

D2.2: MIRAI ML/AI Algorithms And Data-Mining
Models Specification And Design

Work Package WP2
Dissemination level Public
Status Final
Date 31/05/2022
Deliverable leader Nicolás González-Deleito (Sirris)
Potential Contributors Macq, Shayp, ISEP, UPORTO, Eliar, Enforma, BTH

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

2 of 14

Contributors

Reviewers

Document History

Name Organization
Nicolás González-Deleito Sirris
Sarah Klein Sirris
Mustafa Çom Eliar
Pedro Santos ISEP
Ricardo Morla U.Porto
Sreeraj Rajendran Sirris
Sena Çağlar, Burak Ketmen Enforma

Name Organization
Joana Sousa NOS
Sena Çağlar Enforma

Date Main changes Name
08-03-2022 Initial draft Nicolás González-Deleito
13-05-2022 Contributions to sections 3.2.3, 3.2.5, 3.4.1 Sarah Klein
17-05-2022 Document review Nicolás González-Deleito
23-05-2022 Contribution to section 3.2.4 Sreeraj Rajendran
23-05-2022 Added conclusion Nicolás González-Deleito
23-05-2022 Reviewed deliverable (first iteration) Joana Sousa
30-05-2022 Reviewed deliverable (first iteration) Sena Çağlar

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

3 of 14

Table of Contents
Table of Contents 3
Abbreviations 4
1. Executive Summary 5
2. Introduction 6
3. Detailed descriptions of techniques and models 7

3.1. Data preprocessing 7
3.2. Computations at the edge 7
3.3. Distributed AI 12
3.4. Security and privacy 13

4. Conclusion 14

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

4 of 14

Abbreviations
ML Machine Learning
UC Use Case
UC1 Use case 1: Distributed renewable energy systems (UC owner: 3E)
UC2 Use case 2: Secure Internet provisioning (UC owner: NOS)
UC3 Use case 3: Traffic management (UC owner: Macq)
UC4 Use case 4: Water management (UC owner: Shayp)

UC5 Use case 5: Continuous auto configuration of industrial controllers at edge (UC
owner: Eliar & Enforma)

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

5 of 14

1. Executive Summary
This deliverable describes the relevant techniques and models resulting from the research activities in
T2.2 and T2.3. The results presented in this first iteration of this deliverable include the work done up
to M18. A second (and final) iteration is planned at M24.

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

6 of 14

2. Introduction
The present deliverable provides a detailed description of the different machine learning and data
mining techniques considered in MIRAI, and of the different distributed/composable decision making
models for scaling computations horizontally and vertically in edge computing environments. While
the former techniques are studied in T2.2, the latter are examined in T2.3. As such, this deliverable
provides a detailed description of the techniques and models resulting from both tasks.
D2.2 builds upon D2.1, which provided an overview of the state-of-the-art techniques relevant to the
5 different use cases considered in the project. Based on a study of the requirements at the level of
distributed intelligence for each of these 5 use cases, D2.1 identified 11 relevant state-of-the-art areas,
organized in 4 different domains. These are summarized in the following table:

Domain State-of-the-art area

Data preprocessing Distributed and multi-modal data fusion at the edge

Computations at the edge Prediction at the edge

(Distributed) feature extraction at the edge

Anomaly detection at the edge

Context understanding at the edge

Compression of time series data at the edge

Distributed AI Federated learning

Transfer learning

Distributing computations among edge nodes

Security and privacy Privacy-preserving learning techniques

Secure data sharing

D2.2 is organized around these state-of-the-art areas and domains. For each area, the relevant
techniques and models resulting from T2.2 and T2.3 and described in the corresponding subsection of
section 3.
This first version of D2.2 describes the results up to M18. A second version of this deliverable will be
issued at M24. The actual implementations of the described techniques and models are provided in
D2.3.

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

7 of 14

3. Detailed descriptions of techniques and models
This section describes the relevant techniques and models resulting from T2.2 and T2.3, up to M18
and following the state-of-the-art domains and areas identified in D2.1, through the following
template:

Technique/model name A one-line name for the technique/model
Partner(s) The list of project partners working on this technique/model
Context A brief description of the relevant context in which this

technique/model is situated/applies
Description A detailed description of the technique/model
Status A short description of the current status in the context of MIRAI and of

any current relevant limitation/constraint and future extension until
M24

3.1. Data preprocessing
3.1.1. Distributed and multi-modal data fusion at the edge

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be
covered at the second iteration of this deliverable, at M24.

3.2. Computations at the edge
3.2.1. Prediction at the edge

Technique/model name The Holt-Winters seasonal method
Partner(s) Eliar, Enforma
Context Time series prediction for steam data
Description The Holt-Winters seasonal method comprises the forecast equation

and three smoothing equations — one for the level ℓt, one for the
trend bt, and one for the seasonal component st, with corresponding
smoothing parameters α, β∗ and γ. In our use case, the frequency of
steam data is one second. Higher frequency time series often exhibit
more complicated seasonal patterns. Data that are observed every
second have minute seasonality. We see the frequency of seasonality
in 40-minutes for steam data. The seasonal period is
 m=2400, and the appropriate unit of time for h is in seconds.

There are two variations to this method that differ in the nature of the
seasonal component. The additive method is preferred when the
seasonal variations are roughly constant through the series, while the
multiplicative method is preferred when the seasonal variations are
changing proportional to the level of the series. The multiplicative
method model was more effective at predicting steam data. The
component form for the additive method is:

yt+h|t=ℓt+hbt+st+h−m(k+1)

ℓt=α(yt−st−m)+(1−α)(ℓt−1+bt−1)

bt=β∗(ℓt−ℓt−1)+(1−β∗)bt−1

st=γ(yt−ℓt−1−bt−1)+(1−γ)st−m

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

8 of 14

Status Implemented in Python using statsmodels module, tested on
historical data.

Technique/model name Random Forest regressor & sliding window for time series data
Partner(s) Eliar, Enforma
Context Time series prediction for steam data
Description Machine learning methods like deep learning can be used for time

series forecasting. Given a sequence of numbers for a time series
dataset, we can restructure the data to look like a supervised learning
problem. We can do this by using previous time steps as input variables
and use the next time step as the output variable. This method is called
a sliding window, as the window of inputs and expected outputs is
shifted forward through time to create new “samples” for a supervised
learning model.

We use the shift() function in Python Pandas to automatically create
new framings of time series problems given the desired length of input
and output sequences. All variates in the time series can be shifted
forward or backward to create multivariate input and output
sequences. This permits not only classical X -> y prediction, but also X -
> Y where both input and output can be sequences. The function that
transforms time series data takes three important arguments:

• data: Sequence of observations as a list or 2D NumPy array.
• n_in: Number of lag observations as input (X). Values may be

between [1..len(data)].
• n_out: Number of observations as output (y). Values may be

between [0..len(data)-1].
After transforming our historical time series data, we achieved
successful results in the Random Forest Regressor model for prediction.
However, other regression algorithms can be used after the sliding
window process.

Status Implemented in Python using scikit-learn library, tested on historical
data.

3.2.2. (Distributed) feature extraction at the edge

Technique/model name Least-squares-based parameter identification
Partner(s) Eliar, Enforma
Context The least-squares can be used for parameter identification of

corresponding models by using real process data.
Description To be able to identify the parameters of a pre-specified process model

such as first order plus time delay (FOPTD), the least-squares can be
utilized because it is easy to implement and ensures satisfactory
identifications. Discrete time domain representation of the
aforementioned process model is given as:

𝑦[𝑘 + 1] = 𝑦[𝑘] + 𝑇 (−𝑏𝑦[𝑘] +  𝑎𝑢[𝑘])
where 𝑘,  𝑎,  𝑏,  𝑢,  𝑇 and 𝑦 represent the discrete time index, the model
gain, the model time constant, the control input, the sampling period
and the process output, respectively. 𝑎 and 𝑏 are identified by using the
least-squares equations that are given as:

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

9 of 14

These parameters will represent heating performances for UC5 and will
be used for PID controller parameter tunings.

Status Implemented in Python, tested and verified. Currently running in the
local cloud.

Technique/model name Controller performance assessments
Partner(s) Eliar, Enforma
Context Some statistical metrics and an exclusively designed metric are used to

assess controller performance.
Description To be able to assess controller performance, the use of some metrics is

necessary. These metrics can be not only already defined statistical
metrics but also exclusively designed metrics. Firstly, the manipulated
variable of the control system is collected in an array as follows:

𝑦[𝑘], 𝑘 = 1,2, … , 𝑛
where 𝑘 is the discrete time index and 𝑛 is the total control time.
Afterwards, corresponding metrics are calculated as follows:

𝑂𝑉 = max(𝑦[𝑘] − 𝑆𝑃[𝑘])

𝑀𝐴𝐸  =
 ∑ |𝑦[𝑘] − 𝑆𝑃[𝑘]|!

"#$
𝑛

 

𝑀𝑆𝐸  =
 ∑ |𝑦[𝑘] − 𝑆𝑃[𝑘]|%!

"#$
𝑛

 

𝑆  = 100B1 −
  ∑ |𝑦[𝑘] − 𝑆𝑃[𝑘]|!

"#$
10𝑛

 C%

where 𝑆𝑃[𝑘], 𝑂𝑉,𝑀𝐴𝐸,𝑀𝑆𝐸 and 𝑆 represent the set point at instant
𝑘, the overshoot, the mean absolute error, the mean squared error and
the exclusively designed success percentage metric, respectively. These
metrics will be used for controller performance assessments and PID
controller parameter tunings.

Status Implemented in Python, tested and verified. Currently running in the
local cloud.

3.2.3. Anomaly detection at the edge

Technique/model name Compression-based anomaly detection
Partner(s) Shayp, Sirris
Context The compression-based anomaly detection can be used for time series

data with specific patterns that indicate the anomaly.
Description The general approach identifies anomalies represented by specific

patterns in univariate time series data by comparing two different
compression results across a rolling time window. For this, one of the
compression methods should lead to size inflation in case of an anomaly.
For the leakage detection (UC4), the string lengths of a purely Fibonacci-
encoded and of a combined run-length and Fibonacci-encoded water
consumption pulse pattern are used (cf. section 3.2.5). In case of a

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

10 of 14

leakage, the compression based on run-length encoding leads to a
length inflation. By using a simple thresholding, a binary variable
indicates a critical inflation and by that a leakage. This threshold can be
building-type specific.

Status Implemented in Python, tested on historical data. To be implemented in
C for validation in edge device.

Technique/model name Ensemble anomaly detection method
Partner(s) U.Porto/ISEP, NOS
Context Identify IoT and anomalous network traffic.
Description An ensemble method (a collection of various ‘weak classifiers’) is used

to identify anomalies in network traffic.
The ensemble strategy is bagging (as opposed to boosting): the output
of the weak classifiers is combined to produce a final prediction.
The ‘weak classifier’ methods are:

• Local Outlier Filter (LOF): Unsupervised anomaly detection
method that computes the local density deviation of a given
data point with respect to its neighbors. It considers as outliers
the samples that have a substantially lower density than their
neighbors.

• Support Vector Machine (SVM): Different linear classifiers can
produce a multitude of boundaries to discriminate two classes.
SVMs try to select a decision boundary for which the margin
between data points of different classes is maximized. In our
case, we are using a One-Class SVM.

• Elliptic envelope: Creates an elliptical area around a given
dataset. Values inside the envelope are considered normal data
and anything outside the envelope is returned as outliers. This
algorithm works best if data has a Gaussian distribution.

The combination method is the majority rule.
Status Implemented in Python, tested on publicly available datasets and

datasets shared by NOS. Refinement continues.

3.2.4. Context understanding at the edge

Technique/model name Re-identification of vehicles at the edge
Partner(s) Macq, Sirris
Context Identifying same vehicle across different cameras is an integral part of

context understanding.
Description Reidentification of vehicles across cameras is performed in two steps.

Advanced deep learning models are used in both steps to achieve state-
of-the-art performance. First, vehicles are detected from the camera
feeds using a YOLO v4 model. At the second step, abstract features of
the detected vehicles are generated using a Squeeze-and-Excitation
Network with 101 layers. The model is pretrained on ImageNet for
classification and further finetuned on the Cityflow dataset. The model
is further adapted with early exits, at three different depths of the
model, to improve its inference performance at the edge. The extracted
features (512 features) from images are ranked after computing a dot
product with the query image vectors. As only these abstract features

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

11 of 14

leave the cameras, the reidentification model provides a basic guarantee
to protect privacy of vehicle users.

Status Implemented in Python using Pytorch, tested on both Cityflow and two-
camera datasets from Macq. The YOLO and the reidentification models
should be ported to Macq’s edge device for further validation.

3.2.5. Compression of time series data at the edge

Technique/model name Run-length encoding
Partner(s) Sirris
Context Encoding of univariate time series data.
Description Compression method that is helpful for integer-based univariate time

series data with fixed time step and long sequences without value
changes.
Instead of reporting a value 𝑣& at each time 𝑡&, the number 𝑛 of
sequential occurrences of the same value 𝑣 is reported, such that a
sequence [𝑣$, 𝑣$, 𝑣$, 𝑣$, 𝑣$, 𝑣%, 𝑣%, 𝑣%] becomes [(5, 𝑣$), (3, 𝑣%)].

Status Implemented in Python.

Technique/model name Fibonacci encoding
Partner(s) Sirris
Context Encoding of univariate time series data.
Description Compression method that is helpful for integer-based, non-negative,

non-monotonous univariate time series data with fixed time step.
Instead of reporting a value 𝑣& at time 𝑡&, the Fibonacci sequence is used
to encode the values, similarly to a binary encoding with base 2.
Zeckendorf’s theorem says that non-zero integer values can be written
uniquely with the “stopword” 11 at the end1. We define that for a value
𝑛 ≥ 0 the encoding 𝐸(𝑛 + 1) = 	𝐸(𝑓) with 𝑓 ≥ 1, in order to be able to
encode the value “0” as well. Given the Fibonacci series 1, 1, 2, 3, 5, 8,
13, …, and respecting the end “stopword”, the following sequence
would be encoded as follows:
[1, 0, 0, 6, 3, 0, 0, 10]
= [1, 0, 0, (5 + 1), 3, 0, 0, (8 + 2)] (1)
= [‘011’, ‘11’, ’11’, ‘10011’, ‘0011’, ‘11’, ‘11’, ‘00111’] (2)
= 00111111100110011111100111 (3)
In step (1), all numbers that are not Fibonacci numbers, hence 6 and 10,
are replaced by the sum of Fibonacci numbers, starting from the next
smaller one. In step (2), for each Fibonacci number (e.g. 3) or
combination of Fibonacci numbers (e.g. 5+1), use the binary encoding
including the “stopword”. Finally, in (3), concatenate all binary
representations into one list of bits.

Status Implemented in Python.

1 J. Spiegel, P. Wira and G. Hermann, "A Comparative Experimental Study of Lossless Compression Algorithms
for Enhancing Energy Efficiency in Smart Meters," 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), 2018, pp. 447-452, doi: 10.1109/INDIN.2018.8471921

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

12 of 14

Technique/model name Automated time series compression selection
Partner(s) 3E, Sirris
Context Compression of multi-variate time series data.
Description For high-dimensional data with high temporal resolution (𝛿𝑡), there is

no one-size-fits-all solution for compressing data. In our approach, the
data is sent after a fixed time step 𝑇	 ≫ 𝛿𝑡. During 𝑇, for each
dimension, we perform the following operations (for conditional
branching, blue means true, and orange false):

* with 0 < 𝜂 < 1.
With these remaining values per dimension, build a JSON file instead of
CSV file, in order to only minimize the amount of duplicated information.

Status Implemented in Python, tested on historical data. On the example data
provided by 3E, we reach a compression factor of approximately 13.

3.3. Distributed AI
3.3.1. Federated learning

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be
covered at the second iteration of this deliverable, at M24.

3.3.2. Transfer learning

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be
covered at the second iteration of this deliverable, at M24.

3.3.3. Distributing computations among edge nodes

Technique/model name Rule-based methods testing on distributed simulation
Partner(s) Eliar, Enforma
Context PID fine-tuning using steam availability and the batch/process priority.
Description The distribution of steam to the machines depending on steam

availability is an important issue in the control of the textile dyeing
process. As a result, the initial parameters need to be fine-tuned based
on the critical situations with steam and process priorities. Using rule-
based AI, this can be accomplished. However, since the real system in
the textile factory can't be used to test the rules, the distributed
simulation running on Docker was developed. Rule-based PID tuning
methods assume a certain process response to obtain easy

Identify and convert
integer variables

Are all values equal
within 𝑇?

Keep single
value

Less than 𝜂* of all samples changed
compared to ancedent.

Apply run-length
encoding Keep full series

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

13 of 14

mathematical formulas that enable the tuning of a PID controller. We
will combine steam data prediction on the edge and rule-based PID
fine-tuning. The initial parameters will be updated for each machine as
needed, using the best rules tested in the simulation.

Status Implemented in Python using Docker.

3.4. Security and privacy
3.4.1. Privacy-preserving learning techniques

Technique/model name Messaging with risk-sensitive random timing
Partner(s) Shayp, Sirris
Context Determination of messaging times for privacy and security-sensitive

data.
Description Saving energy and bandwidth of messaging and still alerting users as

soon as possible in case of an anomaly, can lead to privacy and security
leakages as water consumption patterns (UC4) can be deducted from
the messaging schema itself. A possibility to overcome this is a random
time messaging schema. In order to still alert the users as quickly as
possible, an additional risk-sensitive layer can be added to the random
timing. First, in case of an observed anomaly, a message is sent as soon
as possible. In that case, the heuristic distribution derived from the
random sending times changes in case many leakages occur. Hence, a
curious attacker could derive from the shift in the distribution whether
the building has a high risk of leakages. Hence, as a second step, the
average sending time within a given time window is calculated and the
distribution from which the sending time is drawn, is adapted
accordingly. By this, a temporary bias to the higher sending times is
introduced which shifts the heuristic distribution of random sending
times back towards the desired distribution, shadowing the outlier in
time caused by the alert. Like this, the overall heuristic distribution
derived from the random sending times follows the same distribution as
the imposed one without early alerting and without leakage.

Status Implemented in Python, tested on historical data. To be implemented in
C for validation in edge device.

3.4.2. Secure data sharing

No relevant techniques/models are reported at M18 for this state-of-the-art area. This area will be
covered at the second iteration of this deliverable, at M24.

D2.2: MIRAI ML/AI algorithms and data-mining models specification and design

14 of 14

4. Conclusion
D2.2 provides a detailed description of the different machine learning and data mining techniques
considered in MIRAI (resulting from T2.2), and of the different distributed/composable decision
making models for scaling computations horizontally and vertically in edge computing environments
(resulting from T2.3).
The present iteration of this deliverable presents the techniques and models having been (to a large
extent) fully explored from a research point of view up to M18, and which are currently being
translated and further validated in the context of the different project's use cases. These techniques
and models cover 5 out of the 11 state-of-the-art areas identified in D2.1, based on which D2.2 is
structured. Several other techniques and models, covering these and the remaining 6 areas, are
currently being explored by the project partners. The results will be included in the final version of this
deliverable, planned at M24.

