
BUMBLE Deliverable D4.1
Mapping rules for blended notations
generation, bidirectional
synchronization, and co-evolution

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the
ITEA Declaration of Non-Disclosure.



2

BUMBLE

Project Acronyms
<ACR> <Acronyms>
BUMBLE Blended modeling for Enhanced Software and Systems Engineering
DSML Domain-Specific Modeling Language
UML Unified Modeling Language
EMF Eclipse Modeling Framework
UML-RT UML for Real-time
EBNF Extended Backus-Naur Form
XML eXtensible Markup Language
XLST eXtensible Stylesheet Language Transformations
ETL Epsilon Transformation Language
MML Mapping modeling Language
ATL Atlas Transformation Language
PSS Portable test and Stimulus Standard
AMW Atlas Model Weaver
HOT Higher order transformation
MEO Mapping Ecore-OWL
RDF Resource Description Framework
DIML Diagram Interchange Mapping Language
MOF Meta-Object Facility

Versions

Release Date Reason of change Status Distribution

V0.1 20/09/2021 Defined structure Draft WP4 partners

V0.2 01/11/2021 Complete draft of the first version of the deliverable Draft BUMBLE consortium

V1.0 11/11/2021 Updated with comments on V0.2, to be
submitted to ITEA portal

Final Uploaded to ITEA
portal

V1.1 08/01/2023 Draft of the updates for the second version of the
deliverable

Draft WP4 partners

V1.2 08/02/2023 Complete draft of the second version of the
deliverable

Draft BUMBLE consortium

V2.0 20/02/2023 Updated with comments on V1.2, to be
submitted to ITEA portal

Final Uploaded to ITEA
portal



3

BUMBLE

Executive Abstract
The focus of this deliverable is on the definition and modeling of mapping rules across DSMLs for
model transformation generation purposes. Mapping rules are modeled via a mapping language
described in this deliverable. The mapping language is a structured and formalised means for
precisely describing mapping rules between two or more DSMLs.

The definition of a mapping language is pivotal for multiple activities in BUMBLE. Explicit mapping
rules enable us to link in a deterministic manner multiple DSMLs for synchronization, migration, and
reconciliation activities.

In this deliverable, we describe the theory and process followed to achieve the mapping rules as well
as to define and validate the mapping language.



4

BUMBLE

Table of contents
Project Acronyms 2

Executive Abstract 3

Table of contents 4

1. Introduction 5

2. State of the art on mapping modeling/description 6

3. Explicit and implicit mapping of blended notations 7

3.1. Explicit mappings 7

3.2. Implicit mappings 9

4. A flexible mapping modeling language 10

5. Use of MML and its validation 12

5.1 UML-RT use case 13

5.2 Calendar and Organization use case 13

5.3 Use case comparison 14

6. Conclusion 14

References 14



5

BUMBLE

1. Introduction
In this deliverable, we report on the activities carried out as part of tasks T4.1 and T4.2 in WP4, in
particular for what concerns the definition, implementation, and validation via application to industrial
use-cases of a mapping language in the context of the Eclipse Modeling Framework (EMF).

In this scope, a mapping language is a structured and formalised means for precisely describing
mapping rules between two or more domain-specific modeling languages (DSMLs). In this context, a
modeling language is intended to be defined in terms of a metamodel.

The definition of a mapping language is pivotal for multiple activities in BUMBLE. Explicit mapping
rules enable us to link in a deterministic manner multiple DSMLs; in BUMBLE, the rules are a
fundamental input to

1. correctly generate editors from a DSML definition. In this case, the DSML is mapped to one or
more notation-specific DSMLs (see Section 3).

2. correctly synchronize models between two different DSMLs. In this case, the DSMLs, which
may represent two different notations (in terms of abstract and concrete syntaxes), are
mapped to one another (see Section 4).

3. provide co-evolution mechanisms in terms of model transformations for migration and
reconciling blended models in case of (WP4-5).

Once the mapping language is defined and implemented, its instances (mapping models) will be used
as input for the generation and synchronization of transformations. More specifically, a mapping model
represents the guiding principle driving the transformation to properly generate correct information
from one model or to properly propagate changes across models. If defined at the meta-metamodel
level across multiple DSMLs, mapping models could even be used for driving co-evolution across
DSMLs (and thereby notations).

The work and solutions described in this deliverable contribute to the following BUMBLE Technology
Bricks and requirements:

Technology bricks Description of main contributions Main requirements

Editor Generators The mapping rules and language defined and
formalised in this deliverable are pivotal for the
correct generation of editors from DSML
definitions

BC1, BC2, BT1, BT2,
BT3, BT4

Blended Model
Access

The mapping rules and language defined and
formalised in this deliverable are pivotal for the
correct generation of model transformations
for synchronization by higher-order
transformations

BC3, BC4, BC10, BC11,
BC12, BC13, BT7, BT8,
BT9, BT10, BT11, BT12,
BT13, BT19, BT21, BT25

Meta-(model)
co-evolution

The mapping rules and language defined and
formalised in this deliverable are pivotal for the
correct generation of model transformations

BC9, BT22, BT24



6

BUMBLE

for co-evolution by higher-order
transformations

The remainder of the deliverable is structured as follows. In Section 2, we provide an overview of the
state of the art in mapping modeling/description. In Section 3, we describe the actions and results in
relation to the explicit and implicit mapping of blended notations, with direct application to multiple
industrial use cases. In Section 4, we introduce our modeling language for flexible mapping and
conclude in Section 5.

2. State of the art on mapping modeling/description
Various mapping languages have been proposed in the literature to support different model
management operations (e.g., model transformation, model migration, model integration). In the
following, we present these contributions and highlight their advantages and disadvantages with
respect to our approach.

In [5], authors propose a mapping metamodel based on the Eclipse Modeling Framework (EMF), that
supports mapping specifications between two metamodels. Moreover, they contribute with the Atlas
Model Weaver (AMW) tool, which simplifies mapping visualization, and enables the generation of
transformation models conforming to Atlas Transformation Language (ATL) from the mapping model.
In addition, AMW allows for the generation of a textual representation of the mapping model and
validates the conformity of the latter to its metamodel. However, the mapping metamodel only provides
one-to-one, one-to-many, and many-to-one relationships, and restricts the specification of more
complex mappings (e.g., target metamodel contains elements that do not have a correspondence with
any of the elements of the source metamodel, thus, need to be created). Moreover, the AMW tool
generates a read-only textual representation of the mapping model and is restricted to the generation
of ATL model transformations. Ecore2Ecore1 is a plugin, distributed with EMF, that was originally
implemented with the goal of supporting metamodel evolution and is widely used for such purpose.
Nevertheless, being that it allows the definition of mappings between two metamodels, it can be used
to define mapping models that could serve as input to higher-order transformations (HOTs) UI and
generate language-specific model transformations. However, just like AMW, it does not provide a way
for the user to specify more complex mappings, and it does not restrict correspondences that are not
valid bindings.

In [3], authors propose a textual mapping language called MEO (Mapping Ecore-OWL) that aims to
enable the use of RDF resources as EMF objects and the serialization of EMF objects in RDF
resources. The approach is based on EMF, and it defines correspondences between the domain
model (conforming to Ecore), and the OWL ontology model. Moreover, it supports the generation of
paired ATL transformations from HOTs, which automates the process of defining a bridge between
EMF objects and RDF resources. However, the mapping metamodel is specific to OWL/RDF
Resources.

In [4], authors propose a solution to enable the exchange of models between meta-modeling tools,
thus, supporting interoperability, and avoiding vendor lock-in. This approach uses bridges at the
meta-meta level to export metamodels from different environments into an intermediate one and uses
binding components to create tree structures of the metamodels. The main contribution of this



7

BUMBLE

approach is the graphical mapping language that is used to map between elements of the trees.
Moreover, the mapping language is used as input to the code generator that outputs Epsilon
Transformation Language (ETL) transformations. However, this mapping-based approach is focused
on enabling the exchange of models between different meta-modeling tools, and as such, it specifies
mapping correspondences between elements of meta-metamodels, and generates model
transformations for metamodels, while our approach aims to specify mapping correspondences
between elements of metamodels and generate model transformations for models.

In [2], authors propose Malan, a MApping LANguage that supports the definition of a schema
mapping, between a source and target data schema. The mappings can be defined both textually and
graphically (not simultaneously) using Papyrus. The graphical mapping is supported by the definition
of a UML profile that contains a stereotype that defines the mapping concept for UML. In addition,
these mappings are used as input to the Malan processor that generates a transformation. However,
this approach manifests a few limitations. To begin with, the source and target schema should be
expressed as UML class diagrams. Now even though UML is a widely used modeling language, and
allows for the definition of the mapping concept using UML profiles, this restricts the use of Ecore
metamodels. Moreover, the transformation program only generates XSLT stylesheets that convert
XML documents into XML, HTML, or plain text documents.

In [6], authors propose a solution for the integration of heterogeneous modeling languages that
incorporates both the definition of a mapping language and a rule definition language. Even though
their objectives differ from ours, being that the mapping language is defined independently from the
rule integration language, it can support other model manipulations (e.g., model transformations).
However, all metamodels (i.e., source, target, mapping, and integration) conform to the ADONIS
meta-metamodel, in order to avoid conflicts among metamodels. Unless we define mappings from the
ADONIS meta-metamodel to Ecore meta-metamodel, we cannot use Ecore models and metamodels.

In [1], authors propose DIML, a Diagram Interchange Mapping Language, that aims to define
mappings between elements of MOF-based modeling languages (e.g., UML), and Diagram
Interchange (DI) languages. DI is not restricted to UML, therefore, in a broad context, DIML can be
used to create and transform visual diagrams for various MOF-based DSMLs. However, DIML is still a
specific-purpose mapping language with a limited purpose of defining the concrete syntax of
MOF-based modeling languages, and cannot be applied to more generic examples.

3. Explicit and implicit mapping of blended notations
In this section, we describe the actions and results in relation to the explicit and implicit mapping of
blended notations, with direct application to multiple industrial use cases (UC1, UC2, UC6, described
in D2.1).

3.1. Explicit mappings
As part of a prototype for the generation and synchronization of blended editors in the EMF, we
designed and implemented a mapping editor between input graphical and textual notations using Java
and the WindowBuilder library. The inputs to the mapping editor are represented by:

● A DSML defined in terms of Ecore (in EMF)
● A library of symbols for mapping to the specific graphical notation



8

BUMBLE

● A set of textual concepts, extracted from a given EBNF grammar, for mapping to the specific
textual notation

Note that all these elements can be customized and replaced. More specifically, any DSML defined in
Ecore can be given as input to the editor. The library of symbols can be customized by removing and
adding symbols, and the set of textual concepts can be any as long as it obeys an EBNF grammar.

The mappings are saved in an ad-hoc XML format, and it is used by another component of the
prototype as input for the implementation of synchronization mechanisms between graphical and
textual notations.

In terms of reusability and portability, the mapping editor is flexible and can be used for any pair of
graphical and textual notations. Importantly, all the interface components are generated dynamically
through XML files. Figure 1 displays the graphical and textual notations from the related XML files that
are generated by the first component. Furthermore, it displays the repository of symbols to be
associated with the graphical notation through the XML mapping file (containing addresses and IDs of
symbols), and, therefore, other symbols specific to the domain can be added to the mapping editor
with simplicity. Furthermore, it provides AND/OR operators to define complex mappings between
graphical and textual elements (e.g., one graphical element may correspond to the combination of
several textual elements and vice versa). This mapping file is utilized to implement a corresponding
EBNF grammar used for the synchronization process.

In Figure 1, we show the mapping between the Portable test and Stimulus Standard1 (PSS) graphical
and textual notations, as well as the association of graphical symbols to the PSS concepts. More
specifically, the symbol with Id =1 and Name = Action is associated with the graphical action concept.
The assigned symbol will be available in the blended modeling editor for the modeling of the graphical
action. On the other side, the textual syntax for action is specified as: action name {}. Subsequently,
this mapping between graphical and textual action can be added to the queue (grid). Similarly, the
mapping between graphical and textual notations for other PSS concepts, like buffer, objects, etc. is
performed and saved in an XML file as well. Further details about explicit mapping features of the
editor can be found at [10].

1The Portable Test and Stimulus Standard (PSS) defines a specification to create a single representation of stimulus and test scenarios usable by
a variety of users across many levels of integration under different configurations. This representation facilitates the generation of diverse
implementations of a scenario that run on a variety of execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA
prototyping, and post-silicon. With this standard, users can specify a set of behaviors once and observe consistent behavior across multiple
implementations.



9

BUMBLE

Figure 1 - Mapping editor

3.2. Implicit mappings
A different approach to the explicit mapping editor approach in Section 3.1 is represented by the
implicit mapping rules that we encoded in a dedicated prototype for the synchronization of blended
editors for UML-RT state machines. In this case, since both notations for UML-RT are defined a-priori
and not intended to be customized by the user, the mapping rules are embedded in the model
transformations in charge of the synchronization between graphical and textual notations.

In Listing 1, we depict an excerpt of the transformation in charge of propagating changes from
graphical to textual notation. Note that these transformations were implemented using ETL in EMF.
Alternatively, in [9] we describe a solution where the transformations are implemented using the
Query/ View/Transformation Operational (QVTo) language.

rule Trigger2Trigger
transform s: Source!Trigger
to t: Target!Trigger, mpt:Target!MethodParameterTrigger,m:Target!Method, pa:

Target!Parameter, pet: Target!PortEventTrigger,
p:Target!Port , e:Target!Event {

if (s.name.matches(".*\\..*")){
p.name = s.name.split("\\.").first();
e.name = s.name.split("\\.").second();
pet.port = p;
pet.event = e;

}
else if (s.name.matches(".*\\(.*")){

m.name = s.name.split("\\(").first();
pa.name = s.name.split("\\(").second();



10

BUMBLE

pa.name = s.name.split("\\)").first();
mpt.method = m;
mpt.parameter = pa;

}
else {
t.name = s.name;
}

}

Listing 1 - Mappings implicitly defined in an ETL model transformation

As we can see in this specific rule, from an element of type Trigger in graphical UML-RT
state-machine, the transformation generates a textual element of type Trigger and a set of other
elements composing it. Although this is a transformation rule, it actually materializes a precise
mapping rule between Trigger in the graphical notation and Trigger in the textual notation. While this
solution may be preferable in the specific case where notations are not supposed to change or when
the user is not intended to customize mappings, it is not flexible enough for our final purpose being a
flexible mapping modeling solution that can be used for: generating blended editors, co-evolving them,
and generate synchronization transformations. Nevertheless, both explicit and implicit mappings
shown in this section laid the ground for the mapping modeling language described in the next section.

4. A flexible mapping modeling language
Given the experiences with mapping described in the previous section and in conjunction with the
project requirements (core requirements BC1, BC4, BC9, as described in D2.2), in [7,8], we created a
mapping modeling language (MML) defined as a metamodel, i.e., the most suitable form for our
purposes. We investigated different possible technological choices, more specifically, Xtext and
JetBrains MPS for a textual mapping modeling language and Ecore for a tree-based mapping
modeling language. Since the core usages of MML would be to (i) support the definition of explicit
mapping rules between DSMLs in a user-friendly manner and (ii) provide a transformation-friendly
input to the generation of editors and synchronization mechanisms, we opted for an implementation in
Ecore. The additional advantage is that a textual notation for it could be defined in Xtext exploiting the
very same BUMBLE features. In Figure 2, we depict the MML defined and implemented in Ecore, and
in the following, we detail the metaconcepts of the MML.

The MappingModel serves as the root of the metamodel and is a tuple <name, Rules*,
SourceMetamodels*, TargetMetamodels*, MainSourceMetamodel>, where name is a
unique name for MappingModel, Rules* is a possibly empty set of elements of type MappingRule,
SourceMetamodels* and TargetMetamodels* are sets of elements of types SourceMetamodel
and TargetMetamodel respectively, with at least one element each. MainSourceMetamodel is a
single element of type SourceMetamodel that in the case of multiple SourceMetamodels is
required to indicate the SourceMetamodel to be used at the entry point of the transformation to be
generated.

The MappingRule is a tuple <name, operator, condition, comment, source,
helperLiteral, target, ChildRules*, ChildHelpers*>. For MappingRules contained



11

BUMBLE

in MappingModel, we refer to them as immediate mapping rules, while for MappingRules contained
in other MappingRules or HelperStatements, we refer to them as child mapping rules. name is a
unique name for MappingRule, and operator represents the type of operator between mappings
(i.e., assignment, addition). This is required when it comes to Collections to determine whether
the user intends to append an element to the Collection or to reinitialize the Collection by deleting all
previous elements and adding the new one. condition supports the definition of a condition that can
be interpreted in different ways depending on the type of source and target elements of the
mapping rule (i.e., mapping guard for EClasses and OCL filter for EReferences and EAttributes).
comment supports the definition of comments to the MappingRule, which can help the user keep
track of the piece of generated code with the corresponding MappingRule. source and target are
optional elements of type EObject that represent the source and target elements of the
MappingRule. For immediate mapping rules, both source and target must be defined, while for
child mapping rules there exist three different possible scenarios.

SC1: source != null and target != null - (a non-empty set of input elements in the source
model are transformed into a non-empty set of output elements in the target model)
SC2: source == null and target != null - (a non-empty set of output elements are added to
the target model)
SC3: source != null and target == null - (a non-empty set of input elements in the source
model facilitates the navigation of model elements)

helperLiteral is used for EEnumLiterals and is included since EcoreQualifiedNameProvider does
not support EEnumLiterals, thus they are not indexed. To surpass this limitation, we need two
references; one to the EEnum and the other to the EEnumLiteral. Thus, source or target will be used
to reference EEnum and helperLiteral to reference EEnumLiteral. ChildRules* is a possibly empty
set of elements of type MappingRule, while ChildHelpers* is a possibly empty set of elements of
type HelperStatement.

SourceMetamodel and TargetMetamodel represent the DSMLs that will be involved in the mapping
and inherit all members of Metamodel. A Metamodel is a tuple <name, model>, where name is a
unique model name and model is the EPackage representing the root element of a particular
metamodel involved in the mapping.

A HelperStatement is a tuple <statement, ChildRules*, ChildHelpers*> where statement
is a unique element that allows the user to define statements; for the moment, we support OCL and
QVTo statements. ChildRules* is a possibly empty set of elements of type MappingRule, while
ChildHelpers* is a possibly empty set of elements of type HelperStatement.

Operator is an enumeration with two mutually exclusive possible values, being: assignment, used
when a single input element in the source model is mapped to a single output element in the target
model, or when a non-empty set of input elements in the source model are mapped to a non-empty set
of output elements in the target model by re-initializing the set of output elements, and addition,
used when a non-empty set of input elements in the source model are transformed into a non-empty
set of output elements in the target model by adding to the set of output elements.



12

BUMBLE

After defining the metaconcepts of MML, we leverage the features provided by Xtext in combination
with EMF to automatically generate textual and tree-based editors. Afterwards, we customize them to
provide a more user-friendly and precise scoping as well as more intuitive labeling of the mapped
model elements. More specifically, we specialize the MappingRuleItemProvider class, to limit the
scope for elements source, target, and EEnumLiteral. Limiting the scope, especially for the source and
target, plays a significant role in reducing the likelihood of errors on the part of the user. For instance,
the customization of scoping limits the user to defining child mapping rules (i.e., mapping rules that link
EReferences, EAttributes, and EEnums) only if there exists a navigation path from the source and
target element (i.e., EClass) of the main mapping rule to the source and target of the child mapping
rule. Moreover, we specialize the ItemLabelProvider class, to provide intuitive labeling, similar to
qualified names. Moreover, we specialize the Formatter class to customize indentation, line breaks,
white spaces, etc., to improve the readability of MML textual models.

Figure 2 - Mapping metamodel in Ecore

5. Use of MML and its validation
The MML has been exploited to design the higher-order transformations in charge of generating
synchronisation transformations (see D4.2) and is employed in most automation aspects between
notations in EMF. We have validated MML by applying it to two use cases. The corresponding DSMLs
and the respective mapping models can be found in our GitHub repository2. The first use case refers

2 https://github.com/MLJworkspace/BlendedModellingSolution



13

BUMBLE

to the UML-RT language, more specifically, the subset for modelling state machines, where the
DSMLs (in the following, we will refer to them as DSML_A and DSML_B) represent the graphical and
textual notation of the UML-RT language. The second use case concerns two disjoint DSMLs, one for
describing and manipulating calendars, while the other for describing and manipulating organisational
structures.

5.1 UML-RT use case

UML-RT is a real-time profile that aims to simplify the ever-increasing complexity of the software
architecture specification for real-time embedded systems. UML-RT enables both structure modeling
and behavior modeling of real-time systems. This use case focuses on the behavioral part, which is
represented using state-machine diagrams. Considering that both DSML_A and DSML_B represent
two different notations of the UML-RT language, they contain similar concepts.

For this use case, we have defined two mapping models: Textual2Graphical and Graphical2Textual.
The Textual2Graphical mapping contains a total of 71 mapping rules, of which 66 (93 %) of them fall
under SC1, one under SC2 (1.4 %), and four under SC3 (5.6 %). Eight mapping rules contain
conditions, of which seven are in the form of guards, as they are applied to mapping rules that link two
EClasses, while one is in the form of an OCL filter. The Graphical2Textual mapping contains a total of
61 mapping rules, of which 56 (91.8 %) fall under SC1, five under SC2 (8.2 %), and no mapping rule
falls under SC3. 14 mapping rules contain conditions, of which seven are in the form of guards, as
they are applied to mapping rules that link two EClasses, while the others are in the form of OCL
filters.

Making a comparison between the two mapping models, we notice that the most significant
differences are with regard to SC2 and SC3. While in the Textual2Graphical mapping model, only 1.4
% of the mapping rules fall under SC2 (i.e., are used for adding a non-empty set of elements in the
output model), in the Graphical2Textual mapping model, 8.2 % of the mapping rules fall under SC2.
This is a consequence of the fact that the DSML representing the textual notation contains more
concepts that are either not present in the DSML representing the graphical notation (e.g.,
TransitionBody) or are more specialized (e.g., InitialTransition). The high number of mapping rules that
contain conditions in the Graphical2Textual mapping model compared to the Textual2Graphical one is
another indicator of the specialization of concepts. With regard to SC3, we notice that while the
Graphical2Textual mapping model has no mapping rules falling under this category, in the
Textual2Graphical mapping model, 5.6 % of the mapping rules are used to facilitate the navigation of
elements in the textual model that cannot be directly accessed.

5.2 Calendar and Organization use case

The second use case relates to two disjoint DSMLs where one is used to describing a meeting
calendar for an organization, while the other is used to describe the organization. The
Calendar2Organization mapping model contains a total of 50 mapping rules, of which 45 (90 %) fall
under SC1, one under SC2 (2 %), and four under SC3 (8 %). Eight mapping rules contain conditions,
and they are all in the form of OCL filters. Furthermore, this mapping model introduces the use of
HelperStatements in the form of for loops and if conditional statements. The Organization2Calendar
mapping model contains a total of 40 mapping rules, of which 36 (90 %) fall under SC1, two under
SC2 (5 %), and two under SC3 (5 %). Ten mapping rules contain conditions, of which seven are in the
form of guards as they are applied to mapping rules that link two EClasses, while three are in the form



14

BUMBLE

of OCL filters. Furthermore, this mapping model introduces the use of HelperStatements in the form of
if-conditional statements.

5.3 Use case comparison
Comparing the distribution of the mapping rules between the three scenarios, in the first use case, the
number of mapping rules that fall under SC2 and SC3 is mainly due to the specialisation of concepts,
while in the second use case, it is due to semantic and syntactic differences. Despite the fact that
there is no significant difference between the number of mapping rules falling under SC1 for the first
and the second use case, we still argue that the second use case is more complex than the first, since
while in the UML-RT use case, there is a string similarity between the mapped elements of the
involved DSMLs and similarity in the structure of the DSMLs, in the second use case such similarities
cannot be found. Furthermore, while the first use case covers only a subset of the concepts of the
MML, the second use case covers all concepts of the MML, including the HelperStatement and
helperLiteral, which we could not validate in the first use case. What adds to the complexity of the
second use case is that, while the mapping models for the UML-RT use case exhibit a flatter hierarchy
(a maximum of two-level deep-nested hierarchies), the mapping models of the second use case
exhibit a deeper hierarchy, reaching a maximum of five-level deep-nested hierarchy. This is the case in
the Calendar2Organization mapping model, where the Division2Department mapping rule is made up
of a mix of two consecutive HelperStatements and three mapping rules that cover the three scenarios.

6. Conclusion

As part of this deliverable, we described the definition, implementation, and validation of a mapping
modeling language, in the context of EMF, through industrial use cases. The MML is developed with a
blended modeling approach to support both textual and tree-based notations, which exhibit
complementary usability features and encapsulate the minimum set of concepts necessary for defining
deterministic mappings, keeping the language concise, and avoiding unneeded verbosity. In addition,
the MML has been validated using two use cases which, combined, utilize all of the concepts
contained within the MML. In D4.2, the defined mapping models for these two use cases are used as
input to higher-order transformations that generate synchronization, migration, and reconciliation
transformations.

References
[1] Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. A mapping language from models to di
diagrams. In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors, Model Driven
Engineering Languages and Systems, pages 454–468, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[2] Arnaud Blouin, Olivier Beaudoux, and Stephane Loiseau. Malan: A mapping language for the data
manipulation. In Proceedings of the eighth ACM Symposium on Document Engineering, pages 66–75,
2008.

[3] Guillaume Hillairet, Frederic Bertrand, Jean Yves Lafaye, et al. Bridging emf applications and rdf
data sources. In Proceedings of the 4th International Workshop on Semantic Web Enabled Software
Engineering, SWESE, 2008.

[4] Heiko Kern, Vladimir Dimitrieski, Fred Stefan, and Milan Celikovic. Mapping-based exchange of
models between meta-modeling tools. 10 2014.



15

BUMBLE

[5] Denivaldo Lopes, Slimane Hammoudi, Jean Bezivin, and Frederic Jouault. Mapping specification in
MDA: From theory to practice. In Interoperability of enterprise software and applications, pages
253–264. Springer, 2006.

[6] Srdjan Zivkovic, H Kuhn, and Dimitris Karagiannis. Facilitate modeling using method integration: An
approach using mappings and integration rules. 2007.

[7] Latifaj, M., Ciccozzi, F., & Mohlin, M. Higher-Order Transformations for the Generation of
Synchronization Infrastructures in Blended Modeling. Frontiers in Computer Science, 4, 166, 2023.

[8] Latifaj, M. (2022, October). The path towards the automatic provision of blended modeling
environments. In Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings (pp. 213-216).

[9] Latifaj, M., Ciccozzi, F., Anwar, M. W., & Mohlin, M. (2022, August). Blended Graphical and Textual
Modelling of UML-RT State-Machines: An Industrial Experience. In Software Architecture: 15th
European Conference, ECSA 2021 Tracks and Workshops; Växjö, Sweden, September 13–17, 2021,
Revised Selected Papers (pp. 22-44). Cham: Springer International Publishing.

[10] Anwar, M.W., Latifaj, M., Ciccozzi, F. (2022). Blended Modeling Applied to the Portable Test and
Stimulus Standard. In: Latifi, S. (eds) ITNG 2022 19th International Conference on Information
Technology-New Generations. Advances in Intelligent Systems and Computing, vol 1421. Springer,
Cham.


