

Copyright@CREATE Consortium 2011-2014 Page 1 / 20

Deliverable 2.1: CREATE Software Architecture

CREATE

Creating Evolution Capable Co-operating Applications in Industrial

Automation

• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••

Project number: ITEA 2 ip10020

Edited by: Vadim Chepegin (TIE Nederland b.v.)

Contributors: Fernando Perales (TRIMEK) and Silvia de la Maza (INNOVALIA)

Date: 29.08.2012

Document version no.: 0.8

Copyright@CREATE Consortium 2011-2014 Page 2 of 20

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the

ITEA 2 Declaration of Non-Disclosure.

Revision History

Date Version Description Author

6/12/2011 0.1

Major Use-Cases : the key

requirements and initial draft of a

software architecture

Vadim Chepegin

24/01/2012 0.2
Revision based on the comments of

Mr. Stuart Campbell

Vadim Chepegin

 0.3 – 0.5

Improving content of the document

and integrate the latest results of the

development into it

Vadim Chepegin

07/08/2012 0.6
Contributions of Spanish

consortium

Silvia de la Maza

Fernando Perales

13/08/2012 0.7

Aggregation comments from

partners, adjusting styles between

deliverables, moving technologies

review into deliverable D2.2

Vadim Chepegin

30/08/2012 0.8 Final format edition Fernando Perales

Copyright@CREATE Consortium 2011-2014 Page 3 of 20

INDEX

1. INTRODUCTION .. 5

1.1 PURPOSE ... 6

1.2 SCOPE ... 7

1.3 ABBREVIATIONS, ACRONYMS AND DEFINITIONS .. 7

1.4 REFERENCES ... 8

2. SOFTWARE ARCHITECTURE OVERVIEW .. 9

2.1 GOALS AND OBJECTIVES .. 9

2.2 COMPATIBILITY AND INTEROPERABILITY ... 9

2.3 EXTENSIBILITY ... 10

2.4 KEY USER ROLES ON CREATE PLATFORM ... 11

3. HIGH LEVEL ARCHITECTURE: LOGICAL VIEW ... 12

4. ARCHITECTURAL CONSTRAINTS (NON-FUNCTIONAL REQUIREMENTS) 18

4.1 REAL TIME SYSTEM CONSTRAINTS .. 18

4.2 PERSISTENCE .. 18

4.3 RELIABILITY/AVAILABILITY (FAILOVER) .. 18

5. QUALITY ... 19

Copyright@CREATE Consortium 2011-2014 Page 4 of 20

LIST OF FIGURES

Figure 1: CREATE, “the big picture” ... 5

Figure 2: “4+1” approach to architecture documentation ... 7

Figure 3: Devices, resources and services, from [IoT-IRM] .. 12

Figure 4: CCM use case in CREATE paradigm ... 14

Figure 5 Spanish consortium´s use case in CREATE paradigm... 15

Figure 6: CREATE high-level architecture .. 16

Copyright@CREATE Consortium 2011-2014 Page 5 of 20

1. Introduction

CREATE will develop innovative solutions supporting the seamless integration of manual

processes into efficient industrial systems through self-configuring, flexible and evolutionary

techniques.

CREATE innovates, develop and deliver proof of concepts in the domain of industrial

automation and establish cooperative and layered automation systems with a significant

exploitation potential. It will deploy technologies in a modular form which have business impact

by increasing the flexibility and adaptation of existing systems and allowing their integration

with new paradigms such as human-centred design, service orientation, secure and safe

distributed control architectures, semantic use, dynamic legacy integration and control system

life-cycle engineering support.

It will do this in the areas of material flow, monitoring & QA, metrology, and product tracking.

Figure 1: CREATE, “the big picture”

Copyright@CREATE Consortium 2011-2014 Page 6 of 20

This document provides a high level overview of CREATE software architecture based on the

understanding of business and technical requirements elicited from use cases presented by

different national consortia Dutch, Spanish and Swedish.

The document provides a high-level description of the goals of the architecture, the use cases

supported by the system and architectural styles and components that have been selected to best

achieve the use cases. This framework then allows for the development of the design criteria and

documents that define the technical and domain specifications in detail.

1.1 Purpose

This Software Architecture Document (SAD) provides an architectural overview of CREATE in

order to capture service level requirements of the platform. It is intended to capture and convey

the significant architectural decisions which have been made on the system.

The architecture is closely coupled with the three general project goals: flexible choreography,

integration of manual work and development of engineering methodologies and tools.

Flexible choreography with dynamic service composition at runtime:

1. Determine how fundamental and higher-level services are defined

2. Define machine-readable rules and design patterns for service composition

3. Design automatic service binding mechanism (FIND – EXPLORE, NEGOTIATE –

BIND, CO–OPERATE) to compose service ensembles at runtime based on predefined

rules and design patterns.

4. The service set must be extensible by new services, rules and design patterns.

Integration of manual work:

1. Description and integration of services that involve manual work steps fulfilled by human

workers.

2. Defining appropriate integration patterns for humans. For example, design of a general

SOA/HMI-mediator concept. A mediator translates service calls into human-readable

working instructions and translates the human feedback into service responses or events.

3. Consideration of safety-related and ergonomic aspects relevant to services including

human workers

In order to depict the software as accurately as possible, the structure of this document is based

on the “4+1” model view of architecture [KRU41].

Copyright@CREATE Consortium 2011-2014 Page 7 of 20

Figure 2: “4+1” approach to architecture documentation

The “4+1” View Model allows various stakeholders to find what they need in the software

architecture.

1.2 Scope

This SAD presents the structure and behaviour of the entire software stack on the high level. It

only covers the first level of decomposition of the CREATE platform into its major components.

Further decomposition of the major components themselves will be included in the High-Level

Design, which also includes the APIs.

1.3 Abbreviations, Acronyms and Definitions

Abbreviation Description

MySQL Free Relational Database Management System (RDBMS)

HTTP Hypertext Transfer Protocol

WWW World Wide Web

Tomcat Web Server that enables Java technologies

Copyright@CREATE Consortium 2011-2014 Page 8 of 20

SAD Software Architecture Document

RUP Rational Unified Process

UML Unified Modeling Language

SOA Service Oriented Architecture

Term Definitions

Polyglot application Application that can work under different programming

languages

Cloud Ubiquitous network access

Generic user User with no special knowledge or rights

Administrator User with platform maintenance tasks

Operator User that interacts with the system when it is running

1.4 References

[CRT-DOW]: ITEA2 CREATE ip10020 amended FPP, December 2011.

[INT-GSC]: Interfaces of the Generic Substrate Carrier.

[KRU41]: The “4+1” view model of software architecture, Philippe Kruchten, November

1995,

(http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4

p1.pdf).

[RWAES] S. Meyer, K. Sperner, C. Magerkurth “Towards Real-World Aware Enterprise

Systems”, IEEE MASS 2011, Valencia, Spain.

[IoT-IRM] Internet-of-Things Architecture IoT-A Project Deliverable D1.2 – Initial

Architectural Reference Model for IoT (http://www.iot-a.eu/public/public-

documents/documents-1/1/1/d1.2/at_download/file).

http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/Pbk4p1.pdf
http://www.iot-a.eu/public/public-documents/documents-1/1/1/d1.2/at_download/file
http://www.iot-a.eu/public/public-documents/documents-1/1/1/d1.2/at_download/file

Copyright@CREATE Consortium 2011-2014 Page 9 of 20

2. Software architecture overview

CREATE architecture follows principles of state-of-the-art SOA and Cloud styles and guidelines

for building state-of-the-art polyglot information platforms.

Support for web services and REST (Representational State Transfer) interfaces will allow

CREATE to construct service compositions or so-called mashups. CREATE platform will be

realized as an extension of the Enterprise Service Bus (ESB) concept which facilitates seamless

distributed connectivity through binding components and service composition through service

components (which may implement a specific service or logically compose services). To

facilitate loose coupling and great concurrency between different threads, CREATE platform

will communicate via asynchronous message passing which means senders can send messages

even in the absence of receivers.

2.1 Goals and Objectives

The goal of the architecture is to describe, in sufficient detail, all of the software components,

their responsibilities and behaviour, and their interfaces to allow a more detailed design to

proceed forward. The architecture will not define the exact APIs. The APIs will be documented

in the High Level Design specifications for each software component.

A goal of the architecture is to provide support for integrators of hardware systems, e.g. for

printing shop floor, which consists of parts coming from multiple vendors to easily integrate

them, monitor and (re)configure.

2.2 Compatibility and Interoperability

The architecture employs the use of industry standard interfaces, where available, for

communication among the software and hardware components. This supports the greatest

possible interoperability with third party hardware. A special interoperability software layer will

be developed to:

 Support integration of a convey belt (Substrate Carrier by CCM) with different vendors’

products

 Facilitate the integration and communication of dimensional, quality control machines.

Copyright@CREATE Consortium 2011-2014 Page 10 of 20

2.3 Extensibility

The architecture places a requirement on each component to provide a mechanism for the user of

the interface to determine the revision of an interface. This allows the user of an interface to

determine if it is compatible with a particular implementation and allows the interface to a

particular component to be extended over time.

2.3.1 Portability and Platform Independence

The architecture will promote portability of the client side (GUI) to various operating systems

and platforms, e.g. Web, iOS (iPad, iPhone), Android, etc., following the principles of Cloud

computing where user should be enabled to work seamlessly from different business and

personal devices he has in possession. For portability of a GUI HTML5 and JavaScript will be

used as much as possible.

For the server side it will be used mostly Java and JavaScript, which have virtual machines for

most of the existing computer platforms and Operating Systems. However, due to the SOA

nature of the architecture it will be possible to integrate software components developed with

other technologies with reasonably low efforts.

In the case of metrological software, for example, the relevant data that is required to perform an

efficient monitoring will be determined and adapted to the different operating systems and

platforms.

As a general rule for portability the interface processing should be separated from the logic in

different classes.

2.3.2 Interaction with human worker

The architecture will be designed in order to facilitate the integration and interaction with the

human task. Every software interface has to be developed with the aim to improve the

communication between the automated components of the system. These user interfaces will be

implemented as user-friendly as possible guarantying that no mistakes will be caused due to an

insufficient communication message.

Verification and validation test for the human – machine interactions are going to be done.

The attention will be specially focused on the way data are displayed (colours, interactive

screens or traditional buttons, graphics, etc.) The goal is to inform as much as possible in the

simplest way possible.

Copyright@CREATE Consortium 2011-2014 Page 11 of 20

Moreover, individual safety aspects will be considered for each of the machines.

2.4 Key user roles on CREATE platform

In this document the term “system” will refer to the complex hardware and software system that

includes e.g. CCM Substrate Carrier and other hardware components such as such as inspection

machines, or other kind of sensors and actuators assembled together on a shop flow and involved

in a production cycle.

The following key roles of users that will be interacting with CREATE platform have been

identified.

 System integrator: a person who integrates different hardware parts into one production

system. The same person is responsible for re-configuration of the hardware system.

 Operator: a person who interacts with the system when it is running in a production

mode.

 Business user: a user who is interested in business aspects of the production system, e.g.

costs, production value, time for maintenance, etc.

 Platform administrator: a person who maintain CREATE platform.

Copyright@CREATE Consortium 2011-2014 Page 12 of 20

3. High level architecture: logical view

The ultimate goal and challenge of CREATE is revolving around the idea of the Smart

Neighbourhood Module (SNM) which embodies an enhanced Multi-Level-Composite-Module

approach. SNM aggregates associated production and transportation mechanics, dimensional

quality control machines, control hardware as well as of automation software. It is mechanically

coupled with its physically neighboured components. Moreover it is connected with the data

network. The productive operations of an SNM contribute to production workflows and

implement steps of material flows.

To implement a CREATE vision it is necessary to facilitate merging of the physical world with a

virtual networked world. This could be illustrated with help of the graphics provided by the EU

FP7 project called Internet of Things – Architecture that depicts the relationship between

services, resources, and devices (Figure 3).

Figure 3: Devices, resources and services, from [IoT-IRM]

How it is beneficial for the companies such as CCM, DATAPIXEL or TRIMEK and what it

means for them? Besides the software functions performing control and automation tasks, an

SNM contains neighbourhood awareness and adaptation functions. They detect and identify the

physically neighboured SNMs, their location, type and services. They adapt the services offered

by the module to the current neighbourhood and assist the neighboured modules in their

Copyright@CREATE Consortium 2011-2014 Page 13 of 20

neighbourhood recognition. For example, when an inspection machine is installed in a

production line after a milling process it will analyse its surrounding machines and, taking into

account multiple variables (such as the following processes, maximum time allowed for the

inspection, required scanning resolution, etc), it can focus its inspection process on the most

interesting part to be scanned. Once this part is scanned, it can be compared with a virtual

pattern. Following the results of the comparison, different decisions can be taken on real time.

These decisions can be on line monitored and easily changed, as well as the pattern for

comparison.

By adding abstraction layers, e.g. resource and service descriptions to the hardware modules,

CREATE will allow to assemble, discover, monitor and (re-)configure modules produced by

various vendors seamlessly and on the fly. For instance, for CCM generic substrate carrier every

time has to be mounted with several other modules which vary from case to case and typically

shipped by different vendors. Assembling such a line is time consuming and error prone

procedure and usually it consumes sometimes up to 20% of the overall project budget. Then

connecting a new line to the shop floor control and monitoring system needs to be done and if

something changed in the hardware (or sometimes even software) interface the existing system

should be re-configured and re-programmed.

In the case of the aforementioned inspection machine case, the abstraction layer will facilitate the

automatic “understanding” among the different surrounding devices in order to quickly and

easily adapt to the requirements thus lowering the assembling and configuration periods and the

likelihood of errors.

Moreover, CREATE will provide infrastructure for monitoring and control, coherent graphical

user interface on top of Enterprise Integration pattern based on services. CREATE will also

provide frameworks and guidelines for how to expose hardware components and modules as

services. This way, starting from the mostly used and typical hardware pieces (per industry, per

customer) CREATE will collect a library of resource and service descriptions in order to support

re-usability of those components. With expanding of the library an assembling of a new line will

be much faster and will not involve programmers because assembling and configuration will be

made based on existing and tested service descriptions and software artefacts.

Figure 4 demonstrates CCM use case in a way how it will look like on the CREATE platform.

Copyright@CREATE Consortium 2011-2014 Page 14 of 20

Figure 4: CCM use case in CREATE paradigm

And Figure 5 shows industrial metrology use case inside CREATE platform.

Copyright@CREATE Consortium 2011-2014 Page 15 of 20

Figure 5 Spanish consortium´s use case in CREATE paradigm

Thus, taking into consideration the above mentioned concerns and thoughts, the high level

CREATE architecture is presented on figure 6 below.

Copyright@CREATE Consortium 2011-2014 Page 16 of 20

Figure 6: CREATE high-level architecture

The following main concepts are part of the CREATE platform:

 Configuration services: These services will represent configuration jobs and effectively

they will create/update descriptions over the performed actions (and associated

conditions) on particular components and their composites.

 Thing as a service (TaaS): Internet-of-Things representatives that expose different

devices (and their parts) in the virtual world of CREATE.

 Knowledge base: Machine-readable knowledge bases used for the purpose of having

automated reasoning over devices and their possible configurations

 Semantic Service Bus: A distributed bus for message exchange with enhanced support

of semantics/metadata.

http://en.wikipedia.org/wiki/Deductive_reasoning

Copyright@CREATE Consortium 2011-2014 Page 17 of 20

 Stack of infrastructural services: For example publishing services, annotation services,

authentication and authorization services, etc.

 User interface: A presentation tier based on the advancements made in the EU projects

such as OMELETTE and SOA4ALL.

Copyright@CREATE Consortium 2011-2014 Page 18 of 20

4. Architectural Constraints and non-functional requirements

This section describes the software requirements and objectives that have some significant

impact on the architecture.

4.1 Real-time system constraints

There are some key requirements and system constraints that have a significant bearing on the

architecture. They are:

 The GSC is a module in a complete machine, e.g. in an industrial printer, in a thin film solar

cell production machine or in an inspection machine. This implies that the interfaces of the

GSC with other modules of the machine can be very divergent.

 More sophisticated and application dedicated GUI’s are required for the current GSC system.

 The current performance of the GSC should not be affected. CREATE platform should be

built on top of the current system. The connection point between CREATE and existing

legacy GSC system is a Host PC (GSCHC).

 Real time decisions will require coordination between the mechanical components of the

metrology machines or distribution belts and the processing software, in order to avoid

mistakes associated to delays in the information communication.

4.2 Persistence

Data persistence will be addressed using a Polyglot approach to persistence, which means a

persistence for each module will be defined based on the set of requirements for each individual

module and can vary from non-transactional distributed repositories such as Cassandra to DB

with native JavaScript interface such as MongoDB.

The more detailed view on persistence will be specified in the next iterations of this document.

4.3 Reliability/Availability (failover)

The scalability and reliability of the system is a key requirement as it pertain the nature of this

system.

The server side solution will reside in the Cloud in order to support elasticity and high

Copyright@CREATE Consortium 2011-2014 Page 19 of 20

availability requirements.

Targeted availability is 95% (out of 24 hours a day, 7 days a week).

In the event of the server side failure CREATE application might result in becoming temporarily

unavailable. All relevant user should be made aware of all problems occurred on the platform

with visual feedback along with notifications via telecommunication channels, i.e. SMS,

automated telephone call.

5. Quality

As far as CREATE system is concerned, the following quality goals have been identified.

Scalability: CREATE system will be conceived to be an evolution-capable system which will

have the built-in ability to handle change as well as to keep the planning and the configuration

data synchronised in combination with an adequate change tracking.

 Description: The server goes down due to a sudden increase in the number of operations.

 Solution: An analysis of the processing needs of each new module have to be done before

its installation and given the software inside the architecture. Apart from that, the continuous

monitoring and performance measurement solutions will provide real time controlling to

prevent surprises.

Reliability, Availability:

 Description : Transparent failover mechanism, mean-time-between-failure

 Solution: : application server supports load balancing through clusters

Portability: The information generated and all the possible communications will be available

seamlessly from and to all the different platforms that come into play.

 Description : Data is not available, its quality is not good or the security policies are not

homogenous depending on the platform used.

 Solution: :Validation, quality assurance and security tests are going to be performed by SQS

at all the levels of the architecture and in all the different platforms available.

Security:

 Description 1: Stolen business data, cloud security issues or malware in the system.

Copyright@CREATE Consortium 2011-2014 Page 20 of 20

 Solution: 1: The architecture will take the security and compliance policies at all levels.

Safety: Two main quality goals have been identified from the security point of view.

 Description 1: Human injuries due to a wrong interaction with human.

 Solution 1: As a general rule, the risk for the human health should be catalogued for its of

the machines involved in a production line. Standard aspects will be considered for each type

of machines but there will be some points will have to be programmed individually.

 Description 2: Human risk due to system general failure.

 Solution 2: The first step for the configuration of the software of the machine will set the

actions in case of system failure. Therefore in the case of general failures this safe

configuration will be loaded.

