
Machinaide Deliverable 5.2a
Public

1

D5.2a Description of pilots for
enhancing computer-aided design for

low-code development by applying
synthesis

Author(s) Wytse Oortwijn (TNO), Dennis Hendriks (TNO)

Version v 1.0

Date 13/06/2023

Confidentiality Public

Machinaide Deliverable 5.2a
Public

2

1. Abstract

This deliverable describes two pilots performed by TNO-ESI together with Cordis and Additive
Industries, for enhancing computer-aided design for low-code development, by applying synthesis.
Specifying low-code (Cordis SUITE) models in a way to guarantee necessary safety/user requirements
is difficult. We demonstrate that correct control conditions for low-code models can automatically be
synthesized from requirements. These control conditions can then be added to the models to make
them correct with respect to the requirements. Our first pilot demonstrates the benefits of combining
synthesis with low-code development, and our second pilot demonstrates that this combination can
indeed add value in a real-world industrial context.

2. Change log

Version, Date Description

v 1.0, 13/06/2023 Initial draft

Machinaide Deliverable 5.2a
Public

3

3. Table of Contents
1. Abstract ... 2

2. Change log ... 2

3. Table of Contents .. 3

4. Introduction .. 4

5. First pilot: guaranteeing a FIFO requirement using synthesis .. 4

6. Second pilot: industrial application of synthesis for low-code ... 7

7. Conclusion ... 7

8. References .. 8

Machinaide Deliverable 5.2a
Public

4

4. Introduction

Low-code development of control software, like done with for instance Cordis SUITE1, involves
specifying software in terms of models, from which PLC code is generated. These models consist of
only a small amount of code, e.g., conditions to go from one model state to another. The advantage
is that developers do not have to write low-level PLC code, but rather specify from a higher level what
the software system should do, in terms of models. This may for example ease communication
between (multi-disciplinary) teams. On the other hand, being able to specify software in terms of
models instead of code does not take away the challenges in developing software systems that are
correct. It may still be very difficult to specify models that satisfy necessary safety/user requirements.

TNO-ESI2 together with Cordis1 and Additive Industries3 have performed two pilots to investigate if,
and how, low-code development can benefit from (parts of) synthesis-based engineering (SBE4). SBE
is an engineering methodology that essentially combines models-driven engineering with computer-
aided design, to synthesize controllers for the specified models that are correct by construction.
Traditionally, the to-be-controlled system is modeled in a particular way that differs from the way the
controller is modeled in low-code modeling software like Cordis SUITE. It is therefore not immediately
evident that SBE can be applied in this context, whether it can be combined with the low-code way of
working, with the hierarchical UML-like modeling approach, and whether it will then bring the same
benefits as in other contexts. Ideally, the combination of low-code and SBE gives design assistance,
and may help developers to create correct models, especially in situations where correctness is
intricate and difficult to achieve.

In the two pilots that we performed, we focused in particular on requirements that are easy to write
down, but often not so trivial to implement and guarantee. For such requirements we managed to
automatically generate correct control conditions, which can then be added to Cordis SUITE models
to make them correct with respect to the requirement.

An alternative to synthesizing correct control conditions from requirements, is applying verification
techniques to check whether models satisfy their requirements, e.g., using mCRL2 (Stramaglia &
Keiren, 2022). Although there are connections between verification and synthesis, their aim is slightly
different. Verification involves iteratively checking whether a model satisfies particular requirements,
and manually adapting the model if it does not satisfy one of these requirements. Synthesis on the
other hand calculates in one go a so-called supervisor model from the requirements. The supervisor
model contains extra control conditions that ensure that all specified requirements are satisfied in all
states of the model. In that sense, SBE might be considered a constructive approach to designing
correct software systems. Or in simpler words: while formal verification can point you to the problems
in your model, synthesis can both find and solve these problems for you.

5. First pilot: guaranteeing a FIFO requirement using synthesis

The first pilot, performed by TNO-ESI and Cordis, considers a simple pick-and-place system, consisting
of a number of locations that can hold products, and a picking mechanism that can pick a product
from one location and place it onto another, given that the destination location is not yet occupied.

1 See https://cordis-suite.com.
2 See https://esi.nl.
3 See https://additiveindustries.com.
4 See https://eclipse.dev/escet/cif/synthesis-based-engineering.

Machinaide Deliverable 5.2a
Public

5

Figure 1 visualizes this pick-and-place system, where the rectangles are locations (e.g., INOUT, DISP,
etc.) and the arrows between locations indicate how products can move (for example, if the location
INOUT holds a product and DISP is unoccupied, the product on INOUT may move to DISP by performing
an action called 'start'). Locations can hold at most one product. The INOUT location is a bit special,
since it only allows products that entered the system (via an 'enter' action) to take the 'start' action,
and only products that are 'finished' are allowed to leave the system via the 'exit' action. Also CHK is
special since it has a sensor to check products, and enables either the 'leave' or the 'redo' action
depending on whether the product has been approved or not, respectively, by the sensor.

Figure 1: The simple pick-and-place system that we considered in the first pilot. Source:
https://www.eclipse.org/escet/cif/synthesis-based-engineering/example.html, Accessed 2022-12-16.

Even though this pick-and-place system, by itself, is not difficult, it may be challenging to implement
this system in such a way to satisfy certain requirements. For example, suppose that we want the
system to adhere to a FIFO requirement: products leave the system in the same order as they enter
the system. Then quite intricate restrictions on how products can move through the system need to
be considered, as well as when products are allowed to enter the system. For example, one must be
careful that the ‘redo’ action does not let products overtake each other, violating the FIFO
requirement. Moreover, once must also be careful not to allow the system to deadlock, which may
might happen if INOUT, DISP, OP1, CHK and DONE are all occupied, blocking any progress.

Machinaide Deliverable 5.2a
Public

6

Figure 2: Our workflow for the two pilots. In the second pilot we did not make an enhanced model by integrating the
synthesized conditions.

Figure 2 illustrates our workflow for performing the first pilot. Firstly we worked out the pick-and-
place system in Cordis SUITE, into a number of machine parts (for the locations and the pick-and-place
mechanism), thereby not (yet) considering the FIFO requirement. Secondly we manually translated
the low-code specification of the system to a plant model in CIF, which is a modelling language that
comes with Eclipse ESCET™ (Fokkink, et al., 2023), which in turn is a toolkit for supervisory controller
synthesis.5 Thirdly we formalized and wrote down the FIFO requirement in CIF, which allowed
automatically generating correct control conditions that make the system model satisfy the
requirement. The generated conditions for example ensure that not too many products can enter the
system (at most three), and that the ‘redo’ action cannot be taken in a way to make products overtake
each other. Finally, we manually translated the generated conditions back to conditions on the Cordis
SUITE models, making them correct-by-construction with respect to the FIFO requirement.

To be convinced that the enhanced Cordis SUITE models indeed satisfy the requirements, we
developed a simulation environment that randomly interacts with the models (i.e., it randomly lets
products enter the system, and randomly performs actions whenever enabled). We showed that,
without the generated conditions, the Cordis SUITE models would quickly and consistently get into
deadlock situations, or situations that violate the FIFO requirement, often already after a few seconds.
However, after having added the generated conditions, no violations were flagged when running the
simulator, increasing confidence that they indeed made the system correct with respect to the FIFO
requirement.

Although we manually translated Cordis SUITE models to CIF models, and the generated conditions
back to conditions in Cordis SUITE, the translation could in principle be automated. The manual
translations were mostly mechanic, and we believe they could in principle be fully mechanized.

To conclude, we have shown with this first pilot that low-code development can benefit from SBE,
especially to automatically generate parts of the models that are easy to specify as a requirement, but
hard to implement, e.g., due to many corner cases and subtle situations that would then have to be
considered.

5 See https://eclipse.org/escet. ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.

Machinaide Deliverable 5.2a
Public

7

6. Second pilot: industrial application of synthesis for low-code

After having demonstrated the benefits of combining synthesis with low-code development, our next
aim was demonstrating that such a combination can indeed add value in a real-world industrial
context. For this purpose, TNO-ESI together with Additive Industries performed a pilot to apply SBE to
guarantee a number of machine damage control requirements in their Cordis SUITE models.

Additive Industries develops metal 3D printers. The software for those printers is specified in Cordis
SUITE, as models, from which PLC code is generated. In our pilot, we looked specifically at machine
damage control requirements that the Cordis SUITE models must adhere to, to prevent machine
damage control. The 3D printers developed by Additive Industries contain various moving
components, e.g., to perform powder handling and extraction, and those should never collide since
otherwise the printer would damage itself.

A total of six machine damage control requirements were provided by Additive Industries in natural
language, expressing that certain machine parts should never collide. Additive Industries was
interested in learning whether their Cordis SUITE models indeed adhere to these requirements, and if
not, what repairs would then be necessary. The goal of the pilot was establishing whether SBE can
help to check and/or establish these requirements, in this low-code setting.

The workflow for this pilot was similar as depicted in Figure 2. We first manually translated the
relevant parts of the Cordis SUITE models of Additive Industries to CIF models. Then we attempted to
formalize the requirements in CIF, to see what control conditions would be synthesized by CIF
synthesis tooling. If no additional conditions would be generated for a requirement, then that would
mean that the manually translated CIF model would satisfy the requirement. Otherwise, the
synthesized extra condition(s) might be used to repair the CIF model (and therewith possibly also
Cordis SUITE models, but we did not translate any generated condition back to Cordis SUITE).

Note that, since we have made a manual translation of the models, any requirement violation may be
due to errors introduced by this translation. Moreover, we only translated part of the Cordis SUITE
models (i.e., we used a limited scope), and our translation has not been thoroughly tested.

We focus on two machine damage control requirements in particular (since most of the other
requirements were similar to the two that we picked). For both these requirements, we have found
behavior that could potentially violate the machine damage control requirements (again, modulo any
errors introduced in the manual translation). For both requirements, extra control conditions were
generated that further restrict possible interaction between the environment and certain machine
parts, and further restrict movement control of certain machine parts.

The engineers from Additive Industries that were involved in the pilot could not directly confirm
whether the violating behaviors that we found are real behaviors that can indeed occur in practice.
On the other hand, they did confirm that being able to automatically find and deal with subtle
situations and corner cases is helpful, and the ability to automatically synthesize conditions that can
deal with this is valuable design assistance. The engineers indicated that they would be interested in
seeing SBE for low-code be applied at other parts of their software system.

7. Conclusion

To conclude, we have demonstrated in two pilots that low-code can benefit from SBE, and that it can

Machinaide Deliverable 5.2a
Public

8

add value in practice. Even though both pilots involved manual translations of models and/or
generated conditions, these translations were mostly mechanical and can in principle be automated.

8. References

Fokkink, W., Goorden, M., Hendriks, D., Beek, D. v., Hofkamp, A., Reijnen, F., . . . Vogel, J. (2023).
Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS) (pp. 44-52). Paris, France: Springer.

Stramaglia, A., & Keiren, J. J. (2022). Formal Verification of an Industrial UML-like Model Using mCRL2.
In J. Groote, & M. Huisman (Ed.), Formal Methods for Industrial Critical Systems. LNCS, volume
13487, pp. 86-102. Cham: Springer International Publishing.

