R ITEAZ

ITEA Office

High Tech Campus 69 - 3 T +31880036136
5656 AG Eindhoven E info@itea3.org
The Netherlands W www.itea3.org

ITEA 3 is a EUREKA strategic ICT cluster programme

BUMBLE Deliverable D3.3

BUMBLE Methodology

fITEAZ
o BUMBLE

Deliverable 3.3

Executive Summary

The purpose of this deliverable is to provide a technology-agnostic overview of the BUMBLE approach
to realize blended modeling. To this end, it describes general BUMBLE concepts for building blocks of
BUMBLE solutions illustrated by a generic example, for the BUMBLE terminology and taxonomy (i.e.,
the wording concepts as well as their relationships and selected constraints among each other), and
for the BUMBLE methodology to create and evolve a blended modeling language from the point of
view of a language engineer.

In comparison to Version 2 of this deliverable, only very minor changes have been conducted.

Page 2 of 15 Deliverable D3.3 topology and taxonomy

3
fITEAZ
b BUMBLE

/
Deliverable 3.3

Contents

BUMBLE Methodology
Versions

Contributors
Acronyms

1. Introduction

2. Topology

3. Taxonomy

4. Methodology 1"
5. Mapping to Use-Cases and Technology-Bricks 13
6. Conclusion 14

0 Gl A W WW-=-

Versions

RELEASE Dare REASON OF CHANGE StATUS DISTRIBUTION

UpLoapep T0 ITEA
PORTAL

Vi 10/12/2021 FirsT RELEASE OF D3.3 FinAL

UpLoapep 1o ITEA
PORTAL

V2 7/10/2022 SECOND RELEASE OF D3.3 FiNAL

UrLoabed T0 ITEA
PORTAL

V3 24/03/2023 THIRD RELEASE OF D3.3 FinaL

Contributors

The main contributors to this document are MVG, GU, MDU and Canon.

Page 3 of 15 Deliverable D3.3 topology and taxonomy

. 4
fITEAZ
? BUMBLE

Deliverable 3.3

Acronyms
AST Abstract Syntax Tree
B Blended Syntaxes & Modelling
BCx.y BUMBLE Common Core Requirement x.y
BTx.y BUMBLE Common Technical Requirement x.y
C Collaborative Modelling
Cx.y (Use Case) Core Requirement x.y
D Deliverable
E Evolution
EMF Eclipse Modelling Framework
GLSP Graphical Language Server Protocol
GUI Graphical User Interface
JVM Java Virtual Machine
LSP Language Server Protocol
ME Modelling Environment
N Model Non-Conformance
T Traceability
Tx.y (Use Case) Technical Requirement x.y
DSML Domain-Specific Modelling Language
IDE Inte
grated Development Environment
MPS Meta-Programming System
MVC Model-View-Controller
uc Use Case
VCS Version Control System
Page 4 of 15 Deliverable D3.3 topology and taxonomy

5
fITEAZ
b BUMBLE

/
Deliverable 3.3

1. Introduction

The purpose of this deliverable is to provide a technology-agnostic overview of the BUMBLE
approach to realize blended modeling.

This document contains three major parts. The first part is the BUMBLE topology, which defines
the building blocks of our solutions and how they fit together. The topology is not meant as a
technical architecture, but as a technology-agnostic overview of the functional parts of the
solutions. The second part is the taxonomy. The taxonomy is a definition of the terminology by
means of an ontology that depicts the relations between the different terms. Finally, the third part
of this deliverable describes a technology-agnostic workflow for the application of the BUMBLE
solutions from the viewpoint of a blended modeling language engineer.

Page 5 of 15 Deliverable D3.3 topology and taxonomy

6
& ITEAZ
. BUMBLE

Deliverable 3.3

2. Topology

BUMBLE is about blended and collaborative modeling. We follow common terminology and
approaches used in model-driven practices as far as possible. Since it is common to use
modeling for different purposes we distinguish the common metalevels of models:

e M1 are the actual models that model non-language aspects like printer cars, or
income-tax laws. Here is where the users enjoy the blending and collaboration
functionality.

e M2 are the models that define the languages of the M1 models and the way different
languages blend together.

e M3 are the models that define the modeling-languages in which the M2 models are
written.

Figure 1 shows the topology of an example of the functional parts that blend and synchronize M1
models. Figure 2 shows the topology of an example of the functional parts that define the
languages and their transformations. It also shows how these M2 models relate to the M1
topology. It is shown that the functionality of M1 is derived from the M2 specifications, by means
of generators.

Figure 1 depicts two modeling client environments that are involved in a collaboration session
where their models are immediately synchronized with each other. Furthermore, the modeling
languages (and possibly MDSE technologies) are different from each other. There is also
blending of different concrete syntaxes happening in both client environments. To make this
happen there are several transformations happening, both in the client- as in the server
environments. The synchronization between the different environments is done by two model
distribution services that exchange the mutations for the synchronized models. Mind that remote
synchronization only takes place between models that conform to the same metamodel (are
written in the same language).

Page 6 of 15 Deliverable D3.3 topology and taxonomy

ITEAZ=

6 BUMBLE
Deliverable 3.3

Collaborative MDSE client technologies
Blended _

; . ipSe (GEFIGMFIGratit, KTEXT, Sirus...) —
MOde"ng . MPS (projectianal editars, diagrams...) i mal syntax
Exam ple o \WEB/Browser (projsetional, forms, simutation, ...} 2

(M1)

a———— remote synchronization «...... = conforms to
abstract abstract abstract/abstract
model syntax spec transformation spec
M1 M2 ~af—— aslas transformation = = = —=p maps to abstract synt
concrete concrete ‘abstract/concrete
ki syntax spec transformation spec <dl—P» asics transformation = — — —p maps to concrete synt

Figure 1: M1 topology

The goal of the BUMBLE project is to develop solutions for blending for different MDSE
technologies, and that are usable for all possible modeling languages. MDSE technologies
already have generic functionality to define modeling languages. We need to extend this
functionality to define transformations between those languages. It very much depends on the
MDSE-technology involved if and how this should be realized.

Page 7 of 15 Deliverable D3.3 topology and taxonomy

fITEAZ
6 BUMBLE

Deliverable 3.3

Figure 2 shows that the transformations of the different syntaxes (blending) is realized by an
modeling-environment that is (partly) generated based on language and transformation
specifications. These M2 level models are also modeled in a modeling environment (the yellow
one in figure 2). A generator (the yellow arrow) generates parts of the M1 modeling environment
(the purple part). How and which solutions need to be developed in the BUMBLE project for
defining and executing the transformations is very much dependent on the involved MDSE
technologies (e.g. PMS or EMF).

Blended external metamodeling environment (M2)
Meta
Modeling
M2
" BUMBLE \
diagram) -]
"""""""" 7| language metamodeling | textual syntax
) environment 1
(M2) .
.............. ‘4| transformation
‘specification 2
generator - e
N
............................... = metamodel 1
- et
............... . transformation | transformation
specification 3 i specification 4
-
s -
g, 3 o S
............ > et = i
e metamodel 2 e ed:lgll'::aec
-------- 8) el :
-4———— remote synchronization = «...... » conforms to
abstract abstract abstract/abstract I
model syntax spec transformation spec
M1 M2 -g—p aslas transformation = — = —p= maps to abstract synt
[concrete concrete [absjl_'acﬁ'cq'iweie': J
model syntax spec fransformation spec <—— as/cs transformation — — — —» maps to concrete synt

Figure 2: M2 and M1 relation topology

Page 8 of 15 Deliverable D3.3 topology and taxonomy

ITEAZ=

o BUMBLE
Deliverable 3.3

3. Taxonomy

Figure 3 shows the terms and the relationship between the terms.

>
definedInTerms Of

« >
providesMeansForDefining Meta- providesMeansForDefining

language

4 »
Concrete has Modeling >
Syntax
Specification | [] Language |f

self manipulates->forAll 4 Remote
(model | model.instanceOf = self .basesOn) Synchronization

»>
basesOn
manipulates

Model
Element

defines
v

>

4 >
conformsTo View/Editor refersTo
Type

Concrete
Syntax

Abstract
Syntax

instanceOf
v

Syntax

Transformation [maps »
Type

4 defines

Transformation
Specification

Migration
Specification

Graphical Textual Tree Form
View/Editor View/Editor View/Editor View/Editor
Type Type Type Type

Syntax
Specification

Figure 3: Taxonomy

Page 9 of 15 Deliverable D3.3 topology and taxonomy

10
& ITEAZ
o BUMBLE

Deliverable 3.3

Model
“A model represents an aspect of a system under development captured in a specific instance of a
[machine-processable] [modeling] language that serves a purpose within the development lifecycle.”

Modeling Language

A language defines the syntax and static semantics of models. The syntax defines the concepts and
rules to be used and conformed to, for any model to be a well-formed instance of that modeling
language.

Metamodel
A metamodel defines the abstract syntax of a modeling language.

Syntax

The syntax defines how to read and write (either by humans or by computers) models of a specific
modeling language. The syntax is defined by and has to conform to a syntax specification, which is
part of a modeling language. A syntax can be an abstract syntax or a concrete syntax.

Syntax Specification
A syntax specification defines a syntax for a modeling language.

Abstract Syntax

The abstract syntax defines the concepts and rules by which structure models shall be written in a
specific modeling language. The abstract syntax is mainly useful for the static semantic aspects of
the models. The abstract syntax is defined by and has to conform to an abstract syntax specification
(i.e., a metamodel), which is part of a modeling language.

Concrete Syntax Specification
A concrete syntax specification defines a concrete syntax for a modeling language.

Concrete Syntax
The concrete syntax is how humans and computers interact with models of a specific modeling
language. The concrete syntax is defined by and has to conform to a concrete syntax specification.

Metalanguage
A metalanguage is a language that provides means for defining an aspect (metamodel, concrete
syntax specification, static semantics, ...) of a modeling language.

' J. Holtmann, J.-P. Steghofer, M. Rath, D. Schmelter: Cutting through the Jungle: Disambiguating
Model-based Traceability Terminology. RE 2020: 8-19

Page 10 of 15 Deliverable D3.3 topology and taxonomy

11
& ITEAZ
‘ BUMBLE

/
Deliverable 3.3

Remote Synchronization

A synchronization mechanism that keeps two or more models of the same language edited by different
editors the same across a network. Changes in one model are propagated to equivalent changes in
the other model.

Transformation

A transformation is a manipulation of a pair of one model and another model or a view that preserves
the relation between them according to a Transformation Specification for the two syntaxes
involved.

Transformation Specification
A transformation specification is a specification of a Transformation Type. Transformation Types
map two syntaxes, therefore transformation specifications relate two syntax specifications.

Transformation Type

A transformation type is a meaning-preserving relation between two syntaxes. A syntax can be an
abstract syntax or a concrete syntax. The transformation type is defined by and has to conform to a
transformation specification.

Migration Specification
A migration specification is a Transformation Specification that specifies a Transformation Type
that maps a Metamodel to an evolved Metamodel that is a new version of the first Metamodel.

View/Editor Type

“A viewl[/editor] type defines rules according to which views[/editors] of the respective type are
created” based on the concrete syntax and thereby its concrete syntax specification of a
modeling language. “It defines the set of metaclasses whose instances a view[/editor] can display
[and can be edited].” A view/editor type can be of graphical, textual, tree-based, form-based, ...
nature.

View/Editor

“A view[/editor] is the actual set of objects and their relations [(i.e., the elements of a model)]
displayed using a certain representation and layout [and providing the allowed editing commands]. A
view[/editor] resembles the application of a view[/editor] type on the [...] models. A view[/editor] can
therefore be considered an instance of a view(/editor] type.”

2T. Goldschmidt, S. Becker, E. Burger: Towards a Tool-Oriented Taxonomy of View-Based Modeling.
Modellierung 2012.

Page 11 of 15 Deliverable D3.3 topology and taxonomy

12
fITEAZ
P BUMBLE

Deliverable 3.3

Methodology

Figure 4 depicts our workflow for creating a blended modeling environment independently of the
BUMBLE technology spaces Eclipse and MPS. The process of a DSML engineer is pretty
straight-forward. A DSML engineer creates specifications for the abstract-syntax, concrete syntax
and transformations. Subsequently, the DSML engineers realize the transformation and the
view/editor types, followed by bundling the types in a blended-modeling environment. In this
context, “realize” means that the transformation types, view/editor types, and the blended
modeling environment can be automatically generated or manually hand-crafted, or a mixture of
both approaches can be applied.

DSML Engineer

Transformation

Abstract
Syntax
Spedification [RIRIRENED - B | | TP .

Realize
Transformation
Types

Create
Concrete
Syntax
Specifications

Realize Blended
Modeling
Environment

Create Abstract
Syntax
Specification

Create
Transformation
Specifications

Realize

Concrete View/Editor

H : R : !
Syntax : : : : |
: Specifications : : : Types H !
i : : H : |
: H H : A 4 . H I
: : B : : B B ! :
L L e e : STPPRN . I :
)ﬁ)@ :)ﬁ | :
T Transformation : View/Editor } :
Specifications : Types [:
..) :
! :
T M
| :
I H
| :
I .
} Blended Modeling
I Environment
| T
! :
v Y
2
n
o
=
0
[a}

Figure 4: Workflow for Creating a Blended Modeling Environment

We took the liberty to simplify the process based on the dependencies between the different in-
and outputs of the process-steps. The process in practice has a more iterative nature where
changes to the specifications can be done in another order where temporal inconsistencies can
occur. Hence, as for any model this process model is an abstraction of reality.

Page 12 of 15 Deliverable D3.3 topology and taxonomy

13
fITEAZ
P BUMBLE

Deliverable 3.3

The workflow of the DSML user is kept intentionally blank. This is because this process is very
much dependent on the particular DSML involved, and therefore cannot be addressed in this
technology and DSML independent document.

Figure 5 depicts the workflow of modeling language evolution, which is not much different than
the workflow already presented. In fact, it can be argued that an initial DSML development is not
different from evolving an existing DSML, where the old DSML is just an empty one. The main
difference is that when evolving a DSML the existing models that are conformant to the old DSML
can become nonconformant to the new DSML. These models need to be migrated to become
conformant to the new version of the DSML. In other words: The models need to be evolved to
become conformant with the evolved DSML. That is why the DSML engineer creates a migration
specification and realizes a transformation type that migrates the models of the DSML user.

DSML Engineer

: Evolved
Transformation H Transformation
: Transformation Types : Types
Evolved Evolved Specifications a\\

i]] ,,,,, _: ,@

Transformation
Types

Migration Abstract ﬂ:\\
Specification Syntax
Specification

Evolve Abstract FTED Evolve Adapt Blended
Concrete - -
Syntax Syn Transformation Modeling
Specification Specifications Specifications Environment

Evolved : Adapt
Concrete : T View/Editor

f H 1
P : : !
: : : Syntax Types : 1
E : : . Specifications : : : H :
: : : : : : Al A : 1
H : : : R T ; !
Migration RISTRPR, ey !
Specification D -L\\ :
: Evolved !
Cgﬂ;'rﬁ;e):e : Transformation ;]] Vle-erEd‘tm :
Abstract : : S : ypes
: pecifications F 1
Syntax Specifications OO i ViewEditor |
Specification Types 1
1 :
<
1 : h-_._d
i E Evolved
1 Blended Madeling
1 Environment
v -
b
=}
§ Migrate
@ Models
[a]

Figure 5: Workflow for Evolving a Blended Modeling Environment

Page 13 of 15 Deliverable D3.3 topology and taxonomy

fITEAZ

14

o BUMBLE
Deliverable 3.3

5. Mapping to Use-Cases and Technology-Bricks

Since this document describes a technology-agnostic overview of the BUMBLE approach it
applies to all Use-Cases and Technology-bricks of the project.

Because of the abstract nature, many concepts in this document apply to more than one
technology brick. However the Technology-Bricks are more or less mapped to some specific
concepts in this document in the following manner:

Editor Generators

Create Concrete Syntax Specifications,
Generator

Blended Editors

Abstract/Concrete Transformations

Diff and Merge

VCS/Git Service

Blended Model Access

Transformations, Model Persistency Service

Platform Integration

Models with equal meta-models are shared
across technologies using (cross-platform)
Model Synchronization.

Collaboration engine

Model Distribution Server, Model Persistency
Service

Meta-(model) co-evolution

Migration Specification, all process-steps in
figure 5

Page 14 of 15

Deliverable D3.3 topology and taxonomy

‘ 15
z ITEAZ
o BUMBLE

/
Deliverable 3.3

6. Conclusion

We can conclude that it is possible to define the generic BUMBLE concepts in a manner that is
independent from the BUMBLE technology spaces Eclipse and MPS. We have also clarified that
a complete BUMBLE solution can be created by combining relatively independent ‘partial
solutions for different aspects.

We also defined the BUMBLE methodology by means of a process/workflow diagram. The
process definition addresses mainly the workflow of the DSML Engineer. The workflow of the
DSML user is not defined in detail because it is specific to the particular used DSML and
modeling tool.

Page 15 of 15 Deliverable D3.3 topology and taxonomy

