
  
 

 

D2.2: MIRAI ML/AI Algorithms And Data-Mining 
Models Specification And Design 

Work Package WP2 
Dissemination level Public 
Status Final 
Date 31/05/2022 
Deliverable leader Nicolás González-Deleito (Sirris) 
Potential Contributors Macq, Shayp, ISEP, UPORTO, Eliar, Enforma, BTH 

  



 
D2.2: MIRAI ML/AI algorithms and data-mining models specification and design 
 

2 of 14 
 

Contributors 

 

Reviewers 

 

Document History 

  

Name Organization 
Nicolás González-Deleito Sirris 
Sarah Klein Sirris 
Mustafa Çom Eliar 
Pedro Santos ISEP 
Ricardo Morla U.Porto 
Sreeraj Rajendran Sirris 
Sena Çağlar, Burak Ketmen  Enforma 

Name Organization 
Joana Sousa NOS 
Sena Çağlar Enforma 

Date Main changes Name 
08-03-2022 Initial draft Nicolás González-Deleito 
13-05-2022 Contributions to sections 3.2.3, 3.2.5, 3.4.1 Sarah Klein 
17-05-2022 Document review Nicolás González-Deleito 
23-05-2022 Contribution to section 3.2.4 Sreeraj Rajendran 
23-05-2022 Added conclusion Nicolás González-Deleito 
23-05-2022 Reviewed deliverable (first iteration) Joana Sousa 
30-05-2022 Reviewed deliverable (first iteration) Sena Çağlar 



 
D2.2: MIRAI ML/AI algorithms and data-mining models specification and design 
 

3 of 14 
 

Table of Contents 
Table of Contents 3 
Abbreviations 4 
1. Executive Summary 5 
2. Introduction 6 
3. Detailed descriptions of techniques and models 7 

3.1. Data preprocessing 7 
3.2. Computations at the edge 7 
3.3. Distributed AI 12 
3.4. Security and privacy 13 

4. Conclusion 14 
 
  



 
D2.2: MIRAI ML/AI algorithms and data-mining models specification and design 
 

4 of 14 
 

Abbreviations 
ML Machine Learning 
UC Use Case 
UC1 Use case 1: Distributed renewable energy systems (UC owner: 3E) 
UC2 Use case 2: Secure Internet provisioning (UC owner: NOS) 
UC3 Use case 3: Traffic management (UC owner: Macq) 
UC4 Use case 4: Water management (UC owner: Shayp) 

UC5 Use case 5: Continuous auto configuration of industrial controllers at edge (UC 
owner: Eliar & Enforma) 
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1. Executive Summary 
This deliverable describes the relevant techniques and models resulting from the research activities in 
T2.2 and T2.3. The results presented in this first iteration of this deliverable include the work done up 
to M18. A second (and final) iteration is planned at M24. 
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2. Introduction 
The present deliverable provides a detailed description of the different machine learning and data 
mining techniques considered in MIRAI, and of the different distributed/composable decision making 
models for scaling computations horizontally and vertically in edge computing environments. While 
the former techniques are studied in T2.2, the latter are examined in T2.3. As such, this deliverable 
provides a detailed description of the techniques and models resulting from both tasks. 
D2.2 builds upon D2.1, which provided an overview of the state-of-the-art techniques relevant to the 
5 different use cases considered in the project. Based on a study of the requirements at the level of 
distributed intelligence for each of these 5 use cases, D2.1 identified 11 relevant state-of-the-art areas, 
organized in 4 different domains. These are summarized in the following table: 

Domain State-of-the-art area 

Data preprocessing Distributed and multi-modal data fusion at the edge 

Computations at the edge Prediction at the edge 

(Distributed) feature extraction at the edge 

Anomaly detection at the edge 

Context understanding at the edge 

Compression of time series data at the edge 

Distributed AI Federated learning 

Transfer learning 

Distributing computations among edge nodes 

Security and privacy Privacy-preserving learning techniques 

Secure data sharing 

D2.2 is organized around these state-of-the-art areas and domains. For each area, the relevant 
techniques and models resulting from T2.2 and T2.3 and described in the corresponding subsection of 
section 3. 
This first version of D2.2 describes the results up to M18. A second version of this deliverable will be 
issued at M24. The actual implementations of the described techniques and models are provided in 
D2.3. 
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3. Detailed descriptions of techniques and models 
This section describes the relevant techniques and models resulting from T2.2 and T2.3, up to M18 
and following the state-of-the-art domains and areas identified in D2.1, through the following 
template: 

Technique/model name A one-line name for the technique/model 
Partner(s) The list of project partners working on this technique/model 
Context A brief description of the relevant context in which this 

technique/model is situated/applies 
Description A detailed description of the technique/model 
Status A short description of the current status in the context of MIRAI and of 

any current relevant limitation/constraint and future extension until 
M24 

 

3.1. Data preprocessing 
3.1.1. Distributed and multi-modal data fusion at the edge 

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be 
covered at the second iteration of this deliverable, at M24. 

3.2. Computations at the edge 
3.2.1. Prediction at the edge 

Technique/model name The Holt-Winters seasonal method 
Partner(s) Eliar, Enforma 
Context Time series prediction for steam data 
Description The Holt-Winters seasonal method comprises the forecast equation 

and three smoothing equations — one for the level ℓt, one for the 
trend bt, and one for the seasonal component st, with corresponding 
smoothing parameters α, β∗ and γ. In our use case, the frequency of 
steam data is one second. Higher frequency time series often exhibit 
more complicated seasonal patterns. Data that are observed every 
second have minute seasonality. We see the frequency of seasonality 
in 40-minutes for steam data. The seasonal period is  
 m=2400, and the appropriate unit of time for h is in seconds. 
 
There are two variations to this method that differ in the nature of the 
seasonal component. The additive method is preferred when the 
seasonal variations are roughly constant through the series, while the 
multiplicative method is preferred when the seasonal variations are 
changing proportional to the level of the series. The multiplicative 
method model was more effective at predicting steam data. The 
component form for the additive method is: 

yt+h|t=ℓt+hbt+st+h−m(k+1) 

ℓt=α(yt−st−m)+(1−α)(ℓt−1+bt−1) 

bt=β∗(ℓt−ℓt−1)+(1−β∗)bt−1 

st=γ(yt−ℓt−1−bt−1)+(1−γ)st−m 
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Status Implemented in Python using statsmodels module, tested on 
historical data. 

 
Technique/model name Random Forest regressor & sliding window for time series data  
Partner(s) Eliar, Enforma 
Context Time series prediction for steam data 
Description Machine learning methods like deep learning can be used for time 

series forecasting. Given a sequence of numbers for a time series 
dataset, we can restructure the data to look like a supervised learning 
problem. We can do this by using previous time steps as input variables 
and use the next time step as the output variable. This method is called 
a sliding window, as the window of inputs and expected outputs is 
shifted forward through time to create new “samples” for a supervised 
learning model. 
  
We use the shift() function in Python Pandas to automatically create 
new framings of time series problems given the desired length of input 
and output sequences. All variates in the time series can be shifted 
forward or backward to create multivariate input and output 
sequences. This permits not only classical X -> y prediction, but also X -
> Y where both input and output can be sequences. The function that 
transforms time series data takes three important arguments: 

• data: Sequence of observations as a list or 2D NumPy array. 
• n_in: Number of lag observations as input (X). Values may be 

between [1..len(data)]. 
• n_out: Number of observations as output (y). Values may be 

between [0..len(data)-1]. 
After transforming our historical time series data, we achieved 
successful results in the Random Forest Regressor model for prediction. 
However, other regression algorithms can be used after the sliding 
window process.  

Status Implemented in Python using scikit-learn library, tested on historical 
data. 

 

3.2.2. (Distributed) feature extraction at the edge 

Technique/model name Least-squares-based parameter identification 
Partner(s) Eliar, Enforma 
Context The least-squares can be used for parameter identification of 

corresponding models by using real process data. 
Description To be able to identify the parameters of a pre-specified process model 

such as first order plus time delay (FOPTD), the least-squares can be 
utilized because it is easy to implement and ensures satisfactory 
identifications. Discrete time domain representation of the 
aforementioned process model is given as: 

𝑦[𝑘 + 1] = 𝑦[𝑘] + 𝑇 (−𝑏𝑦[𝑘] +  𝑎𝑢[𝑘]) 
where 𝑘,  𝑎,  𝑏,  𝑢,  𝑇 and 𝑦 represent the discrete time index, the model 
gain, the model time constant, the control input, the sampling period 
and the process output, respectively. 𝑎 and 𝑏 are identified by using the 
least-squares equations that are given as: 
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These parameters will represent heating performances for UC5 and will 
be used for PID controller parameter tunings. 

Status Implemented in Python, tested and verified. Currently running in the 
local cloud. 

 
Technique/model name Controller performance assessments 
Partner(s) Eliar, Enforma 
Context Some statistical metrics and an exclusively designed metric are used to 

assess controller performance. 
Description To be able to assess controller performance, the use of some metrics is 

necessary. These metrics can be not only already defined statistical 
metrics but also exclusively designed metrics. Firstly, the manipulated 
variable of the control system is collected in an array as follows: 

𝑦[𝑘], 𝑘 = 1,2, … , 𝑛 
where 𝑘 is the discrete time index and 𝑛 is the total control time. 
Afterwards, corresponding metrics are calculated as follows: 

𝑂𝑉 = max(𝑦[𝑘] − 𝑆𝑃[𝑘]) 

𝑀𝐴𝐸  =
 ∑ |𝑦[𝑘] − 𝑆𝑃[𝑘]|!

"#$
𝑛

  

𝑀𝑆𝐸  =
 ∑ |𝑦[𝑘] − 𝑆𝑃[𝑘]|%!

"#$
𝑛

  

𝑆  = 100B1 −
  ∑ |𝑦[𝑘] − 𝑆𝑃[𝑘]|!

"#$
10𝑛

 C% 

where 𝑆𝑃[𝑘], 𝑂𝑉,𝑀𝐴𝐸,𝑀𝑆𝐸 and 𝑆 represent the set point at instant 
𝑘, the overshoot, the mean absolute error, the mean squared error and 
the exclusively designed success percentage metric, respectively. These 
metrics will be used for controller performance assessments and PID 
controller parameter tunings. 

Status Implemented in Python, tested and verified. Currently running in the 
local cloud. 

 

3.2.3. Anomaly detection at the edge 

Technique/model name Compression-based anomaly detection 
Partner(s) Shayp, Sirris 
Context The compression-based anomaly detection can be used for time series 

data with specific patterns that indicate the anomaly. 
Description The general approach identifies anomalies represented by specific 

patterns in univariate time series data by comparing two different 
compression results across a rolling time window. For this, one of the 
compression methods should lead to size inflation in case of an anomaly. 
For the leakage detection (UC4), the string lengths of a purely Fibonacci-
encoded and of a combined run-length and Fibonacci-encoded water 
consumption pulse pattern are used (cf. section 3.2.5). In case of a 
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leakage, the compression based on run-length encoding leads to a 
length inflation. By using a simple thresholding, a binary variable 
indicates a critical inflation and by that a leakage. This threshold can be 
building-type specific. 

Status Implemented in Python, tested on historical data. To be implemented in 
C for validation in edge device. 

 
Technique/model name Ensemble anomaly detection method 
Partner(s) U.Porto/ISEP, NOS 
Context Identify IoT and anomalous network traffic. 
Description An ensemble method (a collection of various ‘weak classifiers’) is used 

to identify anomalies in network traffic. 
The ensemble strategy is bagging (as opposed to boosting): the output 
of the weak classifiers is combined to produce a final prediction. 
The ‘weak classifier’ methods are: 

• Local Outlier Filter (LOF): Unsupervised anomaly detection 
method that computes the local density deviation of a given 
data point with respect to its neighbors. It considers as outliers 
the samples that have a substantially lower density than their 
neighbors. 

• Support Vector Machine (SVM): Different linear classifiers can 
produce a multitude of boundaries to discriminate two classes. 
SVMs try to select a decision boundary for which the margin 
between data points of different classes is maximized. In our 
case, we are using a One-Class SVM. 

• Elliptic envelope: Creates an elliptical area around a given 
dataset. Values inside the envelope are considered normal data 
and anything outside the envelope is returned as outliers. This 
algorithm works best if data has a Gaussian distribution. 

The combination method is the majority rule. 
Status Implemented in Python, tested on publicly available datasets and 

datasets shared by NOS. Refinement continues. 
 

3.2.4. Context understanding at the edge 

Technique/model name Re-identification of vehicles at the edge 
Partner(s) Macq, Sirris 
Context Identifying same vehicle across different cameras is an integral part of 

context understanding. 
Description Reidentification of vehicles across cameras is performed in two steps. 

Advanced deep learning models are used in both steps to achieve state-
of-the-art performance. First, vehicles are detected from the camera 
feeds using a YOLO v4 model. At the second step, abstract features of 
the detected vehicles are generated using a Squeeze-and-Excitation 
Network with 101 layers. The model is pretrained on ImageNet for 
classification and further finetuned on the Cityflow dataset. The model 
is further adapted with early exits, at three different depths of the 
model, to improve its inference performance at the edge. The extracted 
features (512 features) from images are ranked after computing a dot 
product with the query image vectors. As only these abstract features 
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leave the cameras, the reidentification model provides a basic guarantee 
to protect privacy of vehicle users. 

Status Implemented in Python using Pytorch, tested on both Cityflow and two-
camera datasets from Macq. The YOLO and the reidentification models 
should be ported to Macq’s edge device for further validation. 

 

3.2.5. Compression of time series data at the edge 

Technique/model name Run-length encoding 
Partner(s) Sirris 
Context Encoding of univariate time series data. 
Description Compression method that is helpful for integer-based univariate time 

series data with fixed time step and long sequences without value 
changes. 
Instead of reporting a value 𝑣&  at each time 𝑡&, the number 𝑛 of 
sequential occurrences of the same value 𝑣 is reported, such that a 
sequence [𝑣$, 𝑣$, 𝑣$, 𝑣$, 𝑣$, 𝑣%, 𝑣%, 𝑣%] becomes [(5, 𝑣$), (3, 𝑣%)]. 

Status Implemented in Python. 
 

Technique/model name Fibonacci encoding 
Partner(s) Sirris 
Context Encoding of univariate time series data. 
Description Compression method that is helpful for integer-based, non-negative, 

non-monotonous univariate time series data with fixed time step. 
Instead of reporting a value 𝑣&  at time 𝑡&, the Fibonacci sequence is used 
to encode the values, similarly to a binary encoding with base 2. 
Zeckendorf’s theorem says that non-zero integer values can be written 
uniquely with the “stopword” 11 at the end1. We define that for a value 
𝑛 ≥ 0 the encoding 𝐸(𝑛 + 1) = 	𝐸(𝑓) with 𝑓 ≥ 1, in order to be able to 
encode the value “0” as well. Given the Fibonacci series 1, 1, 2, 3, 5, 8, 
13, …, and respecting the end “stopword”, the following sequence 
would be encoded as follows: 
[1, 0, 0, 6, 3, 0, 0, 10] 
= [1, 0, 0, (5 + 1), 3, 0, 0, (8 + 2)] (1) 
= [‘011’, ‘11’, ’11’, ‘10011’, ‘0011’, ‘11’, ‘11’, ‘00111’] (2) 
= 00111111100110011111100111 (3) 
In step (1), all numbers that are not Fibonacci numbers, hence 6 and 10, 
are replaced by the sum of Fibonacci numbers, starting from the next 
smaller one. In step (2), for each Fibonacci number (e.g. 3) or 
combination of Fibonacci numbers (e.g. 5+1), use the binary encoding 
including the “stopword”. Finally, in (3), concatenate all binary 
representations into one list of bits. 

Status Implemented in Python. 
 
 

 
1 J. Spiegel, P. Wira and G. Hermann, "A Comparative Experimental Study of Lossless Compression Algorithms 
for Enhancing Energy Efficiency in Smart Meters," 2018 IEEE 16th International Conference on Industrial 
Informatics (INDIN), 2018, pp. 447-452, doi: 10.1109/INDIN.2018.8471921 
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Technique/model name Automated time series compression selection 
Partner(s) 3E, Sirris 
Context Compression of multi-variate time series data. 
Description For high-dimensional data with high temporal resolution (𝛿𝑡), there is 

no one-size-fits-all solution for compressing data. In our approach, the 
data is sent after a fixed time step 𝑇	 ≫ 𝛿𝑡. During 𝑇, for each 
dimension, we perform the following operations (for conditional 
branching, blue means true, and orange false): 

 
* with 0 < 𝜂 < 1. 
With these remaining values per dimension, build a JSON file instead of 
CSV file, in order to only minimize the amount of duplicated information. 

Status Implemented in Python, tested on historical data. On the example data 
provided by 3E, we reach a compression factor of approximately 13. 

 

3.3. Distributed AI 
3.3.1. Federated learning 

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be 
covered at the second iteration of this deliverable, at M24. 

3.3.2. Transfer learning 

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be 
covered at the second iteration of this deliverable, at M24. 

3.3.3. Distributing computations among edge nodes 

 

Technique/model name Rule-based methods testing on distributed simulation 
Partner(s) Eliar, Enforma 
Context PID fine-tuning using steam availability and the batch/process priority. 
Description The distribution of steam to the machines depending on steam 

availability is an important issue in the control of the textile dyeing 
process. As a result, the initial parameters need to be fine-tuned based 
on the critical situations with steam and process priorities. Using rule-
based AI, this can be accomplished. However, since the real system in 
the textile factory can't be used to test the rules, the distributed 
simulation running on Docker was developed. Rule-based PID tuning 
methods assume a certain process response to obtain easy 

Identify and convert 
integer variables

Are all values equal 
within 𝑇? 

Keep single 
value

Less than 𝜂* of all samples changed 
compared to ancedent.

Apply run-length 
encoding Keep full series
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mathematical formulas that enable the tuning of a PID controller. We 
will combine steam data prediction on the edge and rule-based PID 
fine-tuning. The initial parameters will be updated for each machine as 
needed, using the best rules tested in the simulation. 

Status Implemented in Python using Docker. 

 

3.4. Security and privacy 
3.4.1. Privacy-preserving learning techniques 

Technique/model name Messaging with risk-sensitive random timing 
Partner(s) Shayp, Sirris 
Context Determination of messaging times for privacy and security-sensitive 

data. 
Description Saving energy and bandwidth of messaging and still alerting users as 

soon as possible in case of an anomaly, can lead to privacy and security 
leakages as water consumption patterns (UC4) can be deducted from 
the messaging schema itself. A possibility to overcome this is a random 
time messaging schema. In order to still alert the users as quickly as 
possible, an additional risk-sensitive layer can be added to the random 
timing. First, in case of an observed anomaly, a message is sent as soon 
as possible. In that case, the heuristic distribution derived from the 
random sending times changes in case many leakages occur. Hence, a 
curious attacker could derive from the shift in the distribution whether 
the building has a high risk of leakages. Hence, as a second step, the 
average sending time within a given time window is calculated and the 
distribution from which the sending time is drawn, is adapted 
accordingly. By this, a temporary bias to the higher sending times is 
introduced which shifts the heuristic distribution of random sending 
times back towards the desired distribution, shadowing the outlier in 
time caused by the alert. Like this, the overall heuristic distribution 
derived from the random sending times follows the same distribution as 
the imposed one without early alerting and without leakage. 

Status Implemented in Python, tested on historical data. To be implemented in 
C for validation in edge device. 

3.4.2. Secure data sharing 

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be 
covered at the second iteration of this deliverable, at M24. 
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4. Conclusion 
D2.2 provides a detailed description of the different machine learning and data mining techniques 
considered in MIRAI (resulting from T2.2), and of the different distributed/composable decision 
making models for scaling computations horizontally and vertically in edge computing environments 
(resulting from T2.3). 
The present iteration of this deliverable presents the techniques and models having been (to a large 
extent) fully explored from a research point of view up to M18, and which are currently being 
translated and further validated in the context of the different project's use cases. These techniques 
and models cover 5 out of the 11 state-of-the-art areas identified in D2.1, based on which D2.2 is 
structured. Several other techniques and models, covering these and the remaining 6 areas, are 
currently being explored by the project partners. The results will be included in the final version of this 
deliverable, planned at M24. 


