D1.5d Description of demonstrator implemented for material handling - .
demonstrator . mBChlnﬂldE

f I TEAZ
& machinaide

Knowledge-based services for and optimization of machines

Deliverable D1.5d

Description of demonstrator implemented
for material handling demonstrator

Deliverable type: Document

Deliverable reference number: ITEA 18030 | D1.5d

Related Work Package: WP 1

Use Cases, Requirements & Evaluation

Due date: M38 (30 November 2022)

Actual submission date:

Author(s) Yangkoo Lee, Youngjae Lim, Wookeun Jeong,
Wansik Choi

Confidentiality Public

Version v1.0

D1.5d Description of demonstrator implemented for material handling

demonstrator

Contributors:

¢ machindide

Yangkoo Lee ETRI
Youngjae Lim ETRI
Wookeun Jeong CIP
Wan Sik Choi CIp

D1.5d Description of demonstrator implemented for material handling (-
demonstrator

machindide

Table of Contents

I = AV] o o I = 1) o o PPNt 5
D Y o1 o - ot A PP POTOT OO P PO PR VOTRTOPSTO 5
3. Description of demonstrator implemented for material handling demonstrator (ETRI, CIP)........ 5
3.1. Description and coOVEred USE CASESeeeiecuiiieeeiiieeeiiitieeeeeiieeeesitteeeeeiseeeesssssaeeessssesessassasessanes 5
3.2. Outline of the demonstration of “Material Handling Interaction Use Case” (ETRI) 6
3.2.1. Indoor cooperative |0ZiStiCS SYSLEMuiiiiiiiieiiiiiee e 6
3.2.2. Interaction use case with digital twin of virtual assetccceevieiiriiieniiii e, 9

3.3. KOREA Machinaide (KMAC) Digital Twin Platform (ETRI)ccccvieiiieiiiecieeecee e 10
3.3.1. Eclipse Ditto, An Open-source based Digital Twin Platform..........ccccoceveveieieeccineecnen. 10
3.3.2. Thing definition of assets and registration in Ditto........cccccceeeevciieeieciiee e, 11
3.3.3. Digital Twin Integration Platform (CIP)cccccviiiiieeciieciee ettt eire e s 12

3.4. Data Acquisition & Data Processing (ETRI-CIP)cccveiiieriiiieeeciee et steeeire e svee e e seeesvne e 15
3.4.1. Concept of data collection and storage design........ccccveevciieeiiviieeeeccee e 15
3.4.2. Data model for static data ManagemMENTtccceiiieiiiie i e 17
3.4.3. Data model for dynamic data managementccccuvieieiieececciiee e 18
3.4.4. Querying and VisUaliZatioNnccueiiiciiiii i 19

3.5, HMI APPICAtIONS (CIP)..uvieeieiieeiieceiieeeiee ettt ste e ettt e ete e e te e e rtae e s beeestaeesateeebaeesaraesnsasensseesseeanes 21
3.5.1. Concept of KMAC HMI SYSTEMcccicuiiiiieiiie ettt et e e etee e e e tae e e e ebee e e eeaneeas 21

3. 5.2, KBY FATUIES e 22

3.6. Implementation schedule for demonstration..........ccoccuvieieciiie e 24
4. ADBIEVIATIONS .ottt st st nee 25

9’ madchingide

Figures

Figure 1. Real asset-based indoor cooperative logistics system that performs simple uploading and
downloading tests on both sides of a fixed CONVEYOIooieiiiiiiieee e 6
Figure 2. Hardware components of the indoor logistics testbedccccovvciieiiiciiiinc e 7
Figure 3. The execution screen of the task manager (task preparation, editing, execution, etc.) of the
FAN Y oo a1 o] IV 1] 1 o [PPSR 7
Figure 4. Major MQTT topics list and real-time data reception testcccocoveeivciiiiiriiee e 8
Figure 5. Configuration of the digital twin interface for virtual @ssets.......cccccccecvveeeiiiiee e 9
Figure 6. Material transport simulation of virtual assets (crane, forklift) and integrated operation
WILH FEAI @SSEL . ieiiiiiiieitie ettt sttt et e s te e e bt e e s be e e baeesabeessteesabeeenbteesateessneesareean 9
Figure 7. AMR Avoidance Maneuvering by Interaction with Virtual Assets........cccccceecvveeiiciieeeccneeenn. 10
Figure 8. Construction Of ECHPS DItEOcceiiciiiiiiiiiieiciiie ettt e e s e e s snreeeeas 11
Figure 9. Example of “thing” model (json): "kmac-thing-amrl.json”ccccceeiiiiieiiiiieeececieee e 12
Figure 10. Architecture of Digital Twin Integration PIatform(DTIP)cceeveeeiieeecie e cee e 13
Figure 11. REST APl dOCUMENTALIONvviiiiiiiiieiciiice ettt e e e e e e e e s saa e e e senbreeessanreeaeas 14
Figure 12. Web and mobile SCre@nShOtS.........coociiiiiciiiie e et e st e e e eare e e 14
Figure 13. data flow on KMAC DT platformcoeevie ittt e e 15
Figure 14. Class diagram (entity-relationship model).......cccueeiiciiiecciieie e 16
Figure 15. Entity-Relationship data MOdelooooeiiiiiciiie et 18
Figure 16. MariaDB’s query and VisUalizatioN.........cooocuiiiiiiiiie it sare e 20
Figure 17. InfluxDB’s query and Visualizationcccuiiiieiiiii et 20
Figure 18. MongoDB’s query and VisUalizatioN..........cccveiiiiiiieiiiiiieccciiee e e 21
Figure 19. Log in process 10 KIMAC HMI......couriiiiiiiiiiiiieieieeeeeceeeeeee e eeeeseeeeeseseeeseseaseesesssesssssssssesssssssennns 22
Figure 20. Operation management in HMI.........ooiiiiiiiiiiiiiiiiiiicceieceeeeeceeeeeeeee e e eeeeeeeeeeeeseesesseessessseeees 22
Figure 21. Task Management in HMIcoo ittt e e e s e e s saer e e e ssaareeaeas 23
Figure 22. Real-time monitoring in HMIooo ittt e e et e e s e e e eare e e 23
Figure 23. Event registration in HMI.......coii ittt e e e e s s ssareeeee e e s s ssaannnes 24

D1.5d Description of demonstrator implemented for material handling
demonstrator

9’ madchingide

1. Revision History

Version Date Description

v 0.9 11/09/2022 Initial draft

v1.0 11/11/2022 Complete first version
2. Abstract

This demonstration will be implemented on an AMR-based logistics collaboration testbed
built by ETRI. The use case in Korea consists of interaction scenarios between material
handling devices and operators in a smart factory. For example, a specific AMR can be
selected in a work process to carry out material transport, the most suitable AMR for a task
is automatically recommended, or collaboration between AMRs can be achieved through the
AMR's working status monitoring. In addition, when a crane loaded with a specific material is
moving, it can collaborate with an AMR to perform tasks or share operating schedules
between devices. And operators also participate in the material handling process as
independent moving objects.

The AMR object constituting the entire testbed is attached with 10T sensors to generate data
such as location, weight, and battery status, and transmits it to the digital twin platform
through the loT Gateway. A digital twin platform for data collection and storage, including
data communication and message exchange protocols, is built on the testbed. The digital twin
platform also provides query and information services based on an integrated data model.
The operator monitors the work space using a visualized digital twin, establishes a task plan,
and interacts with the work field.

As a result of the demonstration, Korea's use case will be utilized with other partners' use
case results to use them as a target domain for connecting different digital twins and sharing
data and this allows for the construction of a digital twin ecosystem that enables interaction
between incompatible digital twins.

3. Description of demonstrator implemented for material handling
demonstrator (ETRI, CIP)

3.1. Description and covered Use Cases

The general information of the use cases is summarized in the table below. the table describes
use case definitions, responsibilities, possible contributions of partners to the use cases,
interaction of use case with other work packages.

D1.5d Description of demonstrator implemented for material handling - .
demonstrator . machlnﬂldE

Responsible person: Yangkoo Lee
Main contributor, demonstrator
responsibility:

Additional contributors and e CIP: Digital twin platform, HMI system
needed contribution: e Others:

e Task Management

e Automatic Charging
Use case: . .

e Loading Weight Control

e Real-time Analysis

e WP1 - Use Cases, requirements and evaluation
e WP2 — Interoperability of Digital Twin eco-systems
e WP3 —Processing of multiple Digital Twin’s data
e WP4 — HMI system for controlling and monitoring
Digital Twins
Start of project: e 10/2019
Table 1: Description of demonstrator for material handling interaction

What is going to be validated
with this demonstrator?

3.2. Outline of the demonstration of “Material Handling Interaction Use Case” (ETRI)

3.2.1. Indoor cooperative logistics system

For the digital twin-based manufacturing logistics use case, we built an indoor cooperative
logistics system based on physical assets as shown in Figure 1. The use case infinitely repeats
a scenario in which two AMRs check the weight of materials while uploading and downloading
materials on both sides of the conveyor through collaboration. In the process, if the weight
exceeds a given threshold, the AMR moves to the inspection station for confirmation by the
administrator.

nloading

Inspection’ .

Station

Figure 1. Real asset-based indoor cooperative logistics system that performs simple uploading and
downloading tests on both sides of a fixed conveyor

D1.5d Description of demonstrator implemented for material handling - .
demonstrator . machlnﬂldE

3.2.1.1. System components
The collaboration-based indoor logistics testbed built to verify digital twin-based data analysis
and interoperability technology consists of the following elements in the Figure 2.

e Two TETRA-DS5 robots (AMR) equipped with conveyor modules for loading and
unloading

e Two charging station for TETRA-DS5 capable of automatic charging

e One stationary conveyor system with loading/unloading stations

e One environmental sensor set that collects environmental information (temperature,
humidity, fine dust, etc.)

e One robot control server (ACS; AMR Control System) that manages robots and tasks,

collects sensing information and transmits them to the digital twin platform
;’ o

Station

Figure 2. Hardware components of the indoor logistics testbed

3.2.1.2. Execute use case tasks

To apply the aforementioned indoor cooperative logistics use case scenario, the task manager
of the AMR Control System (ACS) is used. Through the task manager’s GUI as shown in Figure
3, various task scenarios can be designed and applied, and among them, the optimal scenario
that is simple but can fully reflect the logistics characteristics is selected and performed
repeatedly.

00 00 00 00 OO

@ x = s o
] : . 3
8 8 &8 @8

Figure 3. The execution screen of the task manager (task preparation, editing, execution, etc.) of the
AMR control system

7

D1.5d Description of demonstrator implemented for material handling

9’ madchingide

demonstrator

3.2.1.3. Real-time sensing data interface between ACS-HMI (MQTT)>

The message mapping between ROS - MQTT - Ditto based on Ditto's Thing models is defined
as below to deliver the sensing data collected from each equipment constituting the indoor
cooperative logistics system to the digital twin. Real-time sensing data collected from the
AMR-based indoor logistics control system (ACS) is delivered to the digital twin platform using
the MQTT topics in the list below and checked by MQTT tools as shown in Figure 4.

kr.re.etri.kmac:amrl/odometry
kr.re.etri.kmac:amrl/tetra_battery
kr.re.etri.kmac:amrl/weight_sensor
kr.re.etri.kmac:amrl/local_occupancy_map
kr.re.etri.kmac:amrl/navigation_path
kr.re.etri.kmac:amrl/operating_events
kr.re.etri.kmac:amrl/loader_events
kr.re.etri.kmac:amrl/command
kr.re.etri.kmac:conveyor/operating_events
kr.re.etri.kmac:env_sensor/env_data
kr.re.etri.kmac:st_charging/current_charging
kr.re.etri.kmac:st_charging/operating_events
kr.re.etri.kmac:st_inspection/operating_events
kr.re.etri.kmac:st_loading/operating_events
kr.re.etri.kmac:st_unloading/operating_events

- a X
p MQT-HEHS Version 0.0.14
Connections + "l <
O weacsvaT f2 @ Connection: kmacACS_MQTT
Subscribe ~
kereetrmacamrtfodometry

~

Publish

0 e

Subscriptions

Topic: "kr.re.etrikmac:amri/odometry” Showing the last 5 messages — 4 A

Time Topic QoS o

11 10:51:24

[v JSON ‘position”:{"x":6.124100376614036, "y :-0. 16563573623931604, "z":0}, "orientation"={"x":0, "y":0, “z”IEI.EIHEI’MEEHE’?EZS\ZE,"‘ |_D

Time Topic QoS o

12105125

E ~ JSON ‘position”+{"x":6.124100376614036, "y" --0. 16563573623931604, "2" :0F, "orientation” ={"x":0, "y":0, “z”10.9997426957523125,”‘ ||—:|

Time Topic QoS o

13 10:51:26

i S JSON ‘position”:{"x":6.124100376614036, "y -0, 16563573623931604, 2" :0F, "arientation” ={"8":0, "y":0, "2 ZD.BSBNZEEE?EZS\ZE," |E|

Figure 4. Major MQTT topics list and real-time data reception test

D1.5d Description of demonstrator implemented for material handling - .
demonstrator . ma(:hlnaldg

3.2.2. Interaction use case with digital twin of virtual asset

To test the interaction between digital twins in the physical AMR-based indoor cooperative
environment, we built a virtual crane and forklift as a digital twin, and implemented a
simulation module that performs material transport in real time while sharing the work area
of real assets. Virtual assets generate working data in real time through this simulation
module and are visualized on HMI through 3D modelling as shown in Figure 5 and 6. The HMI
displays the task state of physical and virtual assets in real time by mapping the real-time
working data from simulation module to the 3D model.

kmacsetup
kmac-thing-ilmatar.json
kmac-thing-forklift.json r)
e HMI
cket |
socket_connect tmac.app
. htt t
ilmatar_broker p_connec
limatar_mock console_demo gui_demo
hoist
out_prop_crane draw_crane
trolley
out_prop._forklift draw_forklift
bridge
mock_simulation
crane_scenario forklift_scenario
Figure 5. Configuration of the digital twin interface for virtual assets
Figure 1) - Ul
€ 3 C A TASW | 13222621.1148011 fpmot:Oashboardh > % O &1
AEI PQ=EL ¥ tereabmenitr @ MAGINADE(
14 4
12 L 4
10 4 F—— (virtual)Forklift /MMCHM‘: workspace
: [l .
6
3 % e
[
2 O - s
(rea) AMR's (real)indoor logistics testbed
%00 2.5 5.0 75 100 125 150 175 200

Figure 6. Material transport simulation of virtual assets (crane, forklift) and integrated operation
with real asset

For the test, we set up a real asset-based indoor logistics operation consisting of two AMR
units and one conveyor and a material transportation operation consisting of a virtual crane

D1.5d Description of demonstrator implemented for material handling - .
demonstrator . macnlnaldg

and a virtual forklift. In this task environment, the process of interaction between different
digital twins is performed.

If the virtual crane unloads the material at a specific location within the AMR's work area, the
AMRs' movement path is interrupted until the virtual forklift loads the material after a while,
and the avoidance maneuver of each AMR is activated. In this process, two different digital
twins interact through a Ditto-based digital twin broker interface.

Figure 7 shows the avoidance maneuver. As shown in Figure 7, when the virtual crane unloads
the material on the AMR route, the route planning of AMR is disturbed by this virtual material,
and AMR changes the route to avoid it.

AE> FQE2 B

Figure 7. AMR Avoidance Maneuvering by Interaction with Virtual Assets

3.3. KOREA Machinaide (KMAC) Digital Twin Platform (ETRI)

3.3.1. Eclipse Ditto, An Open-source based Digital Twin Platform

Eclipse Ditto is an loT technology that implements a software pattern called Digital Twin, and
is an open-source framework that enables objects to be used as web services through Digital
Twin. Since Eclipse Ditto as shown in Figure 8 is not a technology that supports the loT
platform itself, it does not directly define or implement loT protocols to communicate with
devices, and focuses on back-end scenarios by providing web APIs to simplify work on devices
in customer apps or other back-end software.

10

D1.5d Description of demonstrator implemented for material handling

0 madchindide

demonstrator
... <<Backend App>>
T —
Solution i i : :

. 4 vy

[PSSO S Rabbitio B
Broker [

HITP WebSocket
" : AMQP09.1 [-Q
Device o AVQP10 *
twins _ o —
ditto I
AMQP 1.0 % *. Kafk I:I
i >
Device ((((;)5)
connect- Ao
ivity [| [] P
- -
; T
~ * ~ Y ¥

IoT Devices /\ | | . A []

Figure 8. Construction of Eclips Ditto

3.3.2. Thing definition of assets and registration in Ditto

To obtain the Ditto Interface, not only each Asset that constitutes the KMAC Testbed but also
the virtual "things" need a procedure to define and register the "thing" model as json to suit
the Ditto protocol.

The definition of "thing" for the 9 assets constituting the test bed and the definition of the
"thing" model for the virtual asset consisting of virtual cranes and forklifts are defined as json
files consisting of attributes field, which are property information of assets, and features field,
which are various sensing data, as shown below.

Thing model files for Assets in the indoor
Logistics Testbed (9 Real Assets)

Thing model files for vcrane & vforklift
(2 Virtual Assets)

e kmac-thing-amrl.json

e kmac-thing-amr2.json

e kmac-thing-conveyor.json

e kmac-thing-env_sensor.json

e kmac-thing-st_charging.json
e kmac-thing-st_inspection.json
e kmac-thing-st_loading.json

e kmac-thing-st_unloading.json
e kmac-thing-workspace.json

e kmac-thing-crane.json
o kmac-thing-forklift.json

"thingId": "kr.re.etri.kmac:amrl",

"policyId": "kr.re.etri.kmac:policy",
"attributes": {

"twin_group": "device",

11

D1.5d Description of demonstrator implemented for material handling (-

machindide

demonstrator

"model_name": "TETRA-DS5 Mobile Platform",
"manufacturer": "Hyulim Robot",
"placed_time": "2021-08-10 15:00:30.12345",
"description": "Automatic mobile robot for material handling",
"specification": {
"width": 0.49,
"length": 0.592,

}

"features": {
"odometry": {
"properties": {
"pose": {

"position": {
s

¥

"orientation":
"x": 0.0,
Ty T o

Figure 9. Example of “thing” model (json): “kmac-thing-amr1.json”

The thing model files of each defined asset are registered in Ditto as the PUT Request below.

curl -u {userid}:{password} -X PUT -d '@dt_models/kmac-thing-amrl.json’
"http://localhost:8080/api/2/things/{thingId}' -H 'Content-Type: application/json'

After each asset is registered in Ditto, when Ditto normally collects real-time data of the asset,
users can access the real-time data of the digital twin using GET Request as follows.

APIs that have access to Digital twin are executed in accordance with the Eclipse Ditto HTTP
API document (https://www.eclipse.org/ditto/http-api-doc.html).

Icurl -u {userid}:{password} -X GET 'http://localhost:8080/api/2/things/kr.re.etri.kmac:amrl’

3.3.3. Digital Twin Integration Platform (CIP)

Digital Twin Integration Platform (DTIP) is comprised in such a way that with Ditto at its center,
it synchronizes real-time state values occurred in various loT devices, provides web based
simulation capabilities via collected information for AMR based indoor collaboration
environment. Also DTIP can support the reflection of non-real-time event occurred in virtual
space to actual space.

As shown in Figure 10, DTIP architecture composed of four separated modules: DT WAS,
TwinConnect, Monitoring, and 3D Engine. Each module communicates with each other via
WebSocket or REST API.

12

D1.5d Description of demonstrator implemented for material handling

0 madchindide

demonstrator
DT Model
(MongoDB)
ACS External Solutions
marr REST I

MQTT WebSocket g
DT WAS ehsocke TwinConnect
(Ditto)

MQTT Broker — springBoot)

Hi ccal D. Task Inf . , WebSocket
istorical Data ask Information REST
(InfluxDEB) (MariaDB) WebSocket
Bt . REST
@ g Meonitoring i 3D Engine Virtual TwinConnect
Wweb) [— Wnity) ms——) (itto)

Figure 10. Architecture of Digital Twin Integration Platform(DTIP)

Functions of each DTIP module are described as in below.

No. Name Definition

1 DT WAS - Performs the role of external gateway and comprises internal Back-
end logic.

- Maintains realtime information of TwinConnect by analyzing mqtt
payload transmitted via MQTT Broker, and stores the history data to
InfluxDB.

- Sends non-realtime events occurred in platform to external

2 TwinConnect | _stores as well as maintains realtime object information as “thing”

model, and sends corresponding information to DT WAS or 3D Engine
for utilization.

3 Monitoring - Displays the data transmitted via DT WAS by composing Front-end Ul

- Receives non-realtime events occurred at Web or 3D Engine and sends
them to DT WAS

4 3D Engine - Displays 3D screen using history information transmitted through
realtime information or DT WAS transmitted from TwinConnect

Digital Twin Integration Platform (DTIP) is provided in the cloud environment, and any user
with valid account can access via web or mobile app. For external interface, DTIP provides
"thing" model information through RESTful API (Figure 11). The API also is provided to the
user with valid account, and authentication is carried out by issuing JWT.

13

D1.5d Description of demonstrator implemented for material handling - .
demonstrator ‘- maChlnaldE

s

KMAC HTTP AP| &2 &=

Servers

[(htp//13222621.114:8011 - Generated server udl_~

0. Authentication ™7 s
/api/kmac/ jwt Generate nev JWT v o
1. Things KMACs things ~
Zapi/skmac/{thingld} Retreve a specific thing o
2. Attributes Sinucturs the atiributes of KMACs things (Attributes are invariant) ~
/api/kmac/{thingld}/attributes wst 3l stiributes of 3 spacific thing ~
/apiskmac/ {thina Id}/attributes/{attributeKev1} rerisve 3 spacific stiribute of 3 spacific thing A
Japi/kmac/ {thinaldl/attributes/{attributeKev1l/{attributeKey?} Retrieve a specfic attribute of a specific thing ~ o
/api/kmac/{thingldl/attributes/{attributeKev1}/{attributeKey2}/{attributeKey3} retrieve 2 specific atribute of & specific thing ~ o
fapi/kmac/ {thingld} /attributes/{attributeKey1}/{attributeKey?}/{attributeKeyd}/{attr ibuteKeyd]} Retrieve a specific attribute of a specific thing ~ @
3. Features Structure the featuras of KMAC' things (Features change over time. ~

Figure 11. REST API documentation

Digital Twin Integration Platform (DTIP) provides services as Tomcat that is open source
container, and can be started or stopped with the following commands.

service start tomcatg

service stop tomcat9

With the start of service, functions are provided via web and mobile (Figure 12).

Operations

&

Asset
Registration

Monitoring

_
=
_

. Dashboard

A

Event
Registration

Figure 12. Web and mobile screenshots

14

D1.5d Description of demonstrator implemented for material handling

0 madchindide

demonstrator

3.4. Data Acquisition & Data Processing (ETRI-CIP)

The digital twin platform provides various types of storage structures depending on the
characteristics of the data. In KMAC DT platform the digital twin model represents the
physical assets based on the "Thing" provided by the Ditto framework, and the "Thing" is
stored on the platform via the NoSQL database. Among information such as spatial
environment, physical devices, and tasks of the loT layer, data with static attributes are
managed as a relational database (RDB), and data with dynamic attributes are managed
through a time series database (TSDB). To this end, the DT platform configures multiple
databases using the following DBMS, and can provide data services by linking each database
as needed.

e MongoDB: Digital twin model management (e.g. thing file)

e MariaDB: Static data management (e.g. spatial information, environmental
information, 10T device specification information, task information, user information,
etc.)

e InfluxDB: Dynamic data management (e.g. device movement information, real-time
event information, loT sensor information, etc.)

3.4.1. Concept of data collection and storage design

Among the multiple databases, MongoDB is the basic database provided by Ditto, so there is
no separate design, and it follows the storage policy of the "thing" file (Json) provided by Ditto.
RDB and TSDB are designed based on the detailed items of the predefined "thing" data model.
The "Attributes" items described in the "thing" model are classified as static data and become
the basis for RDB design, while the "Features" items become the design basis for TSDB.

Based on the data flow in Figure 13, real-time data generated from the loT layer is collected
through ACS, and ACS issues the collected data as an MQTT topic and transmits it to the DT
platform. The MQTT topic corresponds 1:1 to the detailed parameters defined in the
"Features" item of the "thing" data model. Therefore, the MQTT topic is considered to be the
data item that constitutes "thing", and the database of the DT platform is modeled in a form
suitable for individual DBMS based on thing's technical content and MQTT topics.

(" ACS (AMR \ Digital Twin HMI A

Control System) Server

Map Manage O Models DT Broker Task Monitoring
3D Models
Robot Manage Certification DT Manager

Task Control
Fyw—— —_——
Traffic Control
Online Simulation

Msg Converter

)

AMRs(Autonomous Mobile Robots)

GPIO 7
Wi-fi ap 1OPI Telemetry

{
- Ser Events —
Actions Commands WEB
O s E

P £ ‘=-
Conveyor :w.

Figure 13. data flow on KMAC DT platform

123019 11D

15

D1.5d Description of demonstrator implemented for material handling

0 madchindide

demonstrator

The database is not designed to be subordinate to RDB or TSDB, but when building an physical
database, it is divided into RDB and TSDB. The relationship between the database terms of
RDB and TSDB is interpreted based on the following comparison table, and the data is
modeled based on this.

PK or indexed column

unindexed column

SET of index entries

field key
series

RDB(MariaDB) TSDB(InfluxDB) |
database database
table measurement
column key

tag key (only string)

Figure 14 is a class diagram showing the relationship between the object (entity) and the
object derived from the KMAC test bed. In the class diagram, classes in the blue box are
constructed by RDB as objects defining static properties, and classes in the grey box are
constructed by TSDB as objects defining dynamic properties.

The database design is described based on class diagrams classified into two groups. In each
class layer, each class has an inheritance/related/aggregation relationship with other classes,
and these relationships are mainly used to distinguish between main tables/subordinate
tables/independent tables, and to infer join relationships.

RDBMS TSDBMS
(MariaDB) (InfluxDB)
. Task
Station WorkSpaceMap)
‘ Event TaskOrderlist
Command { |
| Error TaskState
. . |
Location Device Work
[I I]
’—\ AMB Conveyor ChargingStation EnvironmentaSensor
Component
Charging Reservation
[1 I]
Odometry Battery [x 1] Weight Sensor

Map

Figure 144. Class diagram (entity-relationship model)

16

9’ madchingide

Each individual class defined in Figure 14 corresponds to one table or measurement. The
following table shows a table/measurement list defined as RDB/TSDB.

No. Type Name Definition
Table WorkSpaceMap Full spatial information of test bed
2 Table Station Loading/Unloading/Inspection station
information

3 Table Location Station's spatial location information

4 Table Device Logistics device information

5 Table AMR General information of AMR

6 Table Component Sensor of AMR configuration information
7 Table Conveyor General information of conveyor

8 Table ChargingStation General information of charging station

9 Table EnvironmentalSensor | General information of loT sensors

10 Table Task Definition information of Task

11 Table TaskOrderList Information of task order

12 Table Work Information of detail task

13 Table TaskState Task status/statistics information

14 Measurement Odometry Information of real-time odometry update
15 Measurement Battery Information of real-time battery update
16 Measurement IMU Information of real-time IMU update

17 Measurement Weight Information of real-time weight update

18 Measurement Path Information of real-time path update

19 Measurement Map Information of real-time map update

20 Measurement Charging Information of real-time charging update
21 Measurement Reservation Information of real-time reservation update
22 Measurement Sensor Information of real-time loT sensor update
23 Measurement Command Information of real-time command detection
24 Measurement Event Information of real-time event detection
25 Measurement Error Information of real-time error detection

3.4.2. Data model for static data management

Figure 15 shows the schema structure of the RDB designed for classes classified into blue
boxes in the class diagram of Figure 14. In the designed schema, objects (entities) described
in "thing" utilize thing_id as the primary or foreign key, and objects (entities) not described in
"thing" use serial numbers or identification codes to construct the schema.

17

D1.5d Description of demonstrator implemented for material handling
demonstrator

9’ madchingide

AMR

97" thing.g: siring

’Task

/7 G

taskd: integer
map_id: integer

width: float

lenathi float
body_height! float
extra_height! float
tuming_radiug float
weight! float
max-payload-weight'
max_speed: float
max_unning_time! float

flozt

changing_time_levell: float
charging_time_levelZ: float

]

Component

WorkSpaceMap | task_name: string

task_priority! integer
create_at: datetime

map_id: integer

97" thingid: string [G

thing-id: string

type_name! string
model_name! string
description: string

manufacturer. string
specifications: string

twin_group! string
address: string
organization: string
supervisar: string

manager_telephone: string
manager_email; string
version! string
create_timel datetime
last_update time: datetime
manager: string
resolution: float

Conveyor

widlth integer

EventCode height! integer

97" thingg: string

position_x: float

FK. evert_id: integer position_y: float

power_consumption: float
st_loading id: string
st_unioading id: string
width! float

lengthi float

height: float

bl _width’ float
max_buffer: integer

thing_id string position 2! float

— orientation_« float

P orientation_y: float

— ;y:j'am;:ag orientation_z! flost
et et arientation_w! float

2d_map: bloh
virtual_wall: blob
congestion-map’ hlah

message: string

TaskOrderlist

task_orderlist_id: integer
task_id: integer

| G

task_orderlist_type! string
task_action_type! string
task_orderlist_order. integer
task _walt_timeout: string
locationdd: integer
task_orderlist_« float
task_ordedist_y: float
task_orderlist_z! float
task_orderlist_gx: float
task_ordedist_qy: float
task_orderlist_qz! flost
task_orderlist_qw: float
create_at datetime
lnad_welght: integer
Ioad_condition: string
load_action: string

max_fine_dust float
min_carbon_dioxide: float
masx_carbon_dioxide: float

manufacturer. string
placed_time: datetime
deseription: string

Pr task _state et integer

task_id integer
work_id: integer

total_task: integer
remain_task: integer
done_task! integer

cancel _task integer
progress_rate: float
progress_total_time! integer
progress_avgLime! integer
progress_total _weight: integer
creste_at. datetime

max_speed: float Work
; work Jd! integer
Device ‘ 17 sk imsser
'F‘K thing_ict: string FK robotid: string
ChargingStation e tw‘”d’g‘m”p' .5‘;”9 Location | work_priority: integer
MBS X ST work_repeat integer
B mEeEE eling A wark_dane! integar
1 thing.d: string placed_time: datetime b—— % thing_id: string work_cancel: integer
— description: string e g s
widh! flost operating-system: siring docking positionx float work_state! etring
length: float ros-version: string docking posttion_y: flost start_at: datetime
height: loat docking_position_z: flaat end_at: datetime
docking_arientation_+ flost
docking orientatian_y: float
docking orientation_2 float
docking arientation_w! float TaskState
left top_: float
left top_y: float
left dop 2! float
EnvironmentalSensor left bottam_s flost
left bottarn_y! float e
i left bottom_z float
97" thing.g: siring Station Hight top ¢ float
- right top_y: float
min_temperature! flost $#< thing.id: string right op_=! float
max temperature! float - right battam.x: floal
min_humidity: float — station_name! string fght_bottam_y: float
max_humidhy: float twin_group: string right bottam_z: float
min_fine_dust: float madel_name: string

Figure 155. Entity-Relationship data model

3.4.3. Data model for dynamic data management

The TSDB is designed for classes classified as gray boxes in the class diagram in Figure 14. The
designed TSDB is used to store a history of data that is updated in real-time among data
collected from the loT layer, and no separate schema is defined according to the design
concept of TSDB. TSDB stores data in line protocol, and line protocol is described in the
following format.

e line protocol: Measurement, tag, tag, tag, ... field, field, ..., ...

The TSDB schema is defined by writing measurements that should be managed by history and
data to be stored in line protocol, and the details are as follows.

line protocol (INSERT)

Odometry,thing_id
position_x,position_y,position_z,orientation_x,orientation_y,o
rientation_z,orientation_w,twist_linear_x,twist_linear_y,twist
_linear_z,twist_angular_x,twist_angular_y,twist_angular_z,ac
cel_linear_x,accel_linear_y,accel_linear_z,last_update,sampli
ng_rate

Group Measurement

AMR Odometry

18

9’ madchingide

Battery,thing_id
charging_rate,power_consumption,charging_start_time,last_c
AMR Battery g 8- p. . p' BIne_ o o
harging_completion_time,charging_state,last_update,samplin
g_rate
IMU_sensor,thing_id
linear leration_x,linear leration_y,linear lerati
AMR IMU sensor inear_accelera |o‘_x,| ear_accele a'Flo _y,linea _acceg atio
- n_z,angular_velocity _x,angular_velocity y,angular_velocity z,
last_update,sampling_rate
. Weight_sensor,thing_id
AMR Weight_sensor st . & .
payload_weight,payload_class,last_update,sampling_rate
Local_occupancy_map,thing_id
AMR Local_occupancy_ | resolution,width,height,position_x,position_y,position_z,orien
map tation_x,orientation_y,orientation_z,orientation_w,mapdata,l
ast_update,sampling_rate
Navigation_path,thing_id
start_position_x,start_position_y,start_position_z,start_orient
N ation_x,start_orientation_y,start_orientation_z,start_orientati
AMR Navigation_path - - . -y . . T .
on_w,end_position_x,end_position_y,end_position_z,end_ori
entation_x,end_orientation_y,end_orientation_z,end_orienta
tion_w,num_points,points,last_update
Conveyor None None
. Env_data,thing_id
Environme . . L
env_data temperature,moisture,find_dust,carbon_dioxide,last_update,
ntalSensor .
sampling_rate
Chargin . Current_charging,thing_id
.g & Current_charging . g 8 .g— .
Station charging_amrid,charging_percent,last_update,sampling_rate
Chargin L .
.g & Reserved_state | Reserved_state,thing_id next_amrid,last_update
Station
Command,thing_id
command_type,command_name,station_id,position_x,positio
Command Command
n_y,position_z,orientation_x,orientation_y,orientation_z,orie
ntation_w,last_update
Event,thing_id
Event Event event_type,event_name,event_message,docked_amrid,last_u
pdate
Error,thing_id
Error Error
error_type,error_name,error_message,last_update

3.4.4. Querying and Visualization

Querying data using Query Language provided by each database, and display the received
responses on screen. Maria DB uses SQL, InfluxDB uses flux respectively. But MongoDB does
not directly perform querying, instead it uses Ditto API for performing querying and receiving
responses.

MariaDB user information is the screen displays of the results of data querying (Figure 16).

19

D1.5d Description of demonstrator implemented for material handling
demonstrator

9’ madchingide

B machindide OPERATIONS MOMITORING DIGITAL TWIN

Figure 166. MariaDB’s query and visualization

Environment Sensor history information of InfluxDB is the screen display of the results of data
querying (Figure 17).

¢ v.timeRangeStop)

61.5

hiurni

§ 286

temp_c

(.

temp_f

Figure 177. InfluxDB’s query and visualization

Environment Sensor information stored in MongoDB is displayed by receiving the responses
using Ditto API without direct querying (Figure 18).

20

D1.5d Description of demonstrator implemented for material handling

demonstrator

¢ machindide

e C O AHSE

B cderder bg Ema

1322951114801 1 fpicpratAdistRigeatration

twin_group © diclos

mode]_nass °© TETRA-DSS Moblle Platfors
manufacturer | Hyulis Robot
placed_ting | ho21-B8-18 1958030, 12545

description & Mutomatlc mobdle robct for material Rard Ling

v specification [18)

wuldeh 7 2.4
length -
body_helght - @
#xtra_Raight
turalng_radius - 0.50
welght - &
max_payload_welght | 128
miax_spesd | 1
max_rusning_time

¥ chargleg tise (I}

Lewwll

level2

v cosposants (9}

¥ 1ider_senior {4}
model_name - SI0E-TIMGTL
description | 3D LIDAR for mapalng & navigation

manufacturer - SICK
» specifications [3]
¢ 7 Range: 25O°
1 lplet: G.ede - 35 @
7t Freqi 15HD
¥ Septh_casera [4)

mode]_name | Realiesde-04154

descriotion © 3 depth comerss for 30 obstacle detectlion

@ @YBED LS »0@

Figure 188. MongoDB’s query and visualization

3.5. HMI Applications (CIP)

3.5.1. Concept of KMAC HMI system

KMAC's HMI is developed to derive functions necessary to verify interoperability between
digital twins. For example, in the KMAC testbed, AMRs can interact with each other to
perform given tasks, change task plans if necessary, and select appropriate processing logic
in response to various contexts.

KMAC's HMI can provide more intuitive Ul/UX-based insights to operators by monitoring and
controlling the real site in a virtual environment by utilizing a digital twin. One of the main
goals of the developed HMI is to identify the necessary functionalities and feasibility where

21

D1.5d Description of demonstrator implemented for material handling - .
demonstrator . machlnﬂldE

physical objects, digital twins, and humans are connected to interact each other. To this end,
the HMI basically includes the functions of the existing control system. Also, it provides a
method for efficiently collecting and storing loT sensor data, and the resources and functions
required to visualize it in 3D model. In addition, HMI is developed for running on the web
environment so that the functionalities derived for HMI can be applied to the web-based
digital twin ecosystem.

3.5.2. Key Features

KMAC HMI is implemented as a web application and provides services to users with access
authority. Figure 19 shows the input window for user’s login. The user accesses the web URL
and logs in with user ID and password. A user who has successfully logged in can manage the
KMAC testbed using the menus in the web-based HMI.

@ 0 & P9 A | 1522820118000 nea masr @ aO@ € 5 a0 Asean| maeni acw B:aO@

- o x

% 038 028 0 @ 2 0o 082

@ machinaide OPERATIONS - MONTORING - DIGITAL TWIN - PREFERENCES ' machinaide |m.ms WONTORING - DIGITAL TWIN - PREFERENCES |

OGIN @ machinaide O} 1TEAZ

Figure 19. Log in process to KMAC HMI

The main functions of HMI consist of operation management, monitoring, event management,
and history management. Operation management provides management of digital twin
models registered in the digital twin platform. As shown in Figure 20, User can select the ID
assigned to the digital twin object to modify the description or decide to enable/disable on
the visualization of digital twins.

D st segaton | wACH +

@ Manage the attibutes and usage of assets.

Figure 20. Operation management in HM|

22

D1.5d Description of demonstrator implemented for material handling

¢ machindide

demonstrator

Operators can register, edit, and delete task plans for field devices through the work
management function provided by the HMI. Figure 21 shows registering and monitoring the
task plan. The HMI can control the physical field through a digital twin synchronized to the
virtual environment by command the physical device to execute the tasks according to the
registered task plan.

(0 mask Plan Registration | MACH" X | = ¥ - 0 X‘ (0 Furvy ok | CADE 0 X | v - © ,.‘
R N L T IL T T rer— “cem:s0@
« C O aAFdsE|maman. @ @ ¥ » 0@ s
o ot | A10ocs B & machinaide OPERATIONS - MONITORING - DIGITAL TWIN - PREFERENCES - @
& machinaide
Tosk Name Priarty Task Work
TEsT03
7 i TEST 02 B
I Task Plan Registration I . . E
O o L2 i) Task Narme Priority Done Cancel | Repeat Status. Function
|
No data available in table i
T
@ e o i - = [v e O I

P R L —— T

Running Task

Show 10 ~ | entries

L= L2 RILS.ED _

TEST-03 7 |
Task Nome Frir Task Work |

TEST_02 0 — |
|

|

BASIC_01 5 TEST.02 0 |

Figure 21. Task management in HMI

HMI provides a 3D visualization service for real-time monitoring of digital twins synchronized
with physical assets. Figure 22 shows the 3D visualization process implemented by Unity
engine. Users can monitor the digital twin in real-time by clicking Dashboard in the Monitoring
menu. With digital twins realized through 3D visualization, operator can gain an intuitive view
even outside of the real field, giving them insight into device operation.

@ e | = B—"
€ 4 C 0 Asuew|mamanie N Y) — Xz

@ machinside OPERATIONS -_MONTORING __DIGITAL TWIN - PREFERENCES -

Figure 22. Real-time monitoring in HMI

23

D1.5d Description of demonstrator implemented for material handling - .
demonstrator . machlnﬂldE

When an operator wants to receive an alarm in response to a specific situation, the desired
event can be registered and processed on the HMI. Figure 23 shows an example in which the
user registers a specific event to the field devices. Events registered by Event Registration
menu are linked with digital twin and when an event corresponding to a specific condition is
detected, the event is reported to the operator so that the operator can actively control the
device.

€ Cco Asuawmaen.a @k » 0@ € 3 C A 21| 1322262111430 1 plmotiDashbondR > % 02

v © MAcHNADE(
@ machinaide OPERATIONS MONITORING DIGITAL TWIN PREFERENCES " .
Event Registration

Figure 23. Event registration in HMI

3.6. Implementation schedule for demonstration

Action Starting Term Ending Term Responsible
Usecase and 2020/7 2021/6 ETRI
Requirements
definition

Determination of DT 2020/7 2021/6 ETRI

platform spec.

Determination of 2021/1 2021/6 ETRI, CIP
software for data
management
(MariaDB, InfluxDB,
MongoDB)
Determination of 2021/1 2021/6 ETRI
Testbed elements
Building Testbed 2021/7 2022/2 ETRI
(AMRs, Conveyor, loT
sensors)
Implementation of DT 2021/7 2022/2 ETRI, CIP
platform
Implementation of 2022/1 2022/6 ETRI, CIP
Data management
module
Integration of 2022/1 2022/6 ETRI
software and
hardware in testbed
Creation of DT model 2022/1 2022/6 ETRI

24

D1.5d Description of demonstrator implemented for material handling

demonstrator

0 madchindide

Building multiple 2021/7 2022/12 ETRI, CIP
databases

Collection of DT data 2022/1 2022/12 ETRI, CIP
Operation of testbed 2022/1 2022/12 ETRI
Development of event 2022/1 2022/6 ETRI
processing

Development of HMI 2022/1 2022/12 cip

1. Abbreviations
AMR

API
DBMS
DT
GUI
HMI
JSON
MQTT
PK
RDB
ROS
TSDB
Ul/ux
WAS

Autonomous Mobile Robots
Application Programming Interface
Database Management system
Digital Twin

Graphical User Interface

Human Machine Interface
JavaScript Object Notation
Message Queuing Telemetry Transport
Primary Key

Relational Database

Robot Operating System

Time Series Database

User Interface/User Experience

Web Application Server

25

