

Deliverable D13 Version 1.0 2

TIMMO-2-USE Partners

AbsInt Angewandte Informatik GmbH

Arcticus Systems AB

Chalmers University of Technology

Continental Automotive GmbH

Delphi France SAS

dSpace GmbH

INCHRON GmbH

Institute National de Recherche en Informatique et Automatique INRIA

Mälardalen University

Rapita Systems Ltd, UK

RealTime-at-Work

Robert Bosch GmbH

Symtavision GmbH

Technische Universität Braunschweig

University of Paderborn

Volvo Technology AB

Project Coordinator

Dr. Daniel Karlsson

Volvo Technology AB

Dept 6270, M2.7

405 08 Göteborg

Sweden

Tel.: +46 31 322 9949

Email: Daniel.B.Karlsson@volvo.com

© Copyright 2012: The TIMMO-2-USE Consortium

Deliverable D13 Version 1.0 3

Authors

Cecilia Ekelin, Volvo Technology AB

Arne Hamann, Robert Bosch GmbH

Daniel Karlsson, Volvo Technology AB

Ulrich Kiffmeier, dSpace GmbH

Stefan Kuntz, Continental Automotive GmbH

Oscar Ljungkrantz, Volvo Technology AB

Mesut Özhan, INCHRON GmbH

Deliverable D13 Version 1.0 4

Table of contents

TIMMO-2-USE Partners...2

Authors...3

Table of contents...4

List of Figures..5

1 Introduction ...7

2 Starting Point ..8

2.1 The TIMMO Methodology...8

2.2 The ATESST Methodology.. 11

3 Generic Methodology Pattern (GMP) .. 14

3.1 Example.. 20

3.2 Abstracting Timing Properties... 27

3.3 Extending the GMP with Safety Aspects 27

4 Integration of the results of WP2 and WP3 into the methodology.. 29

4.1 TADL2 guides .. 29

4.2 Tool mentors .. 30

5 Application of the Generic Method Pattern to Use Cases.............. 32

5.1 Integrate reusable component .. 32

5.2 Specify timing budgets... 40

5.3 Specify synchronization timing constraints 49

5.4 Revise erroneous timing information.. 54

5.4.1 Example: Exceeded time budget 57

5.5 Exchange models... 64

5.5.1 Supplier Side .. 64

5.5.2 OEM / Integrator Side .. 67

6 Cross-cutting concerns... 72

6.1 Specify mode dependent timing information............................. 72

7 Conclusion... 74

8 EPF Model of the TIMMO-2-USE Methodology.............................. 75

9 Glossary... 76

10 References.. 80

Deliverable D13 Version 1.0 5

List of Figures

Figure 1- The different Phases of the TIMMO Methodology................. 8

Figure 2 - Different phases and tasks of the TIMMO methodology...... 9

Figure 3 - The structure of the EAST-ADL methodology.....................11

Figure 4 - TIMMO-2-USE Generic Method Pattern.............................15

Figure 5: Instantiation of TIMMO-2-USE Generic Method Pattern.....16

Figure 6 - A simple example to demonstrate the use of the TIMMO-2-
USE Generic Method Pattern..21

Figure 7 - A simple example to demonstrate the use of the TIMMO-2-
USE Generic Method Pattern and transforming timing requirements
between levels of abstraction. ...22

Figure 8 - The simple example to demonstrate the use of the TIMMO-
2-USE Generic Method Pattern annotated by timing information23

Figure 9 - A simple example to demonstrate the use of the TIMMO-2-
USE Generic Method Pattern and specifying timing requirements for
the next level of abstraction...26

Figure 10 - Abstracting Timing Properties..27

Figure 11 - Generic Method Pattern applied to functional safety........28

Figure 12 - Structure of TADL guides...29

Figure 13 - Generic methodology applied on integration of a reusable
component. ...35

Figure 14 - Timing behavior before and after integration38

Figure 15 - The principles of time budgeting...41

Figure 16 - The time budgeting methodology..43

Figure 17 - Example of a budget segment identification strategy44

Figure 18 - Time budgeting example using symbolic time expressions
...47

Figure 18 - Refinement and identification of new sets of events. At the
abstraction level n the set S1 is composed by two events. After a
refinement of the solution at the abstraction level n-1, the set S1 is
composed by three events, and a new set of events (S2) that must be
synchronized is identified...51

Figure 19 - Mapping of the specify synchronization constraints into the
Generic Methodology Pattern..52

Figure 21 - Process for the use case Revise erroneous timing
information..56

Figure 22 - Legend for revision charts ...58

Figure 23 - Revise exceeded time budget at vehicle level58

Figure 24 - Revise exceeded time budget at analysis level59

Figure 25 - Revise exceeded time budget at design level...................60

Deliverable D13 Version 1.0 6

Figure 26 - Revise exceeded time budget in the VFB view.................61

Figure 27 - Revise exceeded time budget in the SWC view...............61

Figure 28 - Revise exceeded time budget in ECU view62

Figure 29 - Revise exceeded time budget in System view..................63

Figure 30 - Revise exceeded time budget in Operational level...........63

Figure 31 - Supplier Side of the Exchange Models Use Case............65

Figure 32 - OEM Side of the Exchange Models Use Case.................71

Deliverable D13 Version 1.0 7

1 Introduction

In this document the final results of the TIMMO-2-USE methodology
are described in detail.

The main goal of the TIMMO-2-USE methodology is to address
practical use-cases that require special consideration of timing
aspects. Related “timing augmented” methodologies, like the TIMMO
and ATESST2 methodologies (see Section 2) do not offer such detail
and mainly describe the application of timing analysis and simulation
techniques for validation purposes. These aspects are also covered in
the TIMMO-2-USE methodology, but additionally it is described how
design decisions can be taken based on timing information. In other
words, the TIMMO-2-USE methodology introduces a constructive
feedback between automotive software system design and real-time
systems engineering.

The basis of the TIMMO-2-USE methodology is the Generic
Methodology Pattern (GMP) described in Section 3. All practical use
cases that are described in Section 5 are mapped to this generic
methodology. The covered use-cases that are described in Section 5
are the following:

· Integrate reusable component

· Specify timing budget

· Specify synchronization timing constraints

· Revise erroneous timing information

· Exchange models

One important distinctive characteristic of the GMP is the integration of
top-down and bottom-up development aspects into one single
methodology. Therefore, it is crucial to being able to transform timing
information 1) from higher to lower abstraction levels, and 2) from
lower to higher abstraction levels. A discussion on how these
transformations can be done is given in Section Error! Reference
source not found..

The GMP general structure was designed with the aim of being
applicable to other aspects of software system development apart
from timing. To demonstrate this, an extension of the GMP is
presented in Section 3.3 that renders it compatible to ISO 26262
compliant safety methodologies.

In order to integrate the results of the technical work packages within
TIMMO-2-USE, the concepts of “TADL guides” (Section 4.1) and
“Tool mentors” (Section 4.2) were developed for the TIMMO-2-USE
methodology.

TADL guides explain the usage of TADL2 (Timing Augmented
Description Language 2) concept during the different methodology
tasks, whereas Tool mentors link to timing related tools and algorithms
that are relevant for the completion of a task at hand.

Deliverable D13 Version 1.0 8

2 Starting Point

In previous projects, software system development methodologies
were developed taking into account timing aspects. In the following
sections, the most prominent projects and the developed
methodologies are shortly presented and related to the TIMMO-2-USE
methodology.

2.1 The TIMMO Methodology

In the ITEA2 predecessor project TIMMO (TIMing MOdel), a system
development methodology was defined explicitly taking into account the
real-time behavior of the developed system, an aspect that is ignored
in many comparable methodologies.

The TIMMO methodology describes the application of the Timing
Augmented Description Language (TADL), that was also developed in
the TIMMO project and that is extended in WP2 of TIMMO-2-USE, in
the context of the automotive software system development process.
Based on the information captured by TADL, the TIMMO methodology
highlights the possibilities of applying timing analyses to help the
designer taking design decisions and verifying the system’s adherence
to timing constraints. This guideline on how timing analyses can be
applied during the development process of automotive software
systems represents the main novelty of the TIMMO methodology.

The TIMMO methodology is based on EAST-ADL at the higher levels
of abstraction and on AUTOSAR at implementation level (compare
Figure 1).

· Vehicle Phase (EAST-ADL)

· Analysis Phase (EAST-ADL)

· Design Phase (EAST-ADL)

· Implementation Phase (AUTOSAR)

Figure 1- The different Phases of the TIMMO Methodology

Deliverable D13 Version 1.0 9

The development steps (tasks) that are performed in the different
phases of the TIMMO methodology are shown in Figure 2. Please note
that the TIMMO methodology allows design iterations at each phase.
Each task or sequence of tasks involved in creating the solution in the
current phase can be repeated based on the knowledge gained in the
timing analysis tasks (“Analyze timing …”). For this reason, each
phase ends with a milestone acting as gateway for checking the real-
time behavior of the created solution before continuing system
development in the subsequent phase.

Figure 2 - Different phases and tasks of the TIMMO methodology

Timing Analyses

In the following, the timing analyses that can be performed during the
different phases to support the developers in taking design decisions
and helping her to ensure the correct real-time behavior are briefly
sketched.

Vehicle phase

Timing analysis during the vehicle phase focuses on two aspects.
First, the logical validation of the timing requirements is performed.
This consists in a first (in most cases subjective) evaluation of the
general satisfiability of the timing requirements through timing experts.

Deliverable D13 Version 1.0 10

The second aspect consists in performing consistency checks of the
timing requirements.

Analysis phase

During the analysis phase the timing behavior of initial versions of the
functional models are checked against the timing requirements
formulated at vehicle phase. Additionally, robustness checks are
performed to early detect critical paths in the functional architecture
that need special focus in the subsequent phases.

Design phase

During the design phase the first implementation decisions are taken,
including the mapping of functionalities to computational resources and
utilized communication media. Based on these decisions also many
timing properties of the systems are fixed or can be estimated.
Therefore, the timing models that can be derived at design phase are
much more detailed compared to the previous phases. This enables
more detailed timing analyses assessing the approximate dynamic
behavior of the software system under development.

At design phase so-called Response Time Analyses Techniques can
be applied for the first time. They are performed to verify the system’s
adherence to end-to-end timing requirements. Response time analysis
can be performed for a wide range of scopes, spanning from single
tasks to complex cause-effect chains involving several ECUs.

Implementation phase

In the implementation phase all details for accurate timing analyses are
available. However, while in the previous phases the results of timing
analysis can be used to take design decisions, the focus during the
implementation shifts to pure validation, i.e. it is checked in detail if all
imposed timing requirements from the previous phases are satisfied.

AUTOSAR defines four different views on the developed software
system:

· Virtual Function Bus (VFB) View

· System View

· Component View

· Electronic Control Unit (ECU) View

Each of these views focuses on different aspects, and thus different
timing analysis techniques are applied. For instance, on system view
the validation of global end-to-end delays, e.g. maximum reaction
constraints, spanning several ECUs are of interest. In the case of the
ECU view, the focus lies on response time analysis on task level and
deadlock analysis for shared resources.

Relation to the TIMMO-2-
USE methodology

The TIMMO methodology is one of the corner stones for the TIMMO-
2-USE methodology. The main differences compared to the TIMMO-2-
USE methodology are twofold:

Deliverable D13 Version 1.0 11

· The TIMMO methodology has a pure top-down view on the
development process of automotive software systems. In
contrast, the TIMMO-2-USE methodology explicitly considers
also bottom-up aspects that play an important role for many use
cases.

· The TIMMO methodology’s main use case lies on the
application of timing analyses during the development process.
The TIMMO-2-USE methodology covers many more practical
use cases that require the consideration of timing aspects.
Examples include the specification of time budgets, the
integration of new functionalities into an existing system, the
development of control applications, etc.

2.2 The ATESST Methodology

The purpose of the EAST-ADL Methodology, developed in the
ATESST2 project, is to give guidance on the use of the EAST-ADL
language for the construction, validation and reuse of a well-connected
set of development models for automotive embedded software.

Given the complexity of the development activities in automotive
embedded software development, it is mandatory to structure the
methodology so as to enable a relatively fast and easy access to the
EAST-ADL language for a small kernel of essential development
activities which can then be seamlessly extended to a comprehensive
treatment of the language including more specialized development
activities which may not necessarily be used in any development
project. Hence the methodology is structured into two major
components, as illustrated in

Figure 3:

Figure 3 - The structure of the EAST-ADL methodology

The main component, the kernel methodology part, comprises a top-
down description of the central constructive phases of automotive
embedded software development.

The left side of the kernel methodology directly reflects the abstraction
levels adopted by EAST-ADL. These phases describe the tasks and

Deliverable D13 Version 1.0 12

activities that need to be performed on the respective abstraction level
in order to efficiently use the language in automotive embedded system
development. The implementation phase, however, contains a
reference to the AUTOSAR methodology. It therefore only describes
how to transit from the design phase to implementation in AUTOSAR.

On the right side, integration and verification and validation is found.
The focus in the EAST-ADL methodology is in these phases on the
V&V aspects.

The kernel methodology is extended into a comprehensive
methodology for automotive development projects by adding three
additional and orthogonal activities to each of these phases:

· Specification of V&V cases to be executed and evaluated
during the corresponding integration phase. V&V cases are
most typically test cases, but can also include reviews etc.

· Verification of the model on a given abstraction level to the
requirements of the model at the abstraction level directly
above.

· V&V activities on the model artifacts of a given level itself, i.e.
peer reviews, consistency checks, check of modeling
guidelines etc.

The second main component of the EAST-ADL methodology consists
of a set of complementary loosely-coupled extensions to the kernel
methodology. Each of these extensions may be used as an add-on to
the kernel activities. The following extensions are currently included:

· Environment Modeling: Modeling of the (typically analog or
discrete-analog) environment of the system to be developed.

· Requirements and V&V: Detailed handling of complex
requirements and V&V artifacts.

· Safety Assurance: Development of Safety-critical systems

· Timing: Detailed handling of timing requirements and
properties.

· Variability Modeling: Detailed handling of variability modeling.

· Behavior modeling: Detailed handling of behavioral modeling

The main idea is that the user of the methodology can compose any
set of extensions with the kernel. In order to illustrate the intended
correlation and interaction between the extensions, the EAST-ADL
methodology presents four different configurations (where a
configuration is a set of extensions plus the kernel) of increasing
complexity:

· Core: Only basic structural models in the kernel methodology.

· Quality: Requirements and V&V extensions are added to
Core.

· Quality+: Variability, timing, behavior and reuse added to
Quality.

· Safety: Safety added to Quality+.

Deliverable D13 Version 1.0 13

The timing extension

All timing aspects, including analysis, are captured in the timing
extension. The timing extension contains a simplified and collapsed
version of the TIMMO methodology, and has a clear focus on
specification of timing constraints in the vehicle, analysis and design
phases. The reason is that the analyses indicated in the vehicle and
analysis phases of the TIMMO methodology are of relatively informal
nature. Detailed timing analysis is not available until a hardware
architecture is defined in the design phase. The implementation phase
of the EAST-ADL methodology does not contain any timing since
AUTOSAR v3.1, to which the methodology interfaces, does not
support timing.

The timing extension of the EAST-ADL methodology contains the
following tasks:

· Capture Vehicle Timing: End-to-end timing constraints as
well as other timing constraints relevant for Vehicle Features
are defined.

· Capture Internal Analysis Timing: A budget of delay timing
constraints making up end-to-end timing as well as other timing
constraints constraining elements inside the
FunctionalAnalysisArchitecture are defined.

· Capture External Analysis Timing: End-to-end timing
constraints as well as other timing constraints on external input
and outputs are defined

· Assess Timing Feasibility: Consistency of timing constraints
and feasibility of meeting timing constraint under a chosen
DesignArchitecture is assessed.

· Capture External Design Timing: End-to-end timing
constraints as well as other timing constraints on external input
and outputs are defined.

· Capture Internal Design Timing: A budget of delay timing
constraints making up end-to-end timing as well as other timing
constraints constraining elements inside the
FunctionalDesignArchitecture are defined.

Relation to the TIMMO-2-
USE methodology

The EAST-ADL methodology addresses all aspects of the automotive
EE development process, whereas the TIMMO-2-USE methodology
focuses on a certain set of use cases related to timing that are
mapped to a Generic Methodology Pattern (GMP), see Section 3. The
GMP summarizes all tasks in all extensions (except timing) of the
EAST-ADL methodology in one task: Create solution. The tasks in the
timing extension correspond to the other tasks in the GMP. However,
such mapping is not straight-forward and will result in a many-to-many
relation.

Deliverable D13 Version 1.0 14

3 Generic Methodology Pattern (GMP)

This chapter describes the TIMMO-2-USE Generic Method Pattern
GMP. This method pattern is the basis for all steps to be taken during
the course of a phase and level of abstraction respectively.

Important Assumptions

The following assumptions shall be kept in mind when reading the
following paragraphs:

1. All tasks can be repeated an arbitrary number of times.

2. A sequence of tasks can be repeated an arbitrary number of
times.

3. A role or roles performing a task have access to all artifacts
that are a) available at the beginning of a phase, and b) created
by tasks during the course of the phase. For all details about
the work product dependencies refer to the EPF model [4].

4. The term “Timing Property” is used in such a way that it refers
to the timing property type and its value.

Introduction

As shown in Figure 4, the TIMMO-2-USE Generic Method Pattern
consists of the six tasks called “Create Solution”, “Attach Timing
Requirements to Solution”, “Create Timing Model”, “Analyze Timing
Model”, “Verify Solution against Timing Requirements”, and “Specify
and Validate Timing Requirements”. In essence, these tasks have the
following purposes:

· “Create Solution” describes the definition of the architecture
without any timing information.

· “Attach Timing Requirements to Solution” describes the
formulation of timing requirements in terms of the current
architecture.

· “Create Timing Model” describes the definition of a formalized
model for the calculation of specific timing characteristics
based on properties of the current architecture.

· “Analyze Timing Model” describes the actual execution and
evaluation of all necessary “calculations” according to the
timing model.

· “Verify Solution against Timing Requirements” describes the
comparison of the obtained analysis results with the specified
timing requirements.

· “Specify and Validate Timing Requirements” describes the
identification of mandatory timing characteristics and their
promotion to timing requirements for the next development
phase.

Deliverable D13 Version 1.0 17

which is present on all levels of abstraction. Out of these, the first three
models primarily capture timing requirements and properties related to
the system’s application. The Hardware Design Architecture provides
parameters for execution and hardware delays. The Environment
Model provides characteristics and constraints imposed by the
surrounding systems.

Several solutions (alternatives) can evolve from the task “Create
Solution” and each of those solutions shall have the potential to satisfy
the given requirements. However, each solution may result from
specific design decisions that have been taken during the course of
this task.

Attach Timing
Requirements to Solution

Based on the created solution the timing requirements are formulated
in a way that is suitable for further processing on the current level of
abstraction. Timing requirements that are carried over from a previous
phase must be transformed and attached to the solution architecture
accordingly, such that they are “compatible” with the timing model (and
the timing properties) on the current level of abstraction.

In a nutshell: Timing requirements are expressed using events, event
chains, and timing constraints that are imposed on these events and
event chains. Events refer to locations, usually ports, in a solution
model at which the occurrences of the events are observed; while
event chains specify a causal relationship between events and their
temporal occurrences. During every phase, a solution model is created
based on the requirements and on the solution model created in the
previous phase. An event specified in the previous phase referring to
an observable location in the corresponding solution model possibly
has to be transformed or mapped into an event referring to an
observable location in the solution model created during the current
phase. This transformation has to be performed for all events and
event chains, and especially the values of the timing requirements
imposed on event chains.

This task must be performed for every alternative solution that evolve
from the task “Create Solution”.

Create Timing Model

Once the solution has been created and the timing requirements have
been attached in a way that suits the current level of abstraction, a
timing model for this solution is created.

The timing model defines how – based on the timing properties of the
solution – specific timing analysis methods can be applied, in order to
predict / calculate the dynamic behavior of the solution and the timing
characteristics (e.g. the WCRT of a control function) emerging from it.

The timing properties required by the various timing analysis methods
need to be determined and assessed. The methods applied to
determine the particular values are manifold: expert knowledge and
estimation, knowledge from previous projects or iterations within the

Deliverable D13 Version 1.0 18

current project, formalized analysis, simulation, etc. In addition, the
methods being used may vary depending on the phase: On higher
levels of abstraction other methods are used than on lower levels. For
example, scheduling analysis is used on implementation level, but not
on vehicle level.

The most appropriate and suitable method should be selected for this
purpose.

Note that the purpose of this task is not to define new types of timing
analysis methods or timing properties, but to decide how these can be
practically used to describe the dynamic behavior of the solution.

This task must be performed for alternative solutions that evolve from
the task “Create Solution”. And with regard to the dynamic behavior of
the solutions there may be different timing models leading to different
sets of timing properties and their values.

Analyze Timing Model

Depending on the specifics of the timing model and the different timing
analysis methods which are applied, all necessary calculations are
executed and their results – looking at the whole picture and the target
system – are evaluated.

It may happen that several alternative solutions are available, and in
this case the purpose of the task “Analyze Timing Model” is to identify
and quantify the strengths of every solution with regard to the dynamic
– temporal – behavior. One can select the most appropriate and/or
promising solutions in order to proceed with the development.

Verify Solution against
Timing Requirements

In order to answer the question – does the solution satisfy the given
timing requirements – the values of the timing properties obtained by
the analysis are compared against the values of the requirements
attached to the solution.

The primary purpose of this task is to decide whether to continue
conducting the subsequent tasks in the development process, or to
repeat any or a sequence of previous tasks. In other words at this
point it is decided “whether the numbers are good enough for
progressing”, or whether those numbers have to be revised (iteration).
It could also happen that the solution subject to timing analysis must be
revised, or even worse, a new solution must be searched.

If several alternative solutions are available then the purpose of the
task “Verify Solution against Timing Requirements” is to verify the
timing properties of every solution. Eventually, one has to select the
most appropriate solution – one solution – in order to proceed with the
development.

Milestone: Quality Gate

Deliverable D13 Version 1.0 19

At a quality gate, which is not shown in the given figures, immediately
following the task “Verify Solution against Timing Requirements” the
results of the verification are checked, and a decision is taken to either
continue or repeat the phase. Of course, if the quality gate is negative
the necessary actions depend on the kind of defect detected. For
example, sometimes it would only be necessary to repeat a specific or
a number of tasks, rather than all tasks in the phase.

Specify and Validate
Timing Requirements

Once the quality gate has been passed all or some of the obtained
timing properties and transformed timing requirements are converted
into corresponding timing requirements.

The result of the task is not that all timing properties that were found in
the previous tasks are converted into timing requirements, but only
those of them which are fundamental and important for design decision
to be taken in subsequent steps. One criterion for identifying timing
properties as timing requirements is that they were critical for the
verification performed.

These timing requirements are the basis for any design work being
conducted during the next phase.

Deliverable D13 Version 1.0 20

3.1 Example

This section introduces a very simple example that is used to explain
how the Generic Method Pattern is applied respectively utilized. In
particular, it describes how the Generic Method Pattern is applied on
the Design Level.

Example – Introduction

At the beginning of a phase the solution and the corresponding timing
requirements are available from the previous phase respectively
higher level of abstraction – the Analysis Level. This solution is shown
in the upper part of Figure 6. The solution consists of two functional
devices («FD») and one function/component («AF»). One of the
functional devices, the one on the left-hand side in the figure,
represents the sensor and the other functional device, the one on the
right-hand side in the figure, represents the actuator. The purpose of
the functional device named “Sensor” is to provide data from the
environment to the E/E system to be developed; while the purpose of
the functional device called “Actuator” is to “control/impact” the
environment. The [analysis] function/component («AF») called
“Function” processes the data received from the environment via the
functional device “Sensor” and controls/impacts the environment via
the functional device called “Actuator”.
In the artifact “Timing Requirements” attached to the solution one
event chain is specified. This event chain and the timing constraint are
depicted by the blue colored event chain drawn above the
function/component called “Function” in Figure 7. The event chain
references an event and its occurrence can be observed at the
required port of the functional device called “Sensor”. This event is
playing the role of the stimulus. The event chain references a second
event and its occurrence can be observed at the provided port of the
functional device called “Actuator”. Thisvent is playing the role of the
response.
A ReactionConstraint (TC) is imposed on this event chain (EC) and its
value is 125 ms including a variation – jitter – of 30 ms yielding in a
time range of 110 ms to 140 ms.

Scope ReactionConstraint Minimum Maximum

Sensor - Function
- Actuator

125 ms, -15 ms, +15 ms 110 ms 140 ms

Example – Create
Solution

On the current level of abstraction – in the current phase – a solution is
created by performing the task “Create Solution”. The created solution
is supposed to satisfy the given functional and non-functional
requirements, specifically the timing requirements.

Deliverable D13 Version 1.0 21

The solution is shown in the lower part of Figure 6. It consists of two
Hardware Functions («HF»), two Basic Software Functions («BSF»),
and two Logical Device Managers («LDM»): one called “Sensor” and
the other called “Actuator”. Additionally, two [design]
functions/components («DF») called “F1” and “F2” are part of the
system architecture. The combination on the left hand side in the figure
corresponds to the sensor, and the combination on the right hand side
corresponds to the actuator. The two [design] functions/components
(«DF») called “F1” and “F2” processing the data received from the
environment via the HF, BSF and LDM, and control/impact the
environment via the LDM, BSF, and HF. The Logical Device Manager
“Actuator” provides additional data to the function/component called
“F1”.

Figure 6 - A simple example to demonstrate the use of the TIMMO-2-USE Generic
Method Pattern

Example – Attach Timing
Requirements to Solution

The timing requirements originated from the previous phase, the
Analysis Phase, are transformed into timing requirements that
correspond with the solution created in the current phase, the Design
Phase. In the example the given timing requirement, the event chain
and timing constraint in the upper part of Figure 7, are transformed into
an event chain with corresponding timing requirement that is imposed
on the current phase’s solution.

The result of the transformation is

Scope Latency Timing
Constraint

Minimum Maximum

HF “Sensor” … HF 125 ms, -15 ms, +15 ms 110 ms 140 ms

Deliverable D13 Version 1.0 22

“Actuator”

Figure 7 - A simple example to demonstrate the use of the TIMMO-2-USE Generic
Method Pattern and transforming timing requirements between levels of abstraction.

Observation: On the first view it seems obvious that the event
chain/timing constraint specified on the higher level of abstraction
(Analysis Level) is transformed in a one-to-one manner to an event
chain/timing constraint on the current level of abstraction (Design
Level). And a valid question is whether this timing requirement shall be
transformed at all.

Example – Create Timing
Model

During the course of the task “Create Timing Model” the solution is
annotated with events, event chains, and timing constraints as shown
in the lower part of Figure 8 – depicted by the red colored event chain
drawn above every element of the solution. On this level of abstraction
the given event chain including its latency timing constraint is broken
down into seven subsequent event chains, playing the role of event
chain segments, and latency timing constraints are imposed on those
seven event chains respectively event chain segments. In addition a
periodic event triggering constraint is imposed on the event that is
observed at the provided port of the basic software function called
“Sensor”, because the solution provides data for example periodically.

In this example, an event chain referring to the second provided port of
logical device manager called “Actuator” and the second required port
of the [design] function/component called “F1” is not specified,
because this path is considered unimportant with regard to timing. Note
that in other cases this path could possibly have a significant impact on
the dynamic behavior of the system, e.g. in a control application, and
then must be considered accordingly.

Deliverable D13 Version 1.0 23

Figure 8 - The simple example to demonstrate the use of the TIMMO-2-USE
Generic Method Pattern annotated by timing information

Furthermore, an event chain is specified referring to an event that is
observed at the required port of the hardware function called “Sensor”,
and to an event that is observed at the provided port of the hardware
function called “Actuator”. On that event chain a timing constraint is
imposed. This timing constraint – the property and the value – may be
the same as the given one [timing requirement].

The values of all those timing properties are determined, too, and for
good reasons one could specify the following latency timing
constraints:

1. A latency timing constraint imposed on the combination HF, BSF,
and LDM called “Sensor” of 30 ms including a variation of -2 ms
and +5 ms resulting in a time range of 28 ms to 35 ms.

2. A latency timing constraint imposed on the function/component
called “F1” of 20 ms including a variation of -1 ms and +2 ms
resulting in a time range of 19 ms to 22 ms.

3. A latency timing constraint imposed on the function/component
called “F2” of 45 ms including a variation of -5 ms and +3 ms
resulting in a time range of 40 ms to 48 ms.

4. A latency timing constraint imposed on the combination LDM, BSF,
and HF called “Actuator” of 25 ms including a variation of -2 ms
and +10 ms resulting in a time range of 23 ms to 35 ms.

Deliverable D13 Version 1.0 24

The following table summarizes the values of all determined latency
timing constraints.

Component Latency Timing Constraint Minimum Maximum

HF, BSF, LDM
“Sensor”

30 ms, -2 ms, +5 ms 28 ms 35 ms

F1 20 ms, -1 ms, +2 ms 19 ms 22 ms

F2 45 ms, -5 ms, +3 ms 40 ms 48 ms

LDM, BSF, HF
“Actuator”

25 ms, -2 ms, +10 ms 23 ms 35 ms

Totals: 110 ms 140 ms

Additionally, the value of the periodic event triggering constraint that is
imposed on the event observable at the provided port of the basic
software function called “Sensor” is 10 ms including a variation – jitter
– of 2 ms resulting in a time range of 8 ms to 12 ms.

Example – Analyze Timing
Model

In this step – carrying out the task “Analyze Timing Model” – the values
of the timing properties specified are scrutinized.

In the example, executable models that are available for every
component are used to perform simulations in order to analyze the
timing behavior of the given solution. During the simulations it turns out
that the function/component “F1” tends to have a slightly larger
response time than specified during the task “Find Timing Properties” –
typically 5 ms – which leads to a variation of +8 ms.

Further analyses show that the assumptions made during the task
“Create Timing Model” with regard to the dynamic behavior of the inter-
connect between “Actuator” and “F1” were not correct. It turns out that
the variation of the response time is not as large as presumed before.
Continuing simulations lead to the fact that the latency timing
constraints can be adjusted accordingly; in this case the variation is
not more than +2 ms.

Table 1 summarizes the values of all determined latency timing
constraints.

Component Latency Timing Constraint Minimum Maximum

HF, BSF, LDM
“Sensor”

30 ms, -2 ms, +5 ms 28 ms 35 ms

F1 20 ms, -1 ms, +8 ms 19 ms 28 ms

F2 45 ms, -5 ms, +3 ms 40 ms 48 ms

LDM, BSF, HF
“Actuator”

25 ms, -2 ms, +2 ms 23 ms 27 ms

Totals: 110 ms 138 ms

Table 1: New values of the latency timing constraints after performing timing
analyses on the given solution

Deliverable D13 Version 1.0 25

Example – Verify Solution
against Timing
Requirements

The obtained values of the timing properties are now compared
against the given timing constraint transformed from the higher level of
abstraction.

Alternative #1: For this purpose, an event chain is specified that
references the event observable at the required port of the hardware
function called ”Sensor”, playing the role “Stimulus”, and that
references the event observable at the provided port of the hardware
function called “Actuator”, playing the role “Response”.

Alternative #2: For this purpose, an event chain is specified that
references the event observable at the required port of the basic
software function called ”Sensor”, playing the role “Stimulus”, and that
references the event observable at the provided port of the basic
software function called “Actuator”, playing the role “Response”.

This event chain and the timing constraint imposed on it are depicted
by the blue colored event chain shown in the bottom part of Figure 9. A
latency timing constraint is imposed on this event chain and the value
of this latency timing constraint is as follows:

Latency Timing Constraint Minimum Maximum

120 ms, -10 ms, +18 ms 110 ms 138 ms

A comparison of this timing property of the solution with the given one
mentioned in the introduction of the example shows that the solution
satisfies the given timing constraint respectively latency timing
constraint: 110 to 138 ms versus 110 to 140 ms.

Example – Specify and
Validate Timing
Requirements

As a formal step the determined timing property – latency timing
constraint – and its value – 110 ms to 138 ms – are declared as timing
requirement/constraint which shall be considered in the next phase, in
particular when carrying out the task “Create Solution” in the following
phase. Note, that the timing properties, associated with every
functional device and function/component, are not converted into timing
requirements.

Deliverable D13 Version 1.0 26

Figure 9 - A simple example to demonstrate the use of the TIMMO-2-USE Generic
Method Pattern and specifying timing requirements for the next level of abstraction.

Deliverable D13 Version 1.0 28

When investigating ISO 26262, the need to refine requirements at the
current abstraction level before the actual solution is created and
modeled, was manifest. In particular, ISO 26262 explicitly requires the
technical safety requirements (design level) to be specified before the
system design is created and the hardware and software safety
requirements (implementation level) to be specified before the
hardware and software design is created. For this reason the first task
“Refine, Introduce and Validate Requirements” was introduced. The
seven tasks of the GMP applied to safety are shown in Figure 11 and
the first task is briefly described as follows.

Figure 11 - Generic Method Pattern applied to functional safety

Refine, Introduce &
Validate Requirements

In this task, the requirements from previous/upper abstraction level are
refined and complemented to this abstraction level. This means that
some assumptions on the design are made on this abstraction level.
Typically the requirements introduced or refined in this work task are
later refined and/or formalized when the design has been made. For
functional safety, the functional, technical, hardware or software safety
requirements are introduced in this work task and allocated to the
design and detailed in later work tasks, thus creating the
functional/technical safety concept or being part of the
hardware/software design. The refined and introduced requirements
are also validated. This means that the requirements are checked to
be consistent and corresponding to the actual expectations (intended
requirements) of the stakeholders.

Deliverable D13 Version 1.0 30

· Communication Delay

· Slack

· Repetition pattern

· Synchronization

Each TADL guide references the TADL elements, i.e. classes of the
TADL2 meta-model, that are necessary to use the TADL guide.
Examples are events, event chains, etc.

In order to maximize the usefulness of the TADL guide, the guide for
the same TADL2 concept is instantiated for each abstraction level it is
applicable for. Additionally, each TADL guide is completed with context
specific model elements, like the list of relevant EAST-ADL and
AUTOSAR events, and a context specific example.

The concrete TADL guides are not included in this deliverable. They
can be found in the EPF version of the TIMMO-2-USE methodology.

4.2 Tool mentors

A Tool mentor describes which algorithm or tool can be used in a
specific task of the TIMMO-2-USE methodology to solve a specific
timing-related problem at hand. Tool mentors, therefore, represent a
link between the technical results of the work packages 3 (Tools &
Algorithms) and 4 (Methodology). Tool mentors give precise hints on
the possibilities to apply tools and algorithms to solve specific problems
depending on the context. Therefore, for each considered tool or
algorithm, different Tool mentors for each relevant combination of
abstraction level and methodology task were created.

All tool mentors for the tools and algorithms developed in the TIMMO-
2-USE project were created using the following template:

1. Abstraction level: Abstraction level the Tool mentor can be
applied to. If a tool/algorithm can be applied on various
abstraction levels a separate Tool mentor was created for each
abstraction level

2. Use Cases: Main use cases of TIMMO-2-USE for that the Tool
mentor can be applied.

3. Covered aspect: Kind of timing information that is delivered by
the tool/algorithm, like for instance worst-case execution time
(WCET)

4. Algorithm: Detail on the underlying formalism and technique

5. Inputs: Details on the required input data like, for instance,
source code, binary code, etc.

6. Particular constraints on inputs

7. Preparation of input: Explanation of ways on “How to get the
data ready for applying the algorithm”.

8. Invocation of the algorithm: Hints on how to use the tool

Deliverable D13 Version 1.0 31

9. Outputs: Kind and quality of results delivered by the tool /
algorithm

10. Visualization of results: Information on how the output can be
assessed, e.g. textual report, graphical visualization, etc.

The concrete Tool mentors are not included in this deliverable. They
can be found in the EPF version of the TIMMO-2-USE methodology or
in D12.

Deliverable D13 Version 1.0 32

5 Application of the Generic Method Pattern to Use Cases

In this section the application of the GMP to the covered main use
cases, identified within the TIMMO-2-USE project, is conducted. For
each main use case a different instance of the GMP was created,
giving details on all timing related activities. The different use cases
are additionally modelled with SPEM (Software Process Engineering
Metamodel) using EPF (Eclipse Process Framework). This version
can be found under [4].

5.1 Integrate reusable component

Problem statement

In the context of the automotive industry, an OEM offers a range of
vehicles marketed in different classes which provide different extents
of functionalities related to safety, comfort, or similar criteria. Caused
by marketing tendencies and proceedings in technology, vehicles are
being enriched by new functionalities either newly invented or taken
over from higher class vehicles. In that case new functionalities are
integrated step-wise into an existing system during the development
phase. Similar integration problems arise when a new platform
generation is being developed and functions are moved from one ECU
to another.

Usually, new functionalities cannot be introduced independently of the
existing system’s functionalities due to interference with the existing
system’s ECU resources and communication network.

Changing a system’s architecture necessarily changes its behavior
with respect to timing. For instance, end-to-end latencies might
increase due to additional preemptions of tasks or arbitration of bus
messages.

This use case addresses the challenges which arise during the
process of integration.

Overview

In the following, the focus will be on the Design phase but similar
considerations apply to the Implementation phase, i.e the workflow
tasks are basically the same.

The integration may cover one or more ECUs including their
communication paths. We assume that one or several target ECUs
onto which the design function in question shall be integrated has been
selected. The actual ECU selection process is not covered by this use
case. However, there are several aspects that must be considered
when choosing the target ECU(s), like for instance the targeted
functional domain (e.g. body controller), the physical location (e.g. near
front wheels), or the availability of input signals (e.g. sensor signals,
buses), etc.

The investigations on the use case “Integrate Re-usable Component”
assume that the software system executed on the target ECU(s),

Deliverable D13 Version 1.0 33

which the design function is to be integrated into, was developed
according to the Generic Methodology Pattern (see Section 3). This
means, that the model contains all components necessary for fulfilling
the system’s functionality, and all timing properties of the components
are known and described.

The use case considers two integration scenarios:

A) Adding a legacy design function:

Here it is assumed that the legacy design contains TADL2
compliant timing information.

B) Developing and adding a new design function:

For scenario B, there are two approaches are distinguished:

B1) Developing the new design function stand-alone without taking
into account interactions with the target system. In this case a
separate model is created for the new design function including
timing information. In a second step this new model is merged
into the existing one as in scenario A.

B2) Developing the new design function directly into the existing
model explicitly taking into account interactions with the target
system.

Approach B1 includes the development of a new functionality from
scratch. It handles timing information according to the GMP resulting in
a stand-alone solution. This stand-alone solution would then have to be
integrated into the existing solution which is identical to scenario A.

In the remainder of this section, the scenarios A and B1 are
discussed. The focus lies, thus, on the integration of one EAST-
ADL model into another, both models already containing timing
information.

The further discussions refer to the Design phase. They can also be
applied to the Implementation phase. During the Vehicle and Analysis
phases, models consist of pure functional components where end-to-
end delays are composed by chaining budget segments of the
components, and resources are considered to be infinite.
Consequently, integration effects cannot be investigated during those
phases. In contrast, during the Design phase components are
declared to be realized in hardware or software resulting in a Hardware
Design Architecture (HDA) and a Functional Design Architecture
(FDA). On this level, and on the lower Implementation level, the
integration aspect can be investigated, i.e. the interference of
components due to competition for common resources.

Mapping to Generic
Methodology Pattern

Figure 13 illustrates the integration process, and how it maps to the
GMP presented in Section 3.

In the following paragraphs, the existing system which the design
function is integrated into is referenced with the suffix _EXIST (e.g.
Solution_EXIST) while the design function to be integrated is
referenced with the suffix _INTEG (e.g. Solution_INTEG). The final

Deliverable D13 Version 1.0 34

system including both solutions is referenced with the suffix _BOTH
(e.g. Solution_BOTH).

Deliverable D13 Version 1.0 35

Figure 13 - Generic methodology applied on integration of a reusable component.

Create Solution

Analyze Timing Model

Merge Solution_INTEG
into Solution_EXIST
considering usage of
common resources

Analyze
Solution_BOTH

Solution_INTEG

Solution_EXIST

Create Timing Model

Solution_BOTH

Analysis report

TimingModel_BOTH

Update
Solution_INTEG’s
timing properties in the
presence of
Solution_EXISTTimingModel_INTEG

TimingModel_EXIST

Update
Solution_EXIST’s
timing properties in the
presence of
Solution_INTEG

Verify Solution against Timing Requirements

Verification
report

Check fulfillment of
Solution_INTEG’s
timing requirements

Check fulfilment of
Solution_EXIST’s
timing requirements

Attach Timing Requirements to Solution

Attach Timing
Requirements to
Solution_BOTH

Annotated Solution_BOTH

TimingReq_INTEG

TimingReq _EXIST

Specify and Validate Timing Requirements

Specify and Validate
Timing Requirements
for Solution_BOTH

Timing Requirements

TimingReqs_INTEG

TimingReqs_EXIST

Deliverable D13 Version 1.0 36

Create Solution

When performing the task Create Solution, the components of
Solution_EXIST and Solution_INTEG have to be brought together to
become Solution_BOTH. From the functional perspective, the
solutions still may co-exist in the resulting model as long as no
functional synergy is detected. This also implies that both solution
topologies including inter-component communication may remain
unchanged. However, it will often be a design goal to search for
synergies in order to provide cost-efficient solutions. Therefore, reuse
of input/output ports and network messages is advised, e.g. in case
both solutions use the same sensor signal, or a required signal is
already available on another ECU.

Attach Timing
Requirements to Solution

It is assumed that the resulting Solution_BOTH will contain the same
events like the previous Solution_EXIST and Solution_INTEG, so that
all timing requirements applied on the previous solutions persist in
Solution_BOTH. If functional synergy is exploited in Solution_BOTH,
then some requirements will refer to common event chain segments
indicating timing dependencies.

Create Timing Model

At first, a timing model is created for Solution_BOTH as described in
the GMP. Large parts of this timing model may be adopted from the
previous solutions without modification. As described above, some
parts of the previous timing models may overlap, if functional synergy
is exploited, i.e. two events from the previous solutions are merged into
one and the resulting event chains have common segments. If for
example, a sensor signal is reused as a common resource in
Solution_BOTH, then the segments of a timing event chain have to be
adapted, but the requirement for the end-to-end latency is the same.

The following two subtasks are described in more detail:

1) Update _INTEG’s timing properties,

2) Update _EXIST’s timing properties.

The focus in subtask 1 is on updating the timing properties of
Solution_INTEG, like WCET of functions. This is necessary, since
usually the target system already accommodating Solution_EXIST is
different from the system which Solution_INTEG was developed on.
There might be different ways of updating the timing properties. For
instance, for worst-case execution times the following approaches are
possible:

· Transforming Solution_INTEG’s timing properties from the old
to the new hardware/software design architecture.

One possible method here is extrapolation, i.e. given an old
timing property value the new value is computed by applying an
extrapolation formula. The simplest case is linear extrapolation.
For example, if the processor clock rate changes, then the new

WCET may be estimated as WCETnew = WCETold * Clockold /

Deliverable D13 Version 1.0 37

Clocknew, where Clock is the number of processor cycles per
second. For this simple formula it is assumed that the number
of processor cycles for reading and writing memory remains
the same. Note, that extrapolation is a kind of estimation, so it
may be necessary to add a safety margin to the new WCET
and to classify it accordingly. One advantage is that
extrapolation can be supported by tools.

· Measuring execution times of Solution_INTEG’s components
on the new target – this follows a bottom-up approach and
requires the availability of the target processor and the
possibility of easily porting Solution_INTEG on the target
processor before integration.

· Complete re-computation of the WCET by static analysis of the
new function in the environment of Solution_BOTH. This also
requires detailed knowledge about the implementation on the
new target.

The methodology does ot give advice on how to update the necessary
timing properties; this is subject to specific characteristics of a
particular project.

Subtask 2 deals with updating the timing properties of Solution_EXIST.
These timing properties might change in the presence of the integrated
design function. Examples of timing properties subject to change are:

· WCET (e.g. due to caching effects, pipelining, etc.)

· Scheduling parameters (e.g. priorities, periods, runnable order,
etc.).

· Arbitration of network messages.

Analyze Timing Model

In the task Analyze Timing Model, the Solution_BOTH model is
analyzed by means of, for instance, simulation and/or static analysis.
This will result in timing property values and metrics relevant for judging
the timing behavior of Solution_BOTH.

In particular, it is necessary to also re-analyze the timing behavior of
components originating from Solution_EXIST, because after
integration some of their timing property values may have changed.
For instance, response times (WCRT) may increase due to inter-
component interference from added components (see Figure 14).

Deliverable D13 Version 1.0 38

Figure 14 - Timing behavior before and after integration

Figure 14 illustrates possible effects due to integration. Both
Solution_EXIST and Solution_INTEG have functions which are
activated with 10ms period. Fct_10ms_INTEG has been mapped into
the same 10ms task which contains Fct_10ms_EXIST. Certain
considerations led to the design decision that Fct_10ms_INTEG shall
be placed at the beginning of the task. Of course, this leads to an
increased response time of the 10ms task (and all lower-priority tasks)
compared to before the integration. Also the response time of function
Fct_10ms_EXIST will increase in the depicted scenario.

Verify Solution against
Timing Requirements

The task Verify Solution against Timing Properties compares the
analysis results for Solution_BOTH with the requirements.

Besides verifying the timing requirements of the integrated
Solution_INTEG also the timing requirements of the original system
Solution_EXIST, which is now a part of Solution_BOTH, has to be re-
verified.

Specify and Validate
Timing Requirements

The scope of the task Specify and Validate Timing Requirements is
to identify timing requirements for the next lower level of abstraction.
These timing requirements refer to event chain segments in the timing
model of Solution_BOTH. The time budgets for each segment must not
exceed the specified total budget for the overall event chain. They
have to be transformed into requirements for the lower abstraction
layer in the next step.

The activities to be done in the task Specify Timing Requirements are
not specific to this use case. Therefore, this task is not described here
in more detail.

Fct_10ms_EXIST

Task10msSolution_EXIST

Fct_10ms_INTEG

Task10msSolution_INTEG

Task10msSolution_BOTH

Fct_10ms_EXISTFct_10ms_INTEG

Deliverable D13 Version 1.0 39

Remark

If the reusable component (Solution_EXIST) was already applied in
other types of vehicles as described in the beginning, then it is likely
that not only a Design-level solution exists, but also an
Implementation-level solution, which has to be ported to the new
platform.

On the Implementation Level similar tasks have to be performed as
described for the Design Level, i.e. an existing AUTOSAR
Solution_EXIST has to be integrated into an AUTOSAR
Solution_INTEG. Additional complexity results from the re-use of
common software components, e.g. for basic software services.
Again, the timing properties of both solution parts will persist, but their
values may change and must be verified or validated against the
original requirements.

Deliverable D13 Version 1.0 40

5.2 Specify timing budgets

Problem statement

A driver generally has certain expectations on the reactivity of the
vehicle he is driving. For example, it would not be acceptable to wait for
5 seconds for the doors to unlock after he has pressed the key. A
more acceptable time limit would be 1 second. The main characteristic
of this example is that the time limit refers to a stimulus from and to a
response to the environment of the system. Such time limits, hereafter
called end-to-end delays (or requirements), are specified based on a
user’s perception with respect to certain functionality.

In a design, the data and control flow paths between a stimulus and a
response generally go through several components. Each path
delimited by a stimulus and a response that relate to the environment
are called end-to-end event chains. The components in the end-to-end
event chain are to be implemented by different suppliers or in-house
development teams. It therefore has to be clear for each such supplier
or team exactly how big portion of the total end-to-end delay is
available for the component that they implement.

A similar situation occurs when a control algorithm needs to impose a
maximum age on its sensor input data. In that case, an event chain is
defined from sensor to the input of the control function. This type of
time budgeting and the one mentioned previously are handled in a
similar way methodologically, but requires a different use of TADL
notation due to the need of a slightly different semantics (reaction vs.
age). The following description will not make a clear distinction between
these two types of time budgeting.

Following from the above, time budgeting is about dividing an overall
end-to-end delay into smaller segments, in order to specify how big
portion a component (or subcomponent) in the path between stimulus
and response may take.

Overview

An end-to-end delay generally originates from either an explicit or
implicit user requirement or expectation, or from control performance
needs. Other sources of end-to-end delays are legislation, standards
or legacy. The methodology described here focuses on how to
distribute such an end-to-end latency over the components and
subcomponents in the end-to-end event chain.

At the same time with this top-down segmentation of the end-to-end
delay, another part of the development project starts with defining
hardware, software platforms and other low level details. Legacy
functions are also already being introduced. All this means that there is
already early in the development process detailed information about
the final solution that could be useful when assigning time budgets.
Thus, it is beneficial to also introduce a bottom-up flow of timing
information for the purpose of time budgeting. This will reduce the
number of design iterations. A major issue is how to handle this mix of

Deliverable D13 Version 1.0 41

bottom-up and top-down information. Figure 15 illustrates the main idea
of time budgeting.

For example, on vehicle level, a requirement may postulate that “The
doors shall be unlocked not later than 1 second after a valid
transponder key has been recognized”. This requirement specifies the
end-to-end delay that is to be segmented over the end-to-end event
chain on the various abstraction levels.

Since the operational level is the lowest abstraction level, time
budgeting is not performed at this level. It only serves to feed the
bottom-up flow with measured execution data, and to verify that no task
execution times in the final implementation exceed the time budgets
specified on implementation level.

Figure 15 - The principles of time budgeting

The time budgeting process contains, in addition to the above, clear
elements of negotiation between OEMs and suppliers, as well as
exchanging timing models between the different parties. For this
reason, it is heavily encouraged to combine the time budgeting
process with the processes proposed in the use cases Negotiate time
budgets and Exchange models.

Definitions

Before describing the time budgeting methodology, we need to clarify
the concepts of time budget influencing property, slack and margin.

A time budget influencing property is a property that has the potential
to influence the response time of a certain end-to-end event chain, and
thereby also the required time budget. The following properties with this
potential have been identified:

· Worst-case execution time (WCET)

· Response time

· Communication delay

· Interference time

· Task period

Slack is a portion of an end-to-end delay that is not allocated to any
budget segment. Thus, there is only one slack per end-to-end delay.
Slack is generally not communicated to suppliers, but rather serves as
a reserve for interference from other not yet implemented functionality.

125
ms

200
ms

400
ms

75
ms

25
ms

30
ms

100
ms

9
ms

33
ms

200
ms

75
ms

Time Budget
1sVehicle

Analysis

Design

Implementation

Deliverable D13 Version 1.0 42

Margin is a part of a budget segment that is excess to the response
time of the corresponding component. There is thus at most one
margin per segment. Since margin is part of a budget segment, it is (at
least implicitly) communicated to suppliers.

Mapping to generic
methodology

Figure 16 presents the time budgeting process, and how it maps to the
GMP presented in Section 3. The Create timing model and the
Analyze timing model tasks have been split into several subtasks
each in order to illustrate the activities to be performed in these tasks
in more detail. Moreover, the other GMP tasks have been renamed to
better reflect their purposes in the context of this use case. The
following paragraphs will describe the figure in more detail.

Refine, Introduce and
Validate time budgets

This task translates the time budgets from the immediately higher
abstraction level into a textual equivalent on the current abstraction
level with an imagined or anticipated solution (or at least main
characteristics thereof) in mind. Such textual budget requirement are
usually of the form “The Controller shall not take longer time than 50ms
from receiving an input to producing an output”. The Controller is in this
case a known entity from the higher abstraction level, and it is
assumed that it will be refined into a distinct set of
functions/components at this abstraction level.

Create solution

The solution is created as specified in the generic methodology. It
should however be emphasized that this solution shall be created while
taking the textual time budget requirements into account. This means,
for instance, that if the time budget over a series of components is
very tight, it may not be appropriate to allocate the components on
different ECUs scattered across the vehicle, so that a large portion of
the available budget is wasted on communication. Measures must be
taken to maximize the probability that the solution meets the time
budget requirements. In order to make sound decisions about the
distribution of components based on time budgets also information
about the amount of interference is needed. This information can, for
instance, be derived bottom-up from existing parts of the solution.

Deliverable D13 Version 1.0 43

Figure 16 - The time budgeting methodology

Create solution

Refine, Introduce and
Validate time budgets

Time budget [Textual]

Time budget [Higher]

Solution

Attach time budget to solution

Time budget
[Attached]

Identify needed time budget segments

Time budget segments

Identify needed time budget influencing
properties

Time budget influencing properties

Annotate time budget influencing properties
with known or assigned values

Time budget influencing properties

Time budget influencing properties

Verify & Validate time budget

Verification report

Specify & Validate time budget

Time budget

Propose values for time budget
segments

Time budget proposal

C
reate T

im
ing m

odel
A

nalyze tim
ing m

odel

Estimate values for time budget
influencing properties

Deliverable D13 Version 1.0 44

Attach time budget to
solution

In this task, the textual time budgets are formalized based on the
solution. In other words, the textual requirements are translated into
TADL2 elements, which are attached and linked to the solution. This
task hence models (formalizes) the boundaries in which the
subsequent time budgeting process must stay.

Create timing model

The GMP task Create timing model is divided into three tasks with
respect to time budgeting:

· Identify needed time budget segments

· Identify needed time budget influencing properties

· Annotate time budget influencing properties with known or
assigned values

The task Identify needed time budget segments refines the time
budgets from the higher abstraction level with respect to the more
detailed solution structure that has been developed at this abstraction
level, and with respect to the distribution of components to suppliers if
applicable. Note that the task only identifies which refinements
(segments) would be necessary for passing on as budget
requirements to the next abstraction level. It does not make any
estimations on exact numbers, i.e. exactly how long budget should be
assigned to a certain segment.

An extreme case would be to create a segment for each
function/component that is in the scope of a certain time budget.
However, in the case that several suppliers are involved in
implementing two or more consecutive functions/components, such an
approach might be too restrictive and impose unnecessary
constraints. It is sufficient to provide one overall time budget for all
consecutive components in the time budget event chain. If such an
approach is not compliant with respect to another time budget
requirement, the approach cannot be applied. Figure 17 illustrates this
approach with an example.

Figure 17 - Example of a budget segment identification strategy

The example in Figure 17 contains three functions. Function A is to be
implemented by supplier 1, and functions B and C by supplier 2. The
chain of these three functions has a time budget of 100ms. This overall

Func. A

Supplier 1

Func. B

Supplier 2

Func. C

Supplier 2

100ms

X ms Y ms

Deliverable D13 Version 1.0 45

budget will by this task be divided into two segments, one for each
supplier. The time bounds in these segments are still unknown, as
indicated by the variables X and Y (see Symbolic time expressions).

The task Identify needed time budget influencing properties is the
first step towards acquiring the necessary information for completing
the identified time budget segments with concrete values. The task
tries to answer the question of what background information is needed
and relevant for assigning concrete values to a certain segment.
However, the task does not fill these properties with concrete values.

In the task Annotate time budget influencing properties with known or
assigned values, the time budget influencing properties identified
previously are completed with time values when possible. This activity
falls into one of three categories:

1. The information can be retrieved from a lower abstraction level

2. The property is already known from another context

3. The property is something that we impose on the system

The first category reuses information that has already been derived for
the parts of the solution that has already been developed bottom-up at
a lower abstraction level. The lower-level properties cannot directly be
copied to the current abstraction level, since the solution structure
looks different and has less detail. The events on the lower abstraction
level therefore have to be mapped to events on the current abstraction
level. Once this is done, the delay constraint itself can be copied and
contain the same information as it did on the lower abstraction level,
with the difference that it is associated with the current-level events.

The second category tries to find information from an external source,
for example another project where the same function has been used.

Other timing properties of the system do not follow from higher
abstraction levels or can be found by a particular analysis method, but
they are rather design decisions. In the third category, the developer
may assign timing properties, based on his experience, in such a way
that he believes that the system will perform timingly. Previously known
properties, belonging to categories 1 and 2, must be considered. The
assigned time budget influencing properties will be verified in a
separate task and possibly be revised in a later iteration.

Analyze timing model

The GMP task Analyze timing model is divided into two tasks with
respect to time budgeting:

· Estimate values for time budget influencing properties
· Propose values for time budget segments

The task Estimate values for time budget influencing properties fills
the remaining blanks (or rather unbound variables in symbolic
expressions) with concrete values. There are at least two different
strategies on how to do this:

1. Analyze the solution, its requirements and time budget influencing
properties

2. Extrapolate values based on rapid prototyping/sneak-peak on lower
abstraction levels.

Deliverable D13 Version 1.0 46

The first strategy analyses the solution and its requirements for time
budget properties that are a direct implication of the solution and the
requirements at the current abstraction level. Typical techniques for
obtaining such properties are formal analysis and simulation. At
operational level, the task performs measurements on a physical
running system, which a higher abstraction level may transform and
apply to its models in the task Annotate time budget influencing
properties with known or assigned values of that abstraction level.

The second strategy addresses a problem that occurs in particular at
high abstraction levels. The information needed for finding the sought
time budget properties is not present at that level, and it is not found
among the transformed properties. It is thus not feasible to apply
strategy 1. In such cases, it might be necessary to conduct rapid
prototyping to quickly obtain a temporary extrapolation of the system
models that will be developed in later development phases at lower
abstraction levels. The analysis is then performed on these lower-level
temporary models in the same way as suggested in strategy 1. The
result is then transformed back to the model at the original abstraction
level and the temporary models are discarded. Naturally, such an
approach will not give 100% accurate results, but will still give a hint on
which values are reasonable. In order to make this strategy feasible
and efficient, it is important that all steps, including the extrapolation,
are automatic.

The task Propose values for time budget segments fills in the values
of the time budget segments identified previously. This has to be done
considering the acquired time budget influencing properties, in
particular the response times. In general, it is desirable to add a slight
margin to the budget segment compared to the estimated and analyzed
response times in order to provide for more relaxed implementation.
However, it could even be the case that the resulting time budget for a
certain component is smaller than a WCET property over the same
component that was transformed from a lower abstraction level. In
such cases, the lower-level solution needs to be reworked to comply
with the (new) time budget.

When making a time budget, not only the current solution (regardless
of abstraction level) needs to be considered, but also the influence of
future functionality. Future functionality refers to both functionality that
is planned but not yet implemented, and to still unknown functionality
that potentially is to be included in future generations of the system.
The task Propose values for time budget segments therefore also
needs to compare the solution and its time budget properties with the
product plan to identify which functionality is still to be added to the
system, and also make an assessment of the influence of unknown
functionality. Based on this information, the developer needs to assess
how much the still missing functionality affects the end-to-end event
chain currently under investigation. This will eventually lead to
introducing slack in the final time budget. Typical properties that are
affected are communication delay (increased congestion) and task
execution periods (increased competition for computation power),
which both lead to a longer end-to-end delay.

Verify & validate time
budget

Deliverable D13 Version 1.0 47

The task Verify & validate time budget compares the time budget
proposal with the initial requirements. The main criterion to be checked
is that the sum of the segments, including slack, does not exceed the
end-to-end delay requirement.

Specify & validate time
budget

The task Specify & validate time budget makes a final revision of the
time budget proposal and documents this as a requirement for the next
phase. It should be noted that slack is not part of the requirements that
are handed over to the next phase/abstraction level, whereas margins
are included as part of the budget segment and thus is part of the
requirement.

Application of symbolic
time expressions for time
budgeting

In some tasks of the time budgeting process, most notably related to
Create timing model and Analyze timing model, timing properties that
are inherent in the solution and input requirements are obtained,
whereas others appeal to a big extent to the subjective judgment and
experience of the developer. Symbolic time expressions can be a
powerful tool to capture the relation between properties and help
navigating through the design space.

The concept will be illustrated on the example shown in Figure 18. The
figure shows an end-to-end delay of 1 second, which shall be
distributed over five components and communication links (A-E). The
delays of components A, B and D are assumed to be either
transformed, determined or extrapolated WCETs with values 200ms,
50ms and 100ms respectively. Each component has further been
assigned a margin, mX, where X is the name of the component. Margins
of 10ms and 20ms have been added to the WCETs of components A
and D respectively, to create some additional space in the resulting
budget segments. This was, in this example, not found necessary for
the other components. These values cannot be further elaborated
unless the solution or input requirements are changed. A slack, s, has
moreover been introduced. For the sake of the example, the slack is
assigned 100ms.

Figure 18 - Time budgeting example using symbolic time expressions

The only remaining unknowns are the WCETs of components C and E.
These values are to be filled in based on the developer’s experience.
The main idea behind the approach suggested here is to evenly
distribute the remainder of the end-to-end delay on the components
with unknown delay based on a weight. The weight shall reflect the
relative need for a long time budget. By inspecting the behavioral
models and other descriptions of the components, the developer will
get a feeling for how long time the component would need to perform its

EC DA B

1 second

200ms + mA 100ms + mD50ms 3x 2x s

Slack

Deliverable D13 Version 1.0 48

task. In the example of Figure 18, component C is expected to need
50% longer execution time than component E. This leads to the
following equations:

200 + 10 + 50 + 3x + 100 + 20 + 2x + 100 = 1000

x = 104

This gives a budget of 312ms for component C and 208ms for
component E.

This approach can also be extended to include the slack and margins.
As a second example, we could assign 0.1x and 0.2x as the margins of
components A and D respectively, and x as slack. This leads to the
following equations:

200 + 0.1x + 50 + 3x + 100 + 0.2x + 2x + x = 1000

x = 103

Thus, mA = 10.3, mD = 20.6, s = 103, and the budgets of components C
and E are assigned to 309ms and 206ms respectively.

The main advantage of using the symbolic time expression capability
of TADL instead of a pure equation solver is that the developer’s
underlying thoughts and intentions are saved in the model, and thus
can be elaborated by tools.

Deliverable D13 Version 1.0 49

5.3 Specify synchronization timing constraints

Problem statement

A vehicle offers many different features to the driver, such as braking,
steering etc. Today, these features are typically implemented using
both mechanical and electronic components. The fact that the
electronic system of the vehicle is integrated with different mechanical
solutions implies that the vehicle electronic system inherently contains
a certain degree of parallelism. That is, the system needs to monitor
and control several simultaneous sources of input and output. Quite
often it is also the case that the input or output needs to be
synchronized in order to provide a notion of simultaneity. For example,
when braking, it is crucial that the brake forces that are applied at each
wheel also are applied at the same time. A correct behavior is
governed by the introduction of synchronization constraints during the
vehicle design. Thus, this use case deals with the formulation of
synchronization constraints and how they are refined during the
design.

This use case only addresses the problem of synchronization of
events, regardless the order in which they occur.

Overview

According to the timing constraint logic of TADL, the synchronization
constrain is specified as follows: given a set of events and given an
occurrence of any event in this set, then all the other events of the set
must occur at least once within a certain temporal window. Such a
temporal window is called tolerance.

Since the synchronization constraint deals with time delay between
event occurrences, at a first glance it may look similar to the use case
“Specify Time Budgets”. However, the main difference relies on the
concept of generic sets of events versus the concept of event chain
used by the “Specify Time Budget” use case. An event chain is a
particular set of two events composed by a stimulus and a response.
A generic set of events is composed by any number of events, for
which their nature of stimulus/response is not necessarily
characterized. This implies that while the two events of the event chain
are ordered with respect to time (the response occurs after the
stimulus), a generic set of events can be composed by an arbitrary
number of events for which is not defined an order relationship.
Moreover, the events of a generic set of events may not have a
characterization in terms of stimulus/response.

To give more insights about this constraint, we go through some
examples. For instance, consider the adaptive cruise control system in
a passenger car. An adaptive cruise control system takes the decision
of the torque that must be applied to each wheel based on the
information on the current vehicle speed and on the current distance to
the vehicle in front. To compute the correct torque value, the controller
requires the received information at least to represent the environment
at the same time instant. This means that the events “pick the current
vehicle speed” and “pick the distance to the front vehicle” must occur

Deliverable D13 Version 1.0 50

at the same time. It is then required synchronization between these
two. To compute the correct torque value, it is also required that the
information picked by the sensors arrives to the controller within a
certain time delay. Such an additional requirement can be
accommodated by using the “Specify Time Budget” use case
considering for example the events “pick the current vehicle speed”
and “the information is available at the controller input” as an event
chain (note that such events represent a stimulus and a response).
Finally, to design a correct braking system, we also want the four
wheels to stop at the same time when a braking action is performed.
Hence, the set composed by the four events “stop wheel” related to
each wheel must be also synchronized.

From this example several interesting properties arise that allows us to
give a comprehensive understanding of the synchronization constraint
in a more general framework. In the example, we need first a
synchronization constraint over the set of the two events “pick the
current vehicle speed” and “pick the distance to the front vehicle”:
despite this set has dimension two, it does not represent an event
chain being the events two stimuli. Second, we need a synchronization
constraint over the set of the four events “stop wheel” associated to
the four wheels of the car: such a set of events has dimension four,
and all the events can be classified as responses. Finally, for both the
aforementioned sets of events is not important the order in which the
elements of each set occur. In summary, according to the TADL
description of this use case, synchronizing the events corresponds to
impose a tolerance on each set of event.

The full function of the adaptive cruise control at the presented level of
abstraction is realized by combining two synchronization constraints
together with an end-to-end delay constraint, that represent the
maximum time allowed between the brake pedal pressure occurrence
and the car stop occurrence. However, in both the defined generic
sets of events no ordering is required, while in the end-to-end delay
constraint an ordering is implicitly defined through the stimulus and the
response of the event chain. We remark that is not difficult to think
about functions that may require a certain order of several events
occurrences in addition to some synchronization constraints. In such
cases, the synchronization constraint must be used in combination with
some ordering constraint.

According to the EAST-ADL development phases, such generic sets
of events may become richer, or new generic sets of events that must
be synchronized may appear. For instance, consider the braking
system of a passenger car as example, and consider the following
feature provided at the Vehicle Level stated as: ”stop the car within
500ms after a brake pedal pressure occurrence has been detected”.
In this statement it is easy to locate two events that are one stimulus
and one response (“brake pedal pressure occurrence” and “stop the
car”), and an end-to-end time delay constraint (“500 ms”) that can be
accommodated with the “Specify Time Budget Constraint” use case.

Deliverable D13 Version 1.0 53

subtracting events to the existing generic sets of events for which a
synchronization constraint is required. The refinement of such sets of
events depends on the particular solution created by the task Create
solution. The required tolerance imported from the higher abstraction
layer and initially attached to a given set of events, is now attached to
the correspondent refined set of events.

Identify new sets of
events

When a solution is created it can happen that new events are defined
and they need synchronization to correctly implement a required
function. Given the current solution, this task identifies if there are new
sets of events that must be synchronized. Furthermore, this task
imports the timing properties offered by the lower abstraction level,
merging them together with the timing requirements in a unique artifact.

Determine tolerances

Given the timing model obtained from the current solution, this task
determines its timing properties. For instance, it quantifies the
tolerances of both the existing and refined sets of events and the new
sets of events devised by the current solution. Whenever possible,
such quantification is obtained both by analysis and by simulations. At
the end of this task, the timing properties of the devised solution are
qualified, quantified, and are merged together with the timing properties
offered by the lower abstraction level and with the timing requirements
imported from the higher abstraction level. Hence, the timing properties
of the current solution, the timing properties exported from the lower
abstraction level and the timing requirements coming from the upper
level are ready to be verified.

Verify and validate

This task verifies if the time properties extrapolated from the current
solutions together with the time properties exported from the lower
abstraction level meets the requirement provided by the task Refine,
introduce and validate timing requirements. Notice that the comparison
between the current solution time properties and the timing
requirements derived from the upper level follows a top-down
approach, while the comparison between the current solution
properties and the exported timing properties from the lower
abstraction level follows a bottom-up approach.

Specify and validate
synchronization
requirements

This final step involves adding the modeling constructs necessary to
indicate that the formulated constraints indeed are to be considered as
requirements for the lower abstraction level. The value of the
tolerances devised during the task Determine tolerances of the new
sets of events identified by the task Identify new sets of events
become tolerance requirement of these new sets of events.

Deliverable D13 Version 1.0 54

5.4 Revise erroneous timing information

Problem statement

When developing time-critical systems, it is almost inevitable that some
unintended behavior passes through the development process. It is
then of great importance that the verification techniques can catch the
unintended behavior so that the designer may have a good chance to
revise it.

This use case provides a generic pattern on how a violation of a timing
requirement is detected and corrected. The pattern should then be
combined with another use case, related to the type of requirement
violation, describing a straight-forward error-free development process
that provides the detailed hints on how to accurately develop a system
with respect to the problem addressed by that use case (and the
requirement violation in question).

The generic pattern is moreover exemplified with a set of decision
trees related to the time budgeting problem. The example
demonstrates, for each abstraction level, how to decompose a specific
type of timing requirement violation and how to proceed to identify the
cause of the violation, and also what measure could be taken to revise
the system so that the requirement finally holds.

Generic pattern

As opposed to most other use cases, the starting point of this use
case is not to start constructing or refining a system. The starting point
is rather when the system has already been constructed, and we want
to find out if its timing behavior conforms to its requirements. The use
case is activated when verification has revealed a requirement
violation, which needs to be corrected. The methodology of this use
case thus starts with the GMP task Verify timing requirements and
continues with an iteration (which according to the assumption of the
GMP is implicit) where the solution is modified to comply with the
requirement.

In some cases, the requirement violation cannot be resolved at the
same abstraction level as where the violation was found. It might be
needed to acquire more detailed design information from a lower
abstraction level, or to give feedback to a higher abstraction level that
there might be a risk of a violated requirement.

Figure 21 illustrates the process.

Identify timing requirement
violation

This task is in principle equivalent with the GMP task Verify solution
against timing requirements. The task compares the solution together
with the timing model and analysis results with the attached timing
requirements.

The main difference is that this task expects that there is a mismatch
between solution and timing model on the one hand, and the timing
requirements on the other – i.e the timing requirements are violated.

Deliverable D13 Version 1.0 55

The output of the task is a Timing requirement violation. This artifact
identifies the violated timing requirement and any diagnostic
information that could help in locating the cause of the violation.

Find cause for timing
requirement violation

Once a timing requirement violation has been identified, the task Find
cause for timing requirement violation investigates potential
diagnostic information trying to find out one or several possible causes
of the problem. The task of finding causes is to a large extent
dependent on the experience of the developer.

For common types of requirement violations, an organization could
build a set of decision trees, which elaborates on possible causes and
corrective actions for those types of requirement violations. In section
5.4.1, such an approach is illustrated on an example of the requirement
violation exceeded time budget.

Resolve violation at the
current abstraction level

This task executes corrective actions that are derived based on the
identified cause, in order to resolve the requirement violation. Usually,
these actions refer to modifying information that was produced by a
task in the normal development process. It is therefore advisable to
find and consult that task (again). The charts in the example of section
5.4.1 also provide a hint on corrective actions related to a certain
cause of a certain requirement violation.

After having performed the corrective action, it is also important to
check what other parts of the system that may have been affected.

Deliverable D13 Version 1.0 56

Figure 21 - Process for the use case Revise erroneous timing information

Note that changes may influence all lower abstraction levels, and many
components and functions on each of those abstraction levels.

Reverify the violated
timing requirement

After revising the system, it is necessary to re-verify it with respect to
the previously violated requirement. If the requirement is still not
satisfied, the whole process needs to be done again. Otherwise, the
process ends successfully.

Updated solution

Timing requirement
violation

Timing requirement
violation cause

Identify timing
requirement violation

Resolve violation at the
current AL

Find cause for timing
requirement violation

Reverify the violated
timing requirement

To the higher
abstraction level

To the lower
abstraction level

Transform timing
requirement violation from
higher AL

Timing requirement
violation cause [Higher]

Timing requirement violation
cause [Lower]

Transform timing
requirement violation from
lower AL as a risk

Annotated
solution

Timing model

Timing requirement
violation cause [Higher]

Timing requirement
violation cause [Lower]

V
e

rify so
lu

tio
n

Attach timing req.

Create solution
Create timing model
Analyse timing model

Verify solution

Updated timing model

Analysis report T
i
m
i
n
g

m
o
d
e
l

Updated
analysis report

Transf. timing prop.

Deliverable D13 Version 1.0 57

Transform timing
requirement violation from
higher abstraction level

If it was not possible to resolve the requirement violation at a certain
abstraction level, it is advisable to examine other neighbouring
abstraction levels. In case there is ground for believing that there is a
need for obtaining more detailed and refined information, it is
necessary to involve the lower abstraction level.

This task identifies the requirement at the lower level that corresponds
to the violated requirement at the original abstraction level.

After having retrieved the more detailed information at the lower level, it
needs to be transferred back to the original abstraction level as a
property in the timing model of that abstraction level.

Transform timing
requirement violation from
lower abstraction level as
a risk

If it was not possible to resolve the requirement violation at a certain
abstraction level, it is advisable to examine other neighbouring
abstraction levels. In case there is ground for believing that there is a
need for modifying or relaxing requirements, it is necessary to involve
the higher abstraction level. Since the requirement in question was
already verified at the higher abstraction level before being given to the
current level, it is not appropriate to say that it has been violated.
Instead, we say that there is a risk that the requirement will be violated
and that it needs further investigation.

This task identifies the requirement at the higher level that corresponds
to the violated requirement at the original abstraction level.

After having modified the higher-level requirement, it needs to be
transferred back to the original abstraction level as an updated
requirement.

5.4.1 Example: Exceeded time budget

This section provides an overview on how the search for causes and
corrective actions could be organized for the requirement violation
Exceeded time budget. It should be pointed out that the charts are in
no way exhaustive, and should only be regarded as inspiration.

The example is organized in several charts, one chart per abstraction
level or AUTOSAR view. The top-level node captures the requirement
violation. Below the top node there is a hierarchy of possible causes
for the requirement violation. The leaf nodes capture either a
corrective action or a redirection to another abstraction level (i.e.
another chart).

The charts have the form of a decision tree, which in the end
concludes one distinct corrective action. It is however important to
understand that each design and requirement violation is unique and
that it therefore is difficult, not to say impossible, to provide an
exhaustive recipe on how to revise the system. The decision trees

Deliverable D13 Version 1.0 64

5.5 Exchange models

Problem statement

The scope of this use case is a single ECU that is under the
responsibility of the OEM.

Modern automotive systems are developed in the context of a complex
supply chain. The OEM contracts the development of many
components to so-called Tier-1 suppliers, which in turn entrust the
development of some sub-components to their contractors.

Obviously, following such design style none of the involved parties is in
possession of all system details that are necessary to reason about
the global timing behavior. Unfortunately, there is no simple loophole to
this situation, since the individual parties aim to protect their intellectual
property and hesitate to share implementation details. This results in
the fact that most timing related integration problems can only be
discovered at integration time, i.e. when the implementation is done,
which of cause leads to lengthy and costly development iterations.

The aim of this use case is to define a process between an OEM and
his suppliers that allows to reason about the system timing behavior
already at early design stages while protecting the individual intellectual
properties. The process is based on the exchange of so-called timing
models and is split into two parts:

1. The supplier side describing the supplier’s development
process and describing how the timing model for the developed
functionality can be derived.

2. The OEM side describing the OEM’s development process and
describing how the timing models delivered by the suppliers can
be used to validate the overall system timing behavior.

Please note that the use case focuses on the development of control
applications which are the source of a large part of timing constraints
in automotive systems.

5.5.1 Supplier Side

Figure 31 shows the supplier side of the use case. Its general
structure follows the GMP that is described in Section 3.

Deliverable D13 Version 1.0 65

Figure 31 - Supplier Side of the Exchange Models Use Case

Deliverable D13 Version 1.0 66

The task of the supplier is to create a solution taking into account
timing requirements of the OEM and additional functional control
performance requirements. After attaching the OEM’s timing
requirements to the created solution, the timing model can be extracted
and communicated to the OEM for the purpose of timing validation of
the overall system. The timing model contains the following artifacts:

1. Controller timing structure: executable entities (e.g. tasks and
runnables) and their execution patterns.

2. Controller timing properties: execution times of the executable
entities, etc.

Additionally, the supplier can derive Controller timing requirements
from the chosen solution that are necessary to ensure the control
performance of the functionality (e.g. minimum sampling periods,
maximum delay, etc.). These requirements complement the OEMs
timing requirements and must be fulfilled in the final solution, i.e. they
must be validated by the OEM after system integration.

Obviously, before delivering the solution to the OEM, the supplier must
check whether or not all timing requirements imposed by the OEM are
met. For this purpose analyzes the timing model is analyzed and the
solution’s timing properties are compared against the OEM’s timing
requirements.

The different involved tasks are described in the following sections.

Create Solution

This task consists of the actual functional control design. This complex
engineering task is not in the scope of TIMMO-2-USE and will,
therefore, not be described in detail here.

However, during the functional design the control engineer has to take
into account functional control performance requirements which are
usually motivated by the desired user experience, safety
consideration, and system mechanics. The engineer’s primary goal is
to find a control approach that satisfies these control performance
requirements.

Additionally, the control engineer needs to take into account timing
requirements that are imposed by the OEM, and that are motivated by
global system timing considerations that are out of the supplier’s scope
(system must not be overloaded, reservation of slack for future
functionalities, etc.). Such timing requirements are usually
communicated using timing budgets (see Section 5.2) representing,
for instance, execution time budgets that might not be exceeded.
Satisfying the imposed timing requirements is usually no simple task for
the control engineer. For instance, it might be necessary to choose a
less sophisticated control approach to fit the algorithms in the assigned
time budget, or code optimization might be required, which is a tedious
task that usually reduces the reusability of the code.

The outcome of this task is the source code for the required
functionality. Please note that the actual source code is usually not
delivered to the OEM and remains intellectual property.

Attach Timing
Requirements to Solution

Deliverable D13 Version 1.0 67

This task corresponds to the original task of the GMP. The supplier
annotates the timing requirements coming from the OEM to the
created solution using its structural model as reference.

Create Timing Model

During this task a timing model for the controller implementation is
created. Please note that the timing model represents an abstraction
of the concrete implementation that allows to reason about its timing
behavior. The outcome of this task contains the following artifacts:

1. Controller time structure: runtime structure of the implemented
control software in terms of operating system entities on the
target platform (for instance tasks and runnables in OSEK
based systems) including activation patterns in terms of arrival
curves. This information can be expressed using the underlying
ADL for the structural model, namely EAST-ADL or AUTOSAR,
and TADL2.

2. Controller timing properties: estimated / measured / analyzed
execution times of the runtime entities for the target hardware
platform.

Specify and Validate
(Controller) Timing
Requirements

During this task the control engineer derives timing requirements from
the required control performance requirements. These consist usually
in maximum response times, jitter constraints, minimum sampling rates,
and maximum delay constraints (i.e. end-to-end response times).
These Controller Timing Requirements are communicated along with
the timing model to the OEM for ECU integration purposes. More
precisely, the OEM must ensure/validate the adherence to these timing
requirements to ensure the correct functional integration of the
delivered control application.

Analyze Timing Model

This task consists in analyzing the timing model of the developed
control application in order to derive timing properties that allow
validating whether or not the timing requirements imposed by the OEM
are satisfied. Possible timing requirements that can be validated during
this task include maximum execution time budgets and maximum
execution rates (i.e. periods).

Verify Solution against
Timing Requirements

This task corresponds to the original task of the GMP. The timing
properties of the developed control application are compared with
timing requirements imposed by the OEM. If all timing requirements are
satisfied, the solution (along with the timing model) can be delivered to
the OEM.

5.5.2 OEM / Integrator Side

Deliverable D13 Version 1.0 68

Figure 32 shows the OEM side of this use case. Its general structure
follows the GMP that is described in Section 3. The integrator gets the
Timing Models of the delivered subsystems that are necessary to
reason about the integrated system’s timing behavior from his
suppliers.

Note that reasoning about the system’s timing behavior works
differently in early phases (i.e. vehicle and analysis phase). There, the
OEM estimates or guesses timing properties of planned subsystems to
compare and choose between different system approaches. However,
in this use case we focus on the design and implementation levels. At
that levels the system approach has already been chosen and the
OEM steers the system development into the desired direction by
imposing timing requirements, like time budgets (see Section 5.2), to
his suppliers. However, he is (in his idealized role as integrator) not
actively specifying and developing system parts on his own that he has
to characterize with respect to their timing characteristics.

Using the timing models of all delivered sub-systems, the OEM can
create an integrated timing model of the whole system. Based on this
timing model she can validate all timing requirements motivated by the
individual functional implementations, and thus check if system
integration is successful in terms of real-time behavior. Additionally, the
OEM can determine timing quality metrics for the integrated system,
like, for instance, slack for future functionality, robustness to (slight)
changes, etc. In case timing errors are detected or desired timing
quality metrics are not satisfactory, the OEM can adjust the timing
requirements for (a subset of) his suppliers, for instance by assigning
smaller time budgets and go into another design iteration.

The different involved tasks are described in the following sections.

Create Solution

This task consists in integrating the different artifacts delivered by the
suppliers. This includes integrating the functional entities to get an
executable system (on the considered level of abstracting), and
integrating the structural component models like AUTOSAR or EAST-
ADL.

Attach Timing
Requirements to Solution

This task corresponds to the original task of the GMP. The OEM
annotates the controller timing requirements coming from the suppliers
to the created solution using its structural model as reference.

Create Timing Model

This task consists in creating a global timing model of the integrated
system by combining the timing models of all delivered sub-systems.

Analyze Timing Model

This task consists in performing different kinds of timing analyses on
the integrated system timing model with the aim to validate all timing
requirements. This consists of measuring, simulating or analyzing
response times, end-to-end latencies with reaction and age semantics,
activation jitters, response-time jitters, blocking times, etc. Depending

Deliverable D13 Version 1.0 69

on the actual system, the whole range of available timing algorithms
and tools might be useful for this task.

Verify Solution against
Timing Requirements

The purpose of the task exactly corresponds to its description in the
GMP (see Section 3), meaning that the actual timing properties
determined during the task “Analyze Timing Model” are compared to
the functionally motivated timing requirements coming from the
suppliers. If all timing requirements are satisfied, system integration is
successful in terms of real-time behavior, and the design process can
proceed to its subsequent steps. In the reverse case, the system
integrator needs to analyze the cause for the problem and trigger
another design iteration for (parts of) the system.

Check Timing Quality
[optional]

In case that all functionally motivated timing requirements, i.e. the
timing requirements communicated by the suppliers of the sub-
systems, are satisfied, the OEM might be interested in further
evaluating and optimizing the system’s real-time behaviour.

In particular, the OEM might be interested to ensure the extensibility of
his system for future functionalities and so-called face-lifts. For this
purpose it is crucial to reserve slack in the system, since hardware
platforms usually remain static over several years (7-8 years).

One possible metrics for evaluating the system’s extensibility is the
load on the network and the ECUs. More sophisticated metrics are
based on sensitivity analysis 2techniques.

Specify and Validate
Timing Requirements

During this task the OEM formulates timing requirements for the
suppliers. These timing requirements are motivated by considerations
of the overall system’s timing behavior rather than by functional
requirements (compare to task “Check Timing Quality”). Thereby, the
goal of the OEM is to guide the system development in a desired
direction (compare to use case “Specify Time Budgets” in Section
5.2). For instance, in case of timing problems the OEM can increase
the timing budget of the affected functionality and thus grant a more
relaxed timing constraint for the responsible supplier allowing him to
create a better solution.

2 Arne Hamann, Razvan Racu, Rolf Ernst: Multi-dimensional Robustness Optimization in
Heterogeneous Distributed Embedded Systems. IEEE Real-Time and Embedded Technology and
Applications Symposium 2007.

Deliverable D13 Version 1.0 70

Deliverable D13 Version 1.0 71

Figure 32 - OEM Side of the Exchange Models Use Case

Deliverable D13 Version 1.0 72

6 Cross-cutting concerns

6.1 Specify mode dependent timing information

Modes capture certain states in a system where it is supposed to
operate in a certain way. For instance, if the hazard warning signal is
turned on, then the warning lights would be flashed synchronously with
a certain periodicity and when the signal is turned off then the system
should return to its usual mode, where the lights do not flash.
Obviously, timing constraints should also be possible to associate with
modes since different modes of operation have different timing
requirements, on different events.

TADL2 therefore allows a timing constraint to be dependent on a
mode. When a mode is turned on then all its dependent timing
constraints become active, and they remain so until the mode is turned
off when they are again deactivated.

TADL2 does not provide any means to define modes: it assumes that,
for each mode m, there is a special event turning m on and off. These
events provide the interface of TADL2 for modes. A time interval
between an event occurrence turning on m, and the subsequent event
occurrence turning it off, is a "mode window" for m: the timing
constraints that depend on m are active exactly in these windows.

TADL2 does not require that modes are mutually exclusive. However,
a timing constraint can only be dependent on one mode. If a constraint
is to be active in several modes, then a "super-mode" corresponding to
the union of these modes has to be defined outside TADL2. The
constraint can then be triggered by an event for that super-mode.

An exact semantics has been defined for mode-dependent timing
constraints, which specifies exactly what it means for a timing
constraint to be active during a mode. Using these semantics all
TADL2 timing constraints can be made mode dependent. Details can
be found in deliverable D11.

Example

For a braking system, with an event chain c containing a brake pedal
actuator event as stimulus and a brake event as response, we may
have a mode-dependent reaction constraint where the maximum limit
for the constraint depends on the velocity v as follows:

· mode1: v in [50,60) km/h => maximum = 23.3 ms
· mode2: v in [60,80) km/h => maximum = 17.5 ms
· mode3: v in [80,90) km/h => maximum = 15.6 ms

This can be expressed in TADL2 as three mode-dependent reaction
constraints as follows:

R1 = reactionConstraint {
scope = c,
maximum = 23.3 ms,

Deliverable D13 Version 1.0 73

mode = mode1
}

R2 = reactionConstraint {
scope = c,
maximum = 17.5 ms,
mode = mode2

}

R3 = reactionConstraint {
scope = c,
maximum = 15.6 ms,
mode = mode3

}

Note that TADL2 has no means to define the modes themselves: thus,
the definitions of mode1 – mode3 in terms of the velocity will have to
be done outside TADL2.

Deliverable D13 Version 1.0 74

7 Conclusion

One of the main results achieved in work package 4 is the Generic
Timing Methodology (GMP).

The GMP was designed such that it extends established software
system development methodologies, such as EAST-ADL and
AUTOSAR, with timing aspects. Thereby, the GMP supports both Top-
down and Bottom-up development scenarios, and allows applying both
in a combined manner. This plays an important role for the daily
development routine in the automotive industry.

In various methodology instances the GMP has been refined to give
methodology support for many practical use cases. These instances
describe in detail how design decisions can be taken based on timing
information. In other words, the TIMMO-2-USE methodology
introduces a constructive feedback between automotive software
system design and real-time systems engineering.

The following use cases were covered during the course of the
TIMMO-2-USE project:

· Integrate reusable component

· Specify timing budget

· Specify synchronization timing constraints

· Revise erroneous timing information

· Exchange models

Additionally, the TIMMO-2-USE methodology serves as integration
platform of the project results:

· Tool Mentors describe how the different timing related
methodology tasks are supported by specialized tools

· TADL guides give hints on how to describe timing information
using the Timing Augmented Description Language 2 (TADL2)
that was developed in the TIMMO-2-USE Project.

Deliverable D13 Version 1.0 75

8 EPF Model of the TIMMO-2-USE Methodology

The EPF model of the TIMMO-2-USE methodology can be found under
the following web-link:

http://www.timmo-2-use.org/

Deliverable D13 Version 1.0 76

9 Glossary

Communication delay A communication delay is the time it
takes for a message to be conveyed
over a communication medium, such
as a CAN bus.

Delay A delay is the time elapsed between
a stimulus event and a response
event.

Derived timing property A derived timing property is a timing
property that has been deduced
based on either

· existing direct timing
properties, or

· other derived timing
properties

Finding a derived timing property
requires elaborate analysis and
estimation.

FDA Functional Design Architecture

Fuzzy timing requirement A fuzzy timing requirement is a
requirement that is not expressed by
a value and a time unit (including
units for multi-form time), but is
expressed with words that give an
intuition of the order of magnitude of
the value.

Examples of fuzzy timing
requirements are:

· The end-to-end latency shall
be faster than the
reaction time of a human
being.

· The light shall be turned on
immediately.

· The brakes at all wheels must
actuate at the same time.

Fuzzy timing requirements are
primarily used in the vehicle phase.

HDA Hardware Design Architecture

Deliverable D13 Version 1.0 77

Interference Interference is the total time that a
task is interrupted due the execution
of other tasks of higher priority on
the same ECU.

Overall delay An overall delay refers to a delay with
segments.

The sum of the delays of the
segments must not exceed the
overall delay.

Period The "period" of a task in a time-
triggered system is the time it takes
between to successive starts of
execution of that task.

Solution A solution is a collective term for all
descriptions that can be expressed
by EAST-ADL and AUTOSAR,
excluding the timing extensions of the
respective language.

A solution primarily centers (but does
not exclude others) around the
following concepts at each
abstraction level:

· Vehicle: Technical feature
model

· Analysis: Functional analysis
architecture

· Design. Functional design
architecture, Hardware
design architecture

· Implementation: AUTOSAR
Templates

· Operational: Physical EE
System

The interface of timing towards the
solution is based on events. Events
often refer to ports in the different
types of architectures listed above.
Ports are therefore a solution
element that deserve special
attention.

Spanning over the highest four
abstraction levels, the Environment
model also plays an important part.

Deliverable D13 Version 1.0 78

Synchronisation influencing
property

A synchronisation
influencing property is a property that
has the potential to influence the
occurrence of the set of events
pointed out by a
SynchronizationConstraint. Such a
property is therefore critical when it
comes to realising a synchronisation
property. The following properties
with this potential have been
identified:

· Synchronisation

· Response time

· Period

Time budget A time budget is a piece of timing
information that captures a delay,
which is potentially decomposed into
several disjoint segments.

Time budget influencing
property

A time budget influencing property is
a property that has the potential to
influence the response time of a
certain end-to-end event chain, and
thereby also the required time
budget. The following properties with
this potential have been identified:

· Worst-case execution time
(WCET)

· Communication delay

· Interference time

· Task period

Time budget margin In the time budgeting process, the
developer determines the worst-case
execution times for each component
in the end-to-end event chain. On top
of that, the developer may want to
provide a slightly more relaxed
budget. The difference between the
WCET and the budget of a
component is called the "margin" of
that component.

The margin is always communicated
to the supplier implementing the
function, possibly implicitly in the
budget segment.

Time budget segment A budget segment is a piece of timing

Deliverable D13 Version 1.0 79

information that expresses a delay
that constitutes a part of a time
budget.

Time budget slack Time budget slack is a portion of an
end-to-end delay that is not allocated
to any budget segment. Thus, there
is only one slack per end-to-end
delay. Slack is generally not
communicated to suppliers, but
rather serves as a reserve for
interference from other not yet
implemented functionality.

Timing information A piece of timing information is any
information that can be expressed
with TADL2.

Timing property A timing property is a piece of timing
information that, with respect to a
certain abstraction level, either:

1. Is based on already
existing knowledge about
the solution at a lower
abstraction level

2. Obtained from the
solution and the timing
requirements that the
solution was based on

3. Is assigned by the
developer

Timing requirement A timing requirement at a certain
level of abstraction is a piece of
timing information that will (together
with other timing requirements) serve
as a basis for a solution at a lower
level of abstraction.

Transformed timing property A transformed timing property is a
timing property that has been
translated (or ported) from a timing
property at another (lower or higher)
abstraction level than the
transformed timing property in
question.

Worst-case execution time The worst-case execution time
(WCET) is the longest time that a
component can execute on a given
hardware platform.

Deliverable D13 Version 1.0 80

10 References

[1] TIMMO Deliverable D7 Methodology Version 2,

http://www.timmo.org/pdf/D7_TIMMO_Methodology_Version_2_v10.pdf.

[2] ATESST 2 Deliverable Methodology.

[3] TIMMO-2-USE Deliverable D1.2 http://www.timmo-2-use.org/. Check for the latest version of
this deliverable.

[4] TIMMO-2-USE EPF Model, http://www.timmo-2-use.org/. Check for the latest version of this
deliverable.

[5] EAST-ADL Specification, http://www.atesst.org/. Check for the latest version of this
deliverable.

