximumDistance)

Note: the AR.ArbitraryEventTriggering constraint attribute
confidenceInterval is ignored in this translation. For further
discussions on the use of probablistic distributions in TADL2, see
chapter 6

AR.LatencyTimingConstraint (scope, minimum, maximum, reaction
)



ReactionConstraint (scope, minimum, maximum)

Note: the nominal attribute of an AR.LatencyTimingConstraint is
ignored in the TADL2 translation, as it plays no role in the semantics
of an AR.LatencyTimingConstraint.

AR.LatencyTimingConstraint (scope, minimum, maximum, age)



AgeConstraint (scope, minimum, maximum)

Note: the nominal attribute of an AR.LatencyTimingConstraint is
ignored in the TADL2 translation, as it plays no role in the semantics
of an AR.LatencyTimingConstraint.

AR.SynchronizationTimingConstraint

 (scope1, …, scopen, tolerance, responseSynchronization)



OutputSynchronizationConstraint
 (scope1, …, scopen, tolerance)

AR.SynchronizationTimingConstraint

 (scope1, …, scopen, tolerance, stimulusSynchronization)



Deliverable D11 Version 1.2 117

InputSynchronizationConstraint
 (scope1, …, scopen, tolerance)

AR.OffsetTimingConstraint (source, target, minimum, maximum)



DelayConstraint (source, target, minimum, maximum)

AR.ExecutionOrderConstraint
 (orderedElement1, …, orderedElementn)



OrderConstraint
 (orderedElement1.triggerEvent, orderedElement2.triggerEvent)

 … 

OrderConstraint
 (orderedElementn-1.triggerEvent, orderedElementn.triggerEvent)

Note: which exact event that constitutes the triggerEvent for each
orderedElement is dependent on the type of element entity
referenced.

12.1.1 Comparison

Generally

 Time values are typed by TimingExpression in TADL2, in
AUTOSAR these are typed by MultidimensionalTime.

 The TADL2 generalizes the notion of AUTOSAR Timing
DescriptionEvent and TimingDescriptionEventChain; and the
notion of EAST-ADL Events and EventChain by the
metamodel elements Event and EventChain. The specific
AUTOSAR and EAST-ADL Events are referenced via the
specializations AUTOSAREvent and EASTADLEvent.

New concepts in TADL2 as alignment with AUTOSAR are:

 BurstConstraint

 OrderConstraint

TADL2 AUTOSAR Timing R4.0.3 Notes

Event (from TADL2) {abstract} TimingDescriptionEvent (from

TimingDescription) {abstract}

Generalizations Generalizations

TimingDescription (from TADL2) TimingDescription (from TimingDescription)

Attributes Attributes

Deliverable D11 Version 1.2 118

Associations Associations

 occurrenceExpression :
TDEventOccurrenceExpression [0..1]

EventChain (from TADL2) TimingDescriptionEventChain

(from TimingDescription)

Generalizations Generalizations

TimingDescription (from TADL2) TimingDescription (from TimingDescription)

Attributes Attributes

Associations Associations

segment : EventChain [*] {ordered} segment : TimingDescriptionEventChain [1..*]

response : Event [1] response : TimingDescriptionEvent [1]

stimulus : Event [1] stimulus : TimingDescriptionEvent [1]

TimingConstraint (from TADL2)
{abstract}

TimingConstraint (from
TimingConstraint) {abstract}

Generalizations Generalizations

EAElement (from Elements) Identifiable (from Identifiable)

 Traceable (from RequirementsTracing)

Attributes Attributes

Associations Associations

mode : Mode [0..1]

DelayConstraint (from

TimingConstraints)

OffsetTimingConstraint (from

OffsetConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from TimingConstraint)

Attributes Attributes

 Associations

Associations

lower : TimingExpression [0..1] = 0 minimum : MultidimensionalTime [1]

upper : TimingExpression [0..1] = infinity maximum : MultidimensionalTime [1]

target : Event [1] target : TimingDescriptionEvent [1]

source : Event [1] source : TimingDescriptionEvent [1]

Inherited Associations

mode : Mode [0..1]

TADL2 DelayConstraint is based on AUTOSAR.

 LatencyConstraintTypeEnum (from

LatencyTimingConstraint)

«enumeration»

 Generalizations

 Enumeration Literals

 age

 reaction

 Associations

AgeConstraint (from

TimingConstraints)

AgeConstraint (from

AgeConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from TimingConstraint)

Deliverable D11 Version 1.2 119

Attributes Attributes

Associations Associations

scope : EventChain [1] scope : TDEventVariableDataPrototype [1] 2

minimum : TimingExpression [0..1] = 0 minimum : MultidimensionalTime [0..1] 3

maximum : TimingExpression [0..1] = infinity maximum : MultidimensionalTime [0..1] 3

Inherited Associations

mode : Mode [0..1]

ReactionConstraint (from

TimingConstraints)

LatencyTimingConstraint (from

LatencyTimingConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from TimingConstraint)

Attributes Attributes

Associations latencyConstraintType :
LatencyConstraintTypeEnum [1]

 Associations

scope : EventChain [1] scope : TimingDescriptionEventChain [1] 2

minimum : TimingExpression [0..1] = 0 minimum : MultidimensionalTime [1] 3

maximum : TimingExpression [0..1] = infinity maximum : MultidimensionalTime [1] 3

 nominal : MultidimensionalTime [1] 4

Inherited Associations

mode : Mode [0..1]

PatternConstraint (from

TimingConstraints)

ConcretePatternEventTriggering

(from EventTriggeringConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) EventTriggeringConstraint (from
EventTriggeringConstraint)

Attributes Attributes

Associations Associations

minimum : TimingExpression [0..1] = 0 patternLength : MultidimensionalTime [1]

jitter : TimingExpression [0..1] = 0 4

offset : TimingExpression [1..*] offset : MultidimensionalTime [1..*] 2

 Inherited Associations

event : Event [1] event : TimingDescriptionEvent [1] 2

ref : Event [1]

Inherited Associations

mode : Mode [0..1]

PeriodicConstraint (from

TimingConstraints)

PeriodicEventTriggering (from

EventTriggeringConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) EventTriggeringConstraint (from
EventTriggeringConstraint)

Attributes Attributes

Associations Associations

jitter : TimingExpression [0..1] = 0 jitter : MultidimensionalTime [1]

period : TimingExpression [1] period : MultidimensionalTime [1]

minimum : TimingExpression [0..1] = 0 minimumInterArrivalTime :
MultidimensionalTime [1]

 Inherited Associations

event : Event [1] event : TimingDescriptionEvent [1] 2

Inherited Associations

mode : Mode [0..1]

Deliverable D11 Version 1.2 120

SporadicConstraint (from

TimingConstraints)

SporadicEventTriggering (from

EventTriggeringConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) EventTriggeringConstraint (from
EventTriggeringConstraint)

Attributes Attributes

Associations Associations

jitter : TimingExpression [0..1] = 0 jitter : MultidimensionalTime [0..1]

 period : MultidimensionalTime [0..1]

 maximumInterArrivalTime :
MultidimensionalTime [1]

minimum : TimingExpression [0..1] = 0 minimumInterArrivalTime :
MultidimensionalTime [1]

upper : TimingExpression [0..1] = infinity

lower : TimingExpression [0..1] = 0

 Inherited Associations

event : Event [1] event : TimingDescriptionEvent [1] 2

Inherited Associations

mode : Mode [0..1]

 SynchronizationTypeEnum (from

SynchronizationTimingConstraint)

«enumeration»

 Generalizations

 Enumeration Literals

 responseSynchronization

 stimulusSynchronization

 Associations

InputSynchronizationConstraint

(from TimingConstraints)

SynchronizationTimingConstraint

(from

SynchronizationTimingConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from TimingConstraint)

Attributes Attributes

 synchronizationConstraintType :
SynchronizationTypeEnum [1]

Associations Associations

tolerance : TimingExpression [0..1] = infinity tolerance : MultidimensionalTime [1]

scope : Event [2..*] scope : TimingDescriptionEventChain [2..*]

Inherited Associations

mode : Mode [0..1]

New concept in TADL2 aligned with AUTOSAR concept with

synchronizationConstraintType = stimulusSynchronization.

OutputSynchronizationConstraint

(from TimingConstraints)

SynchronizationTimingConstraint

(from

SynchronizationTimingConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from TimingConstraint)

Attributes Attributes

Deliverable D11 Version 1.2 121

 synchronizationConstraintType :
SynchronizationTypeEnum [1]

Associations Associations

tolerance : TimingExpression [0..1] = infinity tolerance : MultidimensionalTime [1]

scope : EventChain [2..*] scope : TimingDescriptionEventChain [2..*]

Inherited Associations

mode : Mode [0..1]

New concept in TADL2 aligned with AUTOSAR concept with

synchronizationConstraintType = responseSynchronization.

 EOCExecutableEntityRef (from

ExecutionOrderConstraint)

 Generalizations

 Identifiable (from Identifiable)

 Attributes

 Associations

 executable : ExecutableEntity [1]

 component :
ComponentInCompositionInstanceRef [0..1]

 successor : EOCExecutableEntityRef [0..*]

OrderConstraint (from

TimingConstraint)

ExecutionOrderConstraint (from

ExecutionOrderConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from TimingConstraint)

Attributes Attributes

Associations Associations

target : Event [1] orderedElement : EOCExecutableEntityRef
[2..*]

source : Event [1]

Inherited Associations

mode : Mode [0..1]

New concept in TADL2 aligned with AUTOSAR concept.

 EventTriggeringConstraint (from
EventTriggeringConstraint)
{abstract}

 Generalizations

 TimingConstraint (from TimingConstraint)

 Attributes

 Associations

 event : TimingDescriptionEvent [1]

 ConfidenceInterval (from

EventTriggeringConstraint)

 Generalizations

 Attributes

 propability : Float [1]

 Associations

 lowerBound : MultidimensionalTime [1]

 upperBound : MultidimensionalTime [1]

Deliverable D11 Version 1.2 122

ArbitraryConstraint (from

TimingConstraints)

ArbitraryEventTriggering (from

EventTriggeringConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) EventTriggeringConstraint (from
EventTriggeringConstraint)

Attributes Attributes

Associations Associations

minimum : TimingExpression [1..*] minimumDistance : MultidimensionalTime
[1..*]

maximum : TimingExpression [1..*] maximumDistance : MultidimensionalTime
[1..*]

 confidenceInterval : ConfidenceInterval [0..*] 1

 Inherited Associations

event : Event [1] event : TimingDescriptionEvent [1] 2

Inherited Associations

mode : Mode [0..1]

BurstConstraint (from

TimingConstraints)

BurstPatternEventTriggering (from

EventTriggeringConstraint)

Generalizations Generalizations

TimingConstraint (from TADL2) EventTriggeringConstraint (from
EventTriggeringConstraint)

Attributes Attributes

maxOccurences : int [1] maxNumberOfOccurrences : PositiveInteger
[1]

 minNumberOfOccurrences : PositiveInteger
[0..1]

Associations Associations

length : TimingExpression [1] patternLength : MultidimensionalTime [1]

minimum : TimingExpression [0..1] = 0 minimumInterArrivalTime :
MultidimensionalTime [1]

 patternPeriod : MultidimensionalTime [0..1]

 patternJitter : MultidimensionalTime [0..1]

 Inherited Associations

event : Event [1] event : TimingDescriptionEvent [1]

Inherited Associations

mode : Mode [0..1]

New concept in TADL2, based on AUTOSAR.

Notes relationships to AUTOSAR 4 Timing Extension

These notes are referred from the table by number.

1 Compare TADL2 Probabilistic Timing.

2 Multiplicity aligned.

3 Name aligned.

4 See semantics of TADL2.

Deliverable D11 Version 1.2 123

12.2 Relationship to EAST-ADL

As described in the introduction we compare the constraints in
TADL2 with the constraints in the current EAST-ADL Timing
package.

General changes:

 Time values are typed by TimingExpression instead of
TimeDuration.

New concepts in TADL2 are:

 BurstConstraint

 RepetitionConstraint

 ExecutionTimeConstraint

 OrderConstraint

 StrongDelayConstraint

 TimingExpression, see chapter 5 and section 11.3.

 Probabilistic Timing Constraints, see chapter 6 and section
11.4.

TADL2 EAST-ADL Timing Note

Event (from TADL2) {abstract} Event (from Timing) {abstract}

Generalizations Generalizations

TimingDescription (from TADL2) TimingDescription (from Timing)

Attributes Attributes

 isStateChange : Boolean = true [1] 12

Associations Associations

EventChain (from TADL2) EventChain (from Timing)

Generalizations Generalizations

TimingDescription (from TADL2) TimingDescription (from Timing)

Attributes Attributes

Associations Associations

segment : EventChain [*] {ordered} segment : EventChain [*] {ordered}

response : Event [1] response : Event [1..*] 5

stimulus : Event [1] stimulus : Event [1..*] 5

 strand : EventChain [*] 13

TimingConstraint (from TADL2)
{abstract}

TimingConstraint (from Timing)
{abstract}

Generalizations Generalizations

EAElement (from Elements) EAElement (from Elements)

Attributes Attributes

Associations Associations

mode : Mode [0..1] mode : Mode [*]

 upper : TimeDuration [0..1] 12

 lower : TimeDuration [0..1] 12

Deliverable D11 Version 1.2 124

 EventConstraint (from
TimingConstraints) {abstract}

 Generalizations

 TimingConstraint (from Timing)

 Attributes

 Associations

 offset : TimeDuration [0..1]

 event : Event [0..1]

 Inherited Associations

 mode : Mode [*]

 upper : TimeDuration [0..1]

 lower : TimeDuration [0..1]

The abstract concept EventConstraint has been removed

DelayConstraint (from

TimingConstraints)

DelayConstraint (from
TimingConstraints) {abstract}

Generalizations Generalizations

TimingConstraint (from TADL2) TimingConstraint (from Timing)

Attributes Attributes

Associations Associations

lower : TimingExpression [0..1] = 0 lower : TimeDuration [0..1] 3

upper : TimingExpression [0..1] = infinity upper : TimeDuration [0..1] 3

 jitter : TimeDuration [0..1] 15

 nominal : TimeDuration [0..1] 15

 scope : EventChain [0..1] 14

target : Event [1] 1

source : Event [1] 1

Inherited Associations Inherited Associations

mode : Mode [0..1] mode : Mode [*]

DelayConstraint is now not abstract, it has target and source Event relationships instead of a

scope EventChain.

AgeConstraint (from TimingConstraints) AgeTimingConstraint (from

TimingConstraints)

10

Generalizations Generalizations

TimingConstraint (from TADL2) DelayConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

 Inherited Associations

scope : EventChain [1] scope : EventChain [0..1] 7

minimum : TimingExpression [0..1] = 0 lower : TimeDuration [0..1] 8

maximum : TimingExpression [0..1] = infinity upper : TimeDuration [0..1] 8

 jitter : TimeDuration [0..1] 15

 nominal : TimeDuration [0..1] 15

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

Deliverable D11 Version 1.2 125

ReactionConstraint (from

TimingConstraints)

ReactionConstraint (from

TimingConstraints)

Generalizations Generalizations

TimingConstraint (from TADL2) DelayConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

 Inherited Associations

scope : EventChain [1] scope : EventChain [0..1] 7

minimum : TimingExpression [0..1] = 0 lower : TimeDuration [0..1] 8

maximum : TimingExpression [0..1] = infinity upper : TimeDuration [0..1] 8

 jitter : TimeDuration [0..1] 15

 nominal : TimeDuration [0..1] 15

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

PatternConstraint (from

TimingConstraints)

PatternEventConstraint (from

TimingConstraints)

10

Generalizations Generalizations

TimingConstraint (from TADL2) EventConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

period : TimingExpression [1] = 0 period : TimeDuration [1]

minimum : TimingExpression [0..1] = 0 minimumInterArrivalTime : TimeDuration [1] 9

 occurrence : TimeDuration [1..*] {ordered} 15

jitter : TimingExpression [0..1] = 0 jitter : TimeDuration [1] 3

 Inherited Associations

offset : TimingExpression [1..*] offset : TimeDuration [0..1] 6

event : Event [1] event : Event [0..1] 7

ref : Event [1] 2

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

 upper : TimeDuration [0..1] 15

 lower : TimeDuration [0..1] 15

PeriodicConstraint (from

TimingConstraints)

PeriodicEventConstraint (from

TimingConstraints)

10

Generalizations Generalizations

TimingConstraint (from TADL2) EventConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

jitter : TimingExpression [0..1] = 0 jitter : TimeDuration [1] 3

period : TimingExpression [1] period : TimeDuration [1]

minimum : TimingExpression [0..1] = 0 minimumInterArrivalTime : TimeDuration [1] 9

 Inherited Associations

 offset : TimeDuration [0..1] 15

event : Event [1] event : Event [0..1] 7

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

 upper : TimeDuration [0..1] 15

 lower : TimeDuration [0..1] 15

Deliverable D11 Version 1.2 126

SporadicConstraint (from

TimingConstraints)

SporadicEventConstraint (from

TimingConstraints)

10

Generalizations Generalizations

TimingConstraint (from TADL2) EventConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

jitter : TimingExpression [0..1] = 0 jitter : TimeDuration [0..1] 3

 period : TimeDuration [1] 15

 maximumInterArrivalTime : TimeDuration
[0..1]

15

minimum : TimingExpression [0..1] = 0 minimumInterArrivalTime : TimeDuration [1] 9

upper : TimingExpression [0..1] = infinity upper : TimeDuration [0..1] 3

lower : TimingExpression [0..1] = 0 lower : TimeDuration [0..1] 3

 Inherited Associations

 offset : TimeDuration [0..1] 15

event : Event [1] event : Event [0..1] 7

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

InputSynchronizationConstraint (from

TimingConstraints)

InputSynchronizationConstraint

(from TimingConstraints)

Generalizations Generalizations

TimingConstraint (from TADL2) AgeTimingConstraint (from
TimingConstraints)

Attributes Attributes

Associations Associations

tolerance : TimingExpression [0..1] = infinity width : TimeDuration [1] 8

 Inherited Associations

scope : Event [2..*] scope : EventChain [0..1] 5

 lower : TimeDuration [0..1] 15

 upper : TimeDuration [0..1] 15

 jitter : TimeDuration [0..1] 15

 nominal : TimeDuration [0..1] 15

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

OutputSynchronizationConstraint (from

TimingConstraints)

OutputSynchronizationConstraint

(from TimingConstraints)

Generalizations Generalizations

TimingConstraint (from TADL2) ReactionConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

tolerance : TimingExpression [0..1] = infinity width : TimeDuration [1] 8

 Inherited Associations

scope : Event [2..*] scope : EventChain [0..1] 5

 lower : TimeDuration [0..1] 15

 upper : TimeDuration [0..1] 15

 jitter : TimeDuration [0..1] 15

 nominal : TimeDuration [0..1] 15

Deliverable D11 Version 1.2 127

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

 PrecedenceConstraint (from

Timing)

 Generalizations

 TimingConstraint (from Timing)

 Attributes

 Associations

 Dependencies

 successive : FunctionPrototype [1..*]

 «instanceRef»

 preceding : FunctionPrototype [1]

 «instanceRef»

Not included in TADL2, do not reference Events.

ArbitraryConstraint (from

TimingConstraints)

ArbitraryEventConstraint (from

TimingConstraints)

10

Generalizations Generalizations

TimingConstraint (from TADL2) EventConstraint (from TimingConstraints) 11

Attributes Attributes

Associations Associations

minimum : TimingExpression [1..*] minimumInterArrivalTime : TimeDuration
[1..*]

10

maximum : TimingExpression [1..*] maximumInterArrivalTime : TimeDuration
[1..*]

10

 Inherited Associations

 offset : TimeDuration [0..1] 15

event : Event [1] event : Event [0..1] 7

Inherited Associations

mode : Mode [0..1] mode : Mode [*]

 upper : TimeDuration [0..1] 15

 lower : TimeDuration [0..1] 15

Notes Relationships to EAST-ADL

These notes are referred from the table by number.

1 Added

2 Added, see semantics of TADL2.

3 Default value added.

4 Multiplicity changed and default value added.

5 Multiplicity changed, alignment with AUTOSAR.

6 Multiplicity changed, see semantics of TADL2.

7 Multiplicity changed.

8 Name changed due to AUTOSAR alignment, multiplicity changed,
default value added.

9 Name changed, default value added.

Deliverable D11 Version 1.2 128

10 Name changed.

11 New specialization of abstract concept.

12 Removed from this abstract concept.

13 Removed, alignment with AUTOSAR.

14 Removed, replaced by target and source Events.

15 Removed, see semantics of TADL2.

