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Abstract

The document elucidates the project "VMAP analytics – Smart analytics for multi-scale material and manufacturing modeling" in digitalization, encapsulating the concept's essence. In an era of fierce competition, the paramount importance of intelligent digital twins is underscored, as they serve as powerful tools for staying ahead. Meticulously delving into cutting-edge technologies and crucial enabling factors within the manufacturing domain, the document examines their interplay and transformative potential. Concisely capturing the industry's objectives, the use cases provide a precise framework, while concurrently outlining the project's deliverables and the substantial benefits it brings to the industry at large. Furthermore, a comparison is made between the planned tools and techniques to be employed in this project and the state-of-the-art approaches documented in the existing literature.
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[bookmark: _Toc142373847][bookmark: _Toc142374677]Introduction
Digitalization can be considered the main driver that directly impacts on the advanced manufacturing and transversally affects all the others. As consequence, it can be said that the technological transformation in the European Industry is driven by digitalization, aiming mainly to increase the production efficiency and sustainability to reduce the industrial environmental impact[footnoteRef:2]. The digitalization is a central topic in the European industry, revolutionizing the design, production and organization of the global value chain as well as the distribution and payment of goods. Digitalization is not a simple transfer from analog to digital data and documents, but it is the stronger networking between the business processes, the creation of efficient interfaces and the integrated data exchange and management[footnoteRef:3]. Some new Key Enabling Technologies (KETs) are represented by new generation of sensors, Big Data, Machine Learning, Artificial Intelligence (AI), Internet-of-Things (IoT), Information and Communication Technology (ICT), Mechatronics and Advanced Robotics, Cloud Computing, Cybersecurity, Additive Manufacturing, Digital Twin[footnoteRef:4]. They transform the way industry develops, creates new products and services, and are central to any sustainable future.  [2:  M. Murri, E. Streppa, V. Colla, B. Fornai, T. A. Branca, ESSA: Digital transformation in European steel industry: state of art and future scenario, 2019. WP2 documentation.]  [3:  Bogner, E., Voelklein, T., Schroedel, O., & Franke, J. (2016). Study based analysis on the current digitalization degree in the manufacturing industry in Germany. Procedia CIRP, 57, 14-19.]  [4:  Eurofound (2019), The future of manufacturing in Europe, Publications Office of the European Union,
Luxembourg.] 


The world economy and the society are undergoing major changes, driving a social transformation as important as the first industrial revolution. These changes are a global phenomenon, affecting the way we live, work and behave. An unprecedented increase in the speed of development in science and technology, fast diffusion of knowledge, the scarcity of resources and a new generation of consumers will drive a new paradigm shift at global level and will pose new challenges and opportunities for European Manufacturing.

[bookmark: _Ref144127959]The megatrends that govern development in European manufacturing are given in Figure 1[footnoteRef:5]. It is important to note the following under technological category: [5:  ManuFUTURE-VISION 2030, REPORT FROM ManuFUTURE, HIGH-LEVEL GROUP, DECEMBER 2018.] 

· More complex products, processes and value networks
· Global access to knowledge
· Accelerated technological progress and adoption

The Industry 4.0 refers to the development, convergence and application of technologies such as advanced robotics, additive manufacturing, augmented reality, simulation, integration, industrial internet, cloud computing, cybersecurity, big data and analytics, artificial intelligence, multifunctional and smart materials, enabling the integration of physical and virtual worlds[footnoteRef:6]. ICT for cyberphysical manufacturing encompasses the use of sensors to collect data in the real world, together with intelligent control and mechatronics, increased amounts of available data, information and knowledge, enabling development of digital twins for machines, production lines and complete factories. Flexible automation is increasingly enabling the integration of a multitude of technical processes and self-reconfiguration, self-organisation and self-optimisation of manufacturing systems. Innovation in materials and biotechnology is allowing the development of new materials and more intelligent processes, including recycling, attenuating the impact of natural resources scarcity[footnoteRef:7].  [6:  Schwab K., The Fourth Industrial Revolution, World Economic Forum, 2016.]  [7:  Stephen Ezell, Information Technology & Innovation Foundation, Why Manufacturing Digitalization Matters and How Countries Are Supporting It, 2018.] 


These technologies are developing and being adopted at an accelerated pace, influencing not only manufacturing processes but also factories and complete value networks.
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[bookmark: _Ref143495266]Figure 1 Megatrends and drivers for manufacturing44


The industry 4.0 is a long journey and there are a lot of challenges and opportunities for European industry. These include4:

· Customers will have a central role in value creation
· Big potential in leapfrogging productivity gains in manufacturing
· Making complex manufacturing systems simple
· The circular economy
· New partnerships for new manufacturing skills

Based on the above the manufacture vision is given as:

“European manufacturing in 2030 will be a globally competitive, interconnected and adaptive sociotechnical value creation system that ensures sustainable growth and social welfare, in a resource-constrained world.”

The strategy to achieve the ManuFuture4 vision is given in Figure 2. This involves mastering digitalization in manufacturing and development of various digital twins for deeper understanding. 

[image: ]
[bookmark: _Ref143495746][bookmark: _Ref143495735]Figure 2 ManuFuture 2030 roadmap and strategy44


This state-of-the-art document concentrates on digital transformation in manufacturing industry. The physics based digital twins and data analytics are discussed in the following sections.

[bookmark: _Toc142373848][bookmark: _Toc142374678]Digital twins

There is no single scientific definition of digital twin, however, a common definition is that a digital twin is a digital representation of a real-world object with focus on the object itself. A digital twin of a physical manufacturing operation can be used to predict, analyze, and optimize the process in the virtual environment. Once optimized in the virtual world, the optimized solution can be applied to the real-world processes.

[bookmark: _Ref144128090]The digital twin (DT) was first defined as a kind of simulation that can dynamically mirror the state of a corresponding twin based on the data integrated from the available physical models, sensor updates and operating history, in a multi-physics, multiscale and probabilistic manner[footnoteRef:8]. Simulation & emulation is the essence of DT. The bottommost function of DT is to simulate/ emulate the physical model, to build a digital counterpart from which one can get the information to instruct the physical one to operate. DT was a digital representation/replica/ prototype to mirror the physical entity or process in a real-time manner. DT helps to make better decisions, control, and even forecast and implement measures timely in fault diagnosis, health condition and maintenance.  DT can be depicted as a cradle-to-grave model which can service along with the entire life of the product[footnoteRef:9]. But nowadays, with the increasing number of scholars from diverse fields who devote themselves to the research work, DT has received its application era. Figure 3 demonstrates the number of papers from 2003 to 2021 at Web of Science, based on the term “digital twin”. As we can see, the number is being through exponential growth[footnoteRef:10]. DT was immensely helpful in optimizing decisions-making and controlling, monitoring health condition, and forecasting and preventing the upcoming problems. In 2020, a high degree of the evaluation was given to DT and the authors[footnoteRef:11] convinced that DT would be one of the top ten state-of-the-art and most promising technologies in the next decade. One of the most common fields is smart manufacturing in industry, including product design, manufacture, health condition [image: ]management, etc. [8:  E. Glaessgen, D. Stargel, The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles[C]. Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics & Materials Conference Aiaa/asme/ahs Adaptive Structures Conference Aiaa (2012).]  [9:  L. Zhang, L. Zhou, B.K.P. Horn, Building a right digital twin with model engineering, J. Manuf. Syst. 59 (2021) 151–164.]  [10:  Fei Peng, Li Zheng, Xianghui Meng, Digital Twin for rolling bearings: A review of current simulation and PHM techniques, Measurement 201 (2022) 111728]  [11:   J. Wu, Y. Yang, X.U.N. Cheng, et al., The Development of Digital Twin Technology Review, Chinese Automation Congress (CAC) 2020 (2020) 4901–4906.] 

[bookmark: _Ref143495878]Figure 3 Number of publications from 2003 to 20219
 
[bookmark: _Toc142374679]Physics based DT

Aggressive competition between various industries taking place due to globalization and time to market, price, quality, sustainability are factors that determine competitiveness in digital era. Therefore, numerical simulation of manufacturing processes play an important role. The finite element method (FEM) has been proven to be a versatile and powerful tool for solving complex problems in many engineering fields[footnoteRef:12]. It can be successfully used to obtain numerical solutions from complex phenomenological models. For this reason, the FEM has been successfully applied to a wide field of engineering problems, such as mechanics of materials (elastic and non-elastic), fluid dynamics, heat transfer and electromagnetism.  [12:   Zienkiewicz OC, Huan GC, Lie YC, Adaptive FEM computation of forming processes – Application to porous and non-porous materials. Int. J Numerical Methods in Engng 30 (1990)  1527–1553.] 


The accuracy and applicability of metal forming simulations have significantly progressed, driven by computational power, developments in theory and numerical methods. This will continue to evolve in the digital era, impacting the digital society and factories of the future. Figure 4 shows the evolution of simulation over six decades. The developments in FEM are continually happening. Practical applications of metal forming are also catching up in the last two decades and it is exponentially growing. This is because emerging technologies require advanced materials, augmented reality and of course deeper knowledge through process simulations. The FEM simulation can visualize the invisible phenomena, such as plastically deforming material inside dies and tools, the stress and temperature fields in materials and tooling, microstructure and texture evolution, and the mechanical properties of formed components. 

Though FEM is a versatile technique, there are lot of challenges associated with this kind of modeling. For example modeling component failure with high accuracy. The complex interactions of cracks in different kinds of microstructure are a challenge. Modelling of friction at the interfaces accurately is another challenge. The most common friction models used in FE are presented in comprehensive review papers[footnoteRef:13],[footnoteRef:14]. Using advanced friction models are computationally expensive. Hence a compromise between accuracy and cost needs to be made. One more challenge is its computational time. [13:   Luchinger M, Velkavrh I et al., Development of a constituitive model for friction in bulk metal forming, Lubricants 6(2) (2018) 42.]  [14:   Nielsen CV, Bay N. Review of friction in metal forming processes 255 (2018) 234-241.] 

[image: Text

Description automatically generated]
[bookmark: _Ref143495958][bookmark: _Hlk145945959]Figure 4 Evolution of Simulation in metal forming[footnoteRef:15]   [15:   Yanagimoto J, Banabic D, Banu M, Madej L. Simulation of metal forming – Visualization of invisible phenomena in digital era CIRP Annals – Manufacturing Technology 71 (2022) 599-622.] 


The simulation of metal forming for a control system is a step on realizing the power of digital twins. However, the simulation takes a long time that is unsuitable for online control. For such application, a surrogate model based on extensive FEM simulation results need to be developed.  


Materials Models: Material behavior models play an important role to obtain more accurate simulations. In the robust rolling mill simulator and finite element rolling mill simulator the material behaviours during plastic deformation are demanded. A lot of material constitutive models are employed for this purpose. For an effective numerical calculation with a relatively simple expression Johnsson-Cook flow stress model is chosen, which is capable of capturing the effect of temperature and the one of strain rate on hardening.

[bookmark: _Toc142374680]Big Data based DT

Big data technology enables the analysis of complex data sets, including real-time data, which traditional methods may not handle easily. Data analytics aims to turn the volume, variety, velocity, and veracity of data into actionable insights within a manufacturing system[footnoteRef:16]. Figure 5 presents data analytics cluster with its corresponding characteristics and technologies. Some of the technologies are discussed in this report. Big data is considered a subset of data analytics, given its ability to handle high volumes and velocity of data, allowing for real-time customer communication. Machine learning, a form of artificial intelligence, involves computer programs learning from experiences and identifying patterns without human intervention, and can be employed for intelligent control. Predictive analytics uses measurable variables in data to predict outcomes, while data mining involves exploring large data sets. Both fall under the data analytics umbrella as forms of data analysis[footnoteRef:17]. Data visualization, which uses graphical representations to [image: A diagram of data analytics

Description automatically generated with low confidence]identify patterns and convey information, also falls under data analytics[footnoteRef:18]. [16:   Ishwarappa and J. Anuradha / Procedia Computer Science 48 ( 2015 ) 319 – 324]  [17:   Waller MA and Fawcett SE. Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logist 34 (2013) 77–84.]  [18:   Fan W and Bifet A. Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newsletter 14 (2013) 1–5] 


[bookmark: _Ref143496048]Figure 5 Visual representation of data analytics cluster with its corresponding characteristics and technologies[footnoteRef:19]. [19:   Sameer Mittal, Muztoba Ahmad Khan, David Romero and ThorstenWuest, Smart manufacturing: Characteristics, technologies and enabling factors, J Engng Manufacture 233 (2019) 1342-1361] 


Modeling represents real-world scenarios using mathematical expressions and simplified models, while simulation generates data based on these models for later analysis. Forecasting predicts future outcomes using available data. As all three rely on data for decision-making, they are part of the data analytics cluster. Knowledge decision-making techniques, including multi-criteria decision making, mathematical programming, and artificial intelligence, use data to inform decisions and should also be considered part of data analytics.

It is important to consider feature selection and suitable algorithm selection for the problem under consideration. Since industrial data that is considered noisy, it is important to carefully select features that can effectively capture relevant information while mitigating the impact of noise. Here are some steps to select features in such scenarios:
1. Gain a deep understanding of the industrial process or system generating the data. Consult with domain experts, engineers, or operators to gain insights into the underlying processes.
2. Clearly define the problem
3. Explore the data to identify patterns, trends, and noise characteristics. Use visualizations, statistical analysis, and exploratory data analysis techniques to gain insights. 
4. Feature engineering – considerations for preparing the dataset:
· Feature Extraction: Transform raw data into meaningful features that capture relevant information. 
· Feature Selection: Use statistical techniques or machine learning methods to identify the most informative features. 
· Feature Scaling: Normalize or standardize features to ensure they are on a similar scale.
· Feature Aggregation: Aggregate raw data over time intervals or combine multiple variables to create higher-level features that may exhibit more consistent behavior and reduce noise.
5. Evaluate Feature Performance.
6. Iterative Refinement.
7. Monitor Data Quality: Regularly evaluate the performance of your models and consider re-evaluating feature relevance and effectiveness.
Top of Form
Selecting the most relevant algorithm for complex industrial process data requires careful consideration of several factors. 
1. Understand the Data: Gain a deep understanding of the characteristics of industrial process data that help in selecting suitable algorithms.
2. Consider Data Preprocessing: Evaluate preprocessing steps such as normalization, feature scaling, dimensionality reduction, or outlier detection to ensure compatibility.
3. Review Algorithm Types: 
· Statistical Methods: Traditional statistical techniques such as linear regression, logistic regression, or ANOVA may be suitable for analyzing process data when the relationships are linear or there are clear assumptions about the data distribution.
· Machine Learning Algorithms: Explore a wide range of machine learning algorithms such as decision trees, random forests, support vector machines (SVM), neural networks, or ensemble methods like gradient boosting. These algorithms can handle complex patterns and non-linear relationships in the data.
· Time-Series Analysis: If the data exhibits temporal dependencies or patterns, consider time-series analysis techniques such as autoregressive integrated moving average (ARIMA), seasonal decomposition of time series (STL), or recurrent neural networks (RNNs) with long short-term memory (LSTM) cells.
4. Evaluate Algorithm Suitability
5. Experiment and Compare
6. Iterative Refinement: If the initial results are not satisfactory, iterate and refine the  approach. 

These considerations are very important while analysing the industrial data.


[bookmark: _Toc142374681]Smart DT

The manufacturing industry has recently adopted a new technology, referred to as "smart manufacturing," that can predict product requirements and detect errors quickly[footnoteRef:20]. This technology improves manufacturing processes and innovates products and services. Smart manufacturing involves the use of the Internet of Things (IoT), which enables communication between machines, products, and customers. By integrating data-based understanding, reasoning, planning, and advanced technologies, smart manufacturing achieves real-time responsiveness to the changing demands of the factory, supply network, and customer needs, improving the quality and sustainability of manufacturing activities while reducing costs. To operate a successful smart factory, it is important to collect relevant data from equipment, analyze the data for operational and business decision-making, and optimize processes through simulation, automation, and system optimization[footnoteRef:21],[footnoteRef:22].  Furthermore, as noted by Kusiak[footnoteRef:23], smart manufacturing must embrace big data and, to this aim, information system and production management software must be coupled and/or enriched with deep analytical skills and with learning ability, to ensure competitiveness and effectiveness. [20:   Kusiak A. Smart manufacturing. Int J Prod Res 2018;56:508–17. https://doi.org/ 10.1080/00207543.2017.1351644.]  [21:   Lu Y, Xu X, Wang L. Smart manufacturing process and system automation – a critical review of the standards and envisioned scenarios. J Manuf Syst 2020;56: 312–25. https://doi.org/10.1016/j.jmsy.2020.06.010.]  [22:   Smart Factory Applications in Discrete Manufacturing. Available from: 〈htt ps://hub.iiconsortium.org/smart-factory-apps-discrete-mfg〉]  [23:   Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23–25. https://doi.org/10.1038/544023a] 

[bookmark: _Toc142373849][bookmark: _Toc142374682]Data Mining and Preparation Processes

[bookmark: _Ref144128308]The data preparation in cyber-physical production systems forms an important task for analytics. As mentioned in earlier section, it is very important to consider feature selection and algorithm selection strategy. The de facto standard for conducting data analytics in industrial applications is the CRISP-DM methodology. The cross-industry standard process for data mining (CRISP-DM) is a framework for translating business problems into data mining and analytics tasks[footnoteRef:24]. It is a widely adopted industry-oriented implementation of the generic Knowledge Discovery (KD) process, as described in[footnoteRef:25]. [24:   Wirth R, Hipp J. CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. 2000; pp. 29–39.]  [25:   Brachman RJ, Anand T. The process of knowledge discovery in databases: A first sketch. AAAI Press. 1994; pp. 1–11.] 


Figure 6 shows the six phases of the CRISP-DM process model and their interactions. Project's goal definition and the benefits derived from that is included in the first phase “Business Understanding”. This goal is then transformed into a specific data mining problem, e.g. by identifying the production parameters and their correlation to the objective. During the “Data Understanding” phase hypotheses for hidden information regarding the data mining project goal are formed based on experience and qualified assumptions. In the “Data Preparation” phase the data scientist collects the relevant data and prepares it for the actual analytics task. This includes the preprocessing, e.g. data reduction, filtering, data wrangling etc., as well as feature generation with respect to the data mining project goal. In addition, the data sets can be labeled according to the engineers' expert domain knowledge, such that they are represented in the data set. In the “Modeling” phase a data mining workflow is constructed to find the desired parameter settings for the selected algorithms and to execute the data mining task on the preprocessed data. The result is a trained classification model. Within the subsequent “Evaluation” phase the trained model is tested against real data sets within a production scenario and the data mining results are assessed according to the underlying business objectives. For this purpose, test data sets are generated following the steps developed in the “Data Preparation” and “Modeling” phases excluding the labeling step. After successful evaluation of the trained model, it is deployed into production in the “Deployment” phase. However, the deployment also requires a stable set-up for data acquisition including a sensor and data processing infrastructure.
[image: Graphical user interface
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[bookmark: _Ref143496162]  Figure 6  The CRISP-DM process23

There are various approaches reported in literature in data mining methodologies. Figure 7 shows the evolution of data mining and data science methodologies. The arrows in the figure indicate that CRISP-DM incorporates principles and ideas from most of the methodologies, while also forming the basis for many later proposals. CRISP-DM is still considered the most complete data mining methodology in terms of meeting the needs of industrial projects, and has become the most widely used process for DM projects according to the KDnuggets polls (https://www.kdnuggets.com/) held in 2002, 2004, 2007 and 2014. In short, CRISP-DM is considered the de facto standard for analytics, data mining, and data science projects.


[image: A picture containing text
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[bookmark: _Ref144128585]Figure 7 Evolution of data mining and data science methodologies23

Because of various advantages, we adopted CRISP-DM based methodology for data mining and preparation in this project. 

[bookmark: _Toc142374683]Machine Learning

[bookmark: _Ref144130637]Machine learning (ML) is a subset of artificial intelligence (AI). According to Murphy[footnoteRef:26], ML is a collection of techniques that can identify patterns in data and leverage these patterns to forecast future data or make decisions when faced with uncertainty. However, this definition places excessive emphasis on pattern recognition and decision-making, which do not fully encompass the range of methodologies and approaches within ML. In general, ML is described as a group of algorithms and techniques that extract insights from data and can enhance their abilities by learning from past experience. Figure 8 illustrates the typical work flow of ML used in predictive modelling. It is important to note the accuracy of the results depends to a great extent on initial data and algorithms employed.   [26:   Murphy, K. (2012). Machine learning: A probabilistic perspective. Cambridge: The MIT Press.] 

[image: ]
[bookmark: _Ref144130603]Figure 8 Typical work flow of ML25

[bookmark: _Ref144130783]ML is generally classified into three categories: supervised learning, unsupervised learning and reinforcement learning.  Figure 9 shows different algorithms developed and grouped by learning type[footnoteRef:27]. Since many applications in material processing employs supervised learning, this report focusses on supervised learning.  [27:   Huu-Tai Thai, Machine learning for structural engineering: A state of the art review, Structures 38 (2022) 448-491.] 



[bookmark: _Ref144130741][bookmark: _Ref144130731][image: ] Figure 9  ML algorithms grouped by learning type26 

Each algorithm is designed and developed for certain types of learning methods and applications. This report discusses the algorithms those are generally used in materials processing. 

[bookmark: _Toc142374684]Neural networks and its variants:

[bookmark: _Ref144130882]The ever-increasing computational power made neural networks very popular in data science. The various variants of artificial neural networks (ANN) are feed forward neural networks (FFNN) improved by multilayer perceptron (MLP) radial basis function neural networks (RBFNN), convolutional neural networks (CNN), recurrent neural networks (RNN) improved by long short term memory (LSTM)and adoptive neuro-fuzzy inference system (ANFIS). Example of an ANN is shown in Figure 10. The ANN structure is like a human brain consisting of human neurons known as nodes that are interconnected. The input layer receives data to predict parameters in output layer, while hidden layers are computing units. The main mathematical functions are performed on input data in hidden layer. A detailed historical review of ANN and its variants can be found in Schmidhuber[footnoteRef:28].  [28:   Schmidhuber J. Deep learning in neural networks: an overview, Neural Networks 61 (2015) 85-117.] 


Optimization of ANN parameters is very important to achieve good results. These include ANN architecture (number of hidden layers, number of neurons, activation function etc.) and the training variables (learning rate, number of epochs, batch size and momentum). 
[image: ]
[bookmark: _Ref144130918] Figure 10  Example of an ANN27

The CNN is another type of neural network that can uncover key information in both time series and image data. For this reason, it is highly valuable for image-related tasks, such as image recognition, object classification and pattern recognition[footnoteRef:29]. To identify patterns within an image, a CNN leverages principles from linear algebra, such as matrix multiplication. CNNs can also classify audio and signal data. [29:   Wang W, Yang Y, Wang X, Wang W, Li J, Development of convolutional neural network and its application in image classification: a survey, Opt Eng 58 (2019) 040901.] 


RNN and LSTM

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) are both powerful deep learning architectures commonly used for sequential data processing, such as natural language processing (NLP) tasks. RNNs are designed to capture temporal dependencies in sequential data by maintaining a hidden state that carries information from previous inputs. This recurrent nature allows RNNs to have memory and consider the context of the entire sequence when making predictions. However, standard RNNs can struggle with capturing long-term dependencies due to the vanishing gradient problem, which makes it challenging for them to retain information over long sequences.

LSTMs address the limitations of traditional RNNs by incorporating memory cells, gates, and additional information flow control mechanisms. LSTMs are composed of multiple memory cells that selectively store and erase information. These cells are governed by three main gates: the input gate, the forget gate, and the output gate. These gates control the flow of information and enable the LSTM to retain or discard relevant information from the previous time steps. This architecture allows LSTMs to effectively capture long-range dependencies and mitigate the vanishing gradient problem. 

[bookmark: _Ref144131974]Figure 11 shows the architectures of RNN and LSTM[footnoteRef:30] [30:   Schmidhuber J, Deep learning neural networks: An overview, Neural Networks, January 2015.] 

[image: ]
[bookmark: _Ref144883383]Figure 11  RNN and LSTM architectures29

Deep neural networks have exhibited remarkable achievements in diverse domains like images, audio, and text[footnoteRef:31],[footnoteRef:32]. However, despite their theoretical merits, employing deep neural networks for tabular data presents numerous hurdles, including issues like absence of locality, data sparsity, mixed feature types, and limited understanding of dataset structure. In contrast, tree-ensemble algorithms, emerge as the preferred choice for tackling practical challenges encountered in real-world tabular data scenarios. A comparison of some of the neural network techniques is given in Table 1[footnoteRef:33].  [31:   Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.]  [32:   Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. In Proc. 9th ISCA Workshop
on Speech Synthesis Workshop (SSW 9), page 125, 2016.]  [33:   Muhammad Imran Razzak, Saeeda Naz and Ahmad Zaib, Deep Learning for Medical Image Processing: Overview, Challenges and Future, Classification in BioApps,  2016, 323-350.] 













Table 1 Comparison of various neural network models
	Type of Network
	Detail of network
	Pros
	Cons

	Deep Neural Network (DNN)
	There are more than two hidden layers that allow complex non-linear relationships. It is used for classification as well as for regression
	It is widely used with good accuracy
	The training process is not trivial because the error is propagated back to the previous layers. The learning process of the model is slow.

	Convolutional neural network (CNN)
	This network is very good for 2D data. It consists of convolutional filters that transform 2D to 3D.
	Learning of model is very fast and very good performance.
	It needs lot of labeled data for classification.

	Recurrent neural network (RNN)
	It has the capability of learning the sequences. The weights are shared across all steps and neurons.
	Learning from sequential events can model time dependencies. There are many variants including LSTM. These models provide accurate speech recognition, character recognition and many other tasks.
	There are some issues due to vanishing gradient and need big data sets.




The following section deals with decision trees and boosted algorithms.

[bookmark: _Toc142374685]Decision Trees and variants

Decision Tree and Random Forest

Decision Tree and Random Forest are widely used machine learning algorithms that have proven to be effective in various domains. A Decision Tree is a supervised learning algorithm that makes decisions or predictions by recursively splitting the input data based on feature values. It forms a tree-like structure where each internal node represents a decision based on a specific feature, and each leaf node represents the final decision or prediction. Decision Trees are advantageous due to their interpretability and ability to handle both categorical and numerical data. They can be used for classification and regression tasks and are particularly useful in domains where interpretability is crucial, such as credit scoring, medical diagnosis, and customer segmentation.

Random Forest is an ensemble learning method that combines multiple Decision Trees to make predictions. It works by constructing a collection of Decision Trees, each trained on a random subset of the training data and using a random subset of features. The final prediction in Random Forest is obtained by aggregating the predictions of individual trees through voting (for classification) or averaging (for regression). Random Forest addresses some limitations of Decision Trees, such as overfitting and instability. It provides better generalization, robustness, and improved accuracy by leveraging the diversity and collective decision-making of multiple trees. Random Forest is widely used in various applications, including fraud detection, recommendation systems, and bioinformatics.

It is important to note that while Decision Trees and Random Forest are powerful algorithms, they may have limitations, such as potential bias towards dominant features or computational complexity for large datasets. Discussing these considerations can provide a comprehensive analysis in your report.

XGBoost

XGBoost (Extreme Gradient Boosting) is a machine learning algorithm that creates a bunch of decision trees and combines their result to make a final prediction. It is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. XGBoost is an extension to gradient boosted decision trees (GBM) and specially designed to improve speed and performance. XGBoost is a common technique in ensemble learning that enlists many models to make predictions together. Boosting algorithms are distinguished from other ensemble learning techniques by building a sequence of initially weak models into increasingly more powerful models. The algorithm operates on decision trees, models that construct a graph that examines the input under various “if” statements to build a stronger model.

This makes XGBoost a highly effective machine learning algorithm known for its success in various applications. With features like regularization, tree pruning, and handling missing values, XGBoost prevents overfitting and enhances efficiency. It accommodates diverse data types, offers insights into feature importance, and supports parallel processing. XGBoost's versatility and performance make it a popular choice for structured/tabular data tasks, providing accurate predictions and valuable insights. Figure 12 shows the architecture of XGBoost.
[image: Simplified structure of XGBoost. | Download Scientific Diagram]
[bookmark: _Ref144132744] Figure 12  The architecture of XGBoost

As shown in the Figure, trees are added sequentially, each addressing the mistakes of the previous ones. XGBoost uses a clever optimization algorithm to efficiently build these trees. Regularization terms (L1/L2 penalties) are introduced to prevent overfitting. The process can involve pruning, which simplifies trees by removing unnecessary branches.

Primarily, XGBoost's iterative approach of training weak learners to correct errors and updating predictions is the core mechanism that allows it to build a strong predictive model from multiple weak components. The ensemble of these trees results in a powerful and accurate predictive model. Shwartz-Zev and Armon[footnoteRef:34] compared XGBoost with various deep neural networks and concluded that XGBoost outperformed deep models for analyzing tabular data.  [34:   Ravid Shwartz-Ziv, Amitai Armon Aäron: Tabular data: Deep learning is not all you need,  Information Fusion, 2022 (81) pp 84-90.] 


Ensemble of models 
Ensembling combines diverse data analytics algorithms to enhance prediction accuracy and reliability. Techniques like bagging, boosting, stacking, voting, and blending leverage the strengths of individual models, resulting in improved overall performance. Ensembles offer higher accuracy, robustness, and generalization, although they can be computationally intensive and less interpretable. Overall, ensembling is a powerful approach widely used to address complex data challenges.
The following sections deal with the description of four use cases proposed in the project. The objectives of the project and the methodology proposed are outlined. These methods are compared with the state-of-the-art techniques from published literature.
[bookmark: _Toc142373850][bookmark: _Toc142374686][bookmark: _Hlk130544182]Problem description Ovako

Ovako is a European manufacturer of engineering steel for customers in the bearing, transportation and manufacturing industries. With geographical presence in Europe, North America and Asia, and a steel product line that includes niche products and customized solutions, Ovako is contributing to create value for its customers and their customers all over the world.
Ovako manufactures clean, strong and sustainable steel. Their steel is sustainable because the production process is based on steel scrap and a Nordic low-carbon electricity mix. As a result, the carbon footprint of Ovako’s steel products is a full 80 percent lower than the global average. It is also clean and strong because Ovako minimizes impurities in the steel during the production process. This gives the steel high-quality properties that enable customers to create lighter, stronger and more durable end products. Ovako have around 2 900 employees in more than 30 countries, including production facilities in nine locations. 
[bookmark: _Toc142373851][bookmark: _Toc142374687]Production process:
Steel making process at Hofors is schematically given in Figure 13. The process includes the following steps:
1. Scrap is loaded at the scrap yard
2. The scrap is melted in an electric arc furnace (EAF)
3. The steel is dropped into a ladle and excess slag is removed
4. New slag and the desired alloys are added to the ladle furnace
5. In the degassing, the steel is cleaned
6. Steel with the desired analysis is cast in moldsScrap
EAF
Deslagging
Ladle furnace
Degassing 
Teeming

[bookmark: _Ref144132854]Figure 13  Steel making process at Ovako (courtesy Ovako AB)
[bookmark: _Toc142373852][bookmark: _Toc142374688]Problem description:
As mentioned earlier, the quality of steel is very clean and with controlled chemistry.  Degassing is an important process that controls chemistry of important elements such as hydrogen and nitrogen to allowable limits. 
The efficiency of the degassing depends to a large extent on:
1. Slag composition and quantity
2. The analysis of the steel
3. The temperature
4. Porous plugs
This varies with detailed analysis and temperature from the arc furnace. 
Three important decisions are needed for the operator before degassing process:
1. Mixture and amount of new slag
2. Amount of alloy
[bookmark: _Toc142373853][bookmark: _Toc142374689]Temperature before degassing
If the degassing does not work as intended, it would be difficult for the operator to determine how long the degassing needs to be caried out for the steel to acquire the desired properties. The probability that the steel needs to be corrected, which takes time, is then high. If the degassing conditions are not good enough, new slag and new alloys need to be added and the degassing might need to run again. This is both uneconomical and time consuming.
Therefore, this project aims for deeper understanding of the process to support the operator to determine:
1. Mixture and amount of new slag
2. Amount of alloy additions
3. Temperature before degassing
Would make the process and thus energy consumption and cost significantly lower.
• Flux splashing and operator adjustments
• Effect of process parameters on degassing
The proposed methodology to meet the objectives is to employ the process data to correlate to chemistry control and degassing time. CRISP DM process would be employed to understand data, prepare data and perform analytics. The selected algorithm for analytics is XGBoost.
[bookmark: _Toc142374690][bookmark: _Toc142373854]Automatic guide control 
MH sign stands for reliability and innovation in Guiding Technology. Since 1944 when Mr Erik Norlindh patented the first roller guide in MH Sweden, Morgårdshammar has been the front-runner in this field.
Danieli Morgårdshammar have been developing the RX guide since 2015 and have successfully released smaller versions of the guide. Together with Ovako we have developed a larger version with higher torques and also started implementing feedback for the mill control, in order to set the gap from the previous stand correctly. Figure 14 shows the location of smart guide and a smart guide.
The main product features; The vision is clear, single click setting. We want to make roller guides part of Industry 4.0. 
1. First of all the guide should be safe and to achieve that human intervention in the mill during rolling must be eliminated.  Today, normally operators go into the mill and adjust the guides with hot material rolling in the line. If the roller holders are force-controlled, there is no need to go into the mill and adjust the guide – it adjusts itself. 
1. The guide itself should be flexible in order to be able to handle variations in the stocks dimension. If the head or tail of the stock is a little out of dimension, the guide should be able to handle that. 
1. The guide should also save time in the mill by quick dimension setup change, especially for mills that have several setups per shift, in order to improve the mill’s utilization. 
1. Helpful tool for the operators at the mill. The guides give feedback on the gap setting or wear in the previous stand.
1. The guide should be consistent, i.e. operator-independent. All settings are stored in a database and called up on request. 
Three trials have been made at Ovako Smedjebacken in order to collect data foremost for mechanical properties of the guide, to make sure that it is strong enough and there are no issues with interference. Datalogging and analysis has also been set up in order to give feedback to the operator on the stock size of the bar. This to ensure that the correct size is coming out from the previous stand.
The project aims at preparation of necessary data and analytics to enable the mill controller to react to the data from the guide and adapt the rolling product in order to align the rolling setting.
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[bookmark: _Ref146007599]Figure 14  a) The location of smart guide in rod rolling and b) a smart guide

The objective of the project is:
· Optimization of degassing parameters
· Chemistry control
· Automatic guide control for rod rolling
The deliverables from the project are
· Data based digital twin for degassing process
· Operator support for degassing process
· Smooth rolling process for rod rolling mill with automated guides

[bookmark: _Toc142373855][bookmark: _Toc142374691]Use case – FOCS modification - Prevas
(Augmentation of Furnace Optimization and Control System)
This use case deals with improving control in reheating and heat treatment furnace operations. 


[bookmark: _Toc142373856][bookmark: _Toc142374692]Business Objectives

Metal and mineral producers face major challenges in terms of competition and profitability. Prevas offer customers to improve their products, services to be more efficient, user-friendly, and profitable. With high technical expertise and deep business understanding, Prevas helps customers from a wide variety of industries to benefit through continuous technological innovation. 

The basic requirement of industry is growing steadily. Sustainability is a driving force and the increased degree of automation, digitalization, increased technology content in all things, increased degree of connectivity contributes to increased demand for advanced expertise. With this there is also an increased demand for half packaged capital structure that can be used to increase the flexibility, speed and efficiency in development of solutions. The requirement for advanced expertise and need for capital structure are two trends that both indicate a strong future for Prevas. The ambition is to help customers to benefit from this and to offer employees exciting work tasks that can also contribute to a better world in different ways.


[bookmark: _Toc142373857][bookmark: _Toc142374693]About Prevas

Prevas was founded in 1985 and currently employs about 800 people in Sweden, Norway and Denmark. The company provides advanced solutions and consultancy services within product development and production development with a yearly revenue of about 800 MSEK. Prevas is quite an innovative company, and some examples includes the first collaborative robot in serial production, the world's safest bicycle helmet, and a global cloud service to meet the latest demands on traceability and labelling. Prevas also supply an unique solution: FOCS – Furnace Optimization Control System, to optimize furnace parameters. Today 90% of all steel produced in Scandinavia is heated in a furnace controlled by FOCS. However, it needs continual improvement to stay ahead in the competition.
[bookmark: _Toc142374694]FOCS system – description

[bookmark: _Ref144134225]The primary goal of the FOCS  is to minimize fuel consumption while simultaneously enhancing productivity and the quality of products in a range of furnace applications[footnoteRef:35]. These applications encompass pit furnaces, normalizing furnaces, annealing furnaces, and reheating furnaces. The FOCS achieves its objectives by performing real-time calculations of slab temperatures, coupled with diverse levels of control intricacy tailored to the specific requirements of each furnace type. The temperature computation is executed through a 2D model known as STEELTEMP, which has been co-developed by MEFOS. This model considers both workpiece details and furnace-specific data to yield precise results[footnoteRef:36].  [35:   M Evestedt and P-O Norberg, Precise temperature control in high quality steel reheating and annealing furnaces, 13th Sumposium on automation in mining, mineral and metal processing, Cape Town, South Africa, August 2-4, 2010.]  [36:   B Leden, Mathematical reheating furnace models in Steeltemp, in SCANHEATING, 2:1-2:28.] 


FOCS – RF (reheating furnace) is a system for fuel optimization of furnaces where slabs are heated for hot rolling. The furnace is normally divided into several zones consisting of preheating, heating and soaking. In FOCS – RF, each furnace control zone is divided into several calculating zones depending on burner positions and thermocouples configuration. Figure 15 shows FOCS interface with the live temperatures in various zones and the control parameters. The interface provides information on deviation from the ideal heating curve, slab location, speed, discharge interval etc. Each slab, billet or bloom is given its own target heating profile depending on dimension, material type and quality aspects. Depending on the production situation in surrounding processes FOCS adopts pacing and heating to deliver material with the correct temperature at the correct time for further processing.  The purpose of furnace pacing is to increase the productivity, save fuel and achieve accurate target temperatures. 
[image: Graphical user interface

Description automatically generated]The control strategy of FOCS adopts both feedforward as well as feedback part. Feedforward adopts to new steel quality, new dimensions, and requirements whereas feedback is used to keep the slabs on their ideal heating curve. Typical energy savings is in the range 5-20%. On top of reduced energy consumption, the system increases production capacity by intelligent pacing control of the furnace and surrounding processes. Productivity increases with up to 28% have been realized.

[bookmark: _Ref144134184]Figure 15   FOCS interface to monitor temperatures in various zones34

[bookmark: _Toc142373858][bookmark: _Toc142374695]Problem Description

A reheat furnace is generally employed to bring slabs or metal workpieces to the proper temperature for hot rolling. Such furnaces normally include multiple zones and the heat is usually supplied , from burners located above and below the slab, which is pushed through the furnace. The slabs are supported on skids which are cooled with water to prevent too rapid deterioration and to maintain the strength of the skids. This results in thermal gradients in the slab and continue to exist at the time of rolling, result in differences in the deformation resistance of the material and increase the difficulty of rolling consistent gage metal. Figure 16 shows slabs and skid marks after reheating34. 

(a)                                                                                  (b) 
[bookmark: _Ref144134352]Figure 16  a) Slabs placed on water cooled skids and b) Evolution of skid marks in the furnace34

These skid marks create inhomogeneous deformation and result in non-uniform thickness which are not desirable. Further, they affect the roll pass schedule. 

The main objectives of the project are

· Create a new 3D heating model to be able to account for the skid marks.
· Use process data to correlate temperature difference in the skid marks to increase in rolling load. 
· Ally 3D model for finetuning FOCS system.

The expected results from the project are:

· Possibility to analyse the problem of skid marks in production. The new improved inhouse model will create opportunities to reach new market segments for the FOCS system.
· Develop a 3D furnace model. This model could be used for verification of inhouse model or for simulate different strategies to minimize the skid marks.

This project proposal includes the development of necessary process models.

The purpose of this project is thus to improve the FOCS system to avoid or reduce skid marks problem. This needs development of a 3D furnace model and a protocol for how to use process data to build a higher level model based on real time signal data.

[bookmark: _Toc142374696]Furnace description

Two walking beam furnaces are in use at the Outokumpu Hot rolling mill in Tornio, Finland. Slabs from melting shop are heated in a furnace before rolling. Weight of the slabs is approx. 23 tons. Carbon monoxide and natural gas are used as fuels in the furnaces and combustion air is heated in recuperators. Figure 17 shows Walking beam furnace 2 (WBF2). The effective length is 35.5 m. Charging takes place with the help of a long charger. The slabs can be placed in the furnace without large gaps if the arrival of the slabs is delayed. 

The walking beams are electromechanically movable, the forward movement is 580 mm in WBF2. There are 7 fixed beams and 6 moving beams. The furnace has three zones, and the burners are located on the side of the furnace and there is a total of 72 of them. The discharging temperature varies between 1100 °C and 1250 °C. Skid marks are first noticed after heating as peaks in the rolling forces. Because the skid marks are colder areas, the material becomes more resistant to deformations, hence, they increase the rolling forces.

[image: ]
[bookmark: _Ref144134594] Figure 17  Schematic of the waling beam furnace 2 at Tornio (courtesy Outokumpu AB, Tornio)

Literature review

The performance of reheating furnaces greatly depends on oxide layer and skid marks produced on the slab during heating which will significantly affect the surface quality, dimensional accuracy, and product properties. The reported literature is scarce on controlling the skid marks and oxide layer through 3D furnace models[footnoteRef:37].  A suitable 3D numerical model helps in the prediction of the slab’s temperature field[footnoteRef:38]. By employing 3D simulations Hsieh et al.[footnoteRef:39] have shown that the skid marks are mainly caused by radiation shielding and worsened by cooling system. Various researchers have employed CFD for 3D simulation of the reheating furnaces to study the skid marks and oxide layers. Thus, establishing a 3D furnace model that considers skid marks is of prime importance for fine tuning the furnace control systems. [37:   Zhang Z, Luo X, Qiao J, Optimal investigation of the reheating furnace based on a 3D numerical model with the formation of both oxide scale layer and skid marks, Compters in mathematics and applications 128 (2022) 12-20.]  [38:   Dubey S K,Zh Srinivasan P, Steel billet reheat simulation with growth of oxide layer and investigation on zone temperature sensitivity, J Mech. Sci and Technol., 28(3) (2014) 1113-1124.]  [39:   Hsieh C T, Huang M J, Lee S T, Wang C H, A numerical study of skid marks on the slabs in a walking beam type slab reheating furnace, Numer. Heat Trans., Part A, Appl. 57(1) (2010) 1-17.] 

 
Methodology 
The methodology to meet the above mentioned objective is given in Figure 18. 
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[bookmark: _Ref144878685]Figure 18  Methodology for furnace control



The model thus developed will be able to:
· Understand the temperature distribution in the slab at any position in furnace
· Applicable to various boundary conditions
· Applicable to various geometries
· Provide increased control to FOCS



However, the process models will be developed and implemented in such a way that they can be used off-line, whereas "on-line" design is a possible future continuation. Since the process models are developed and validated, they are implemented in a GUI-based application format so that it can be easily absorbed in a process environment.

The 3D FEM furnace model is developed in Matlab and includes a full description of the heat conduction equation in a transient approach. The temperature evolution in the slab is computed in a series of short time increments and is thereby set up to develop over time, equivalent to the slab position along the furnace. The FE-modelling domain can be discretised upon choice, and this gives to possibility to resolve the contact area between the slab and beams, on the expense of computational time. Contrary, the resolution can be chosen as less refined which results in considerable computation speedup, one critical landmark for “on-line” simulations. Further development may allow combinations in form of sub-modelling to extract the best trade of with computational speed and accuracy. 

One major functionality in the developed model as compared to similar simulation tools, including Steeltemp, is a complete representation of the furnace configuration with respect the radiative heating. Radiative heating by the furnace walls is of the dominant mechanisms for heat transfer from the heat source (burning fuel in this case) to the slab surface. Therefore, the heat input at any position is calculated by integration of all furnace walls. Figure 19 illustrates all possible heat exchange pathways at three different slab positions in a fictive furnace. Whenever a walking beam is present, it will black out the radiative heating at that position, providing a contribution to the skid marks. This functionality, together with an active heat loss by conduction in the contact interface provides a complete representation of the source of skid marks.

[image: En bild som visar diagram, linje, Graf, text
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[bookmark: _Ref145580501]Figure 19. Radiative heating illustrated in two dimensions at three different positions in a fictive furnace. Red lines represents the heat echange pathways and the discretisation of the furnace walls. Note that vertical walls are blocking the view at some instances.

The data analytics involve application of XGBoost algorithm on process data. The details of the analysis are provided in Figure 18. The results from FEM model and data model would be used for deeper understanding of formation of skid marks.
[bookmark: _Toc142373859][bookmark: _Toc142374697]Use case – Hot Rolling process at Gränges
(Development of process models for Gränges Aluminum rolling process in Finspång)

[bookmark: _Toc142373860][bookmark: _Toc142374698]Introduction

The digitalization in materials and manufacturing industry is of high importance for any company that wants to keep and advance its position in the market. Many companies - majorly within logistics domain - have already introduced digital twins. However, if producers of advanced materials and complex parts need a more detailed look into the ongoing manufacturing processes and changing material properties, they will not find suitable solutions today. Gränges employs hot and cold rolling processes to deform aluminum so that the desired quality is achieved through as few reductions as possible. It may be easier said than done because there are many parameters that work together and that must be considered to do this in a controlled way.

This report describes the business objectives, market analysis, situation assessment, development of necessary digital twins and data analytics. 

[bookmark: _Toc142373861][bookmark: _Toc142374699]Business Objectives

Gränges is an aluminium technology company who drives the development of lighter, smarter and more sustainable aluminium products and solutions. The company offers advanced materials that enhance efficiency in the customers’ manufacturing process and the performance of the final products. Gränges have a leading global position in rolled aluminium materials for thermal management systems, speciality packaging and selected niche applications. It is important to adopt leading edge technologies to maintain the leading position and also expand the customer base. The company possess about 2700 skilled employees at various levels. It has net sales of about 24 billion SEK and has 20% global market share in rolled products for brazed aluminium heat exchangers. Gränges has a diversified product portfolio serving four key end-customer markets (Figure 20).


[image: ]
[bookmark: _Ref144878756]Figure 20  Key end-customer portfolio

[bookmark: _Toc142373862][bookmark: _Toc142374700]Overview of production process

Gränges rolls down direct chill (DC) cast slabs by reversible rolling from 600 mm – 15/20 mm and by subsequent tandem rolling down to a final thickness of 3-7 mm as given in Figure 21.

In the reversible rolling, the final thickness is reached by 20-30 roll passes depending on the composition of the package. Below 50 mm, the profile of the substance is taken into account for planning the last reductions in the knitting schedule. 

The influence parameters for controlling profile and flatness in Gränges' reversible rolling mill are rolling force (reduction), rolling bombing (grinding) and thermal work roll cumber by cooling. After completing reversible rolling, the transitional unit goes via roller coaster to the tandem plant, which consists of two sequential rolling stands. After the tandem work, the sheet is coiled before further processing. 

[bookmark: _Ref144878828]Figure 21   Production process at Gränges (Courtesy Gränges AB)

[bookmark: _Toc142374701]Profile related defects
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Description automatically generated]The thickness uniformity of the final sheet depends on various process parameters and it is quite complex to analyse. Large variation in sheet profile thickness can results in the defects shown in Figure 22.

[bookmark: _Ref144878885]Figure 22  The defects arising out of excess variation in profile thickness

These defects will lead to reduction in yield and unsatisfied customers. Therefore, it is important to understand the effect of various process parameters on profile variation.
 
In the hot rolling process of Gränges Finspång some important process parameters like accurate rolling force measurements isn´t available. This decreases the possibility to detect daily variations, for example material or lubrication related properties, work roll wear. This makes it difficult for the operator to aim for the target profile with low deviation. 

The purpose of this project is thus to improve the understanding of the process better so that this can be controlled and optimized. The objective of the project is

· Get increased control of the profile and flatness
· Optimizing rolling process in a better way
· Optimize pass schedule
· Minimize variations in the end properties of the substance

[bookmark: _Toc142373863][bookmark: _Toc142374702]Literature Review
Though rolling steel into flat sheets is an established manufacturing process, the steel industry is perpetually looking for ways to improve the quality of its products. The simplest way to improve quality is through better understanding and control of the rolling processes. All flat rolled products experience some flatness error due to the manufacturing process. This flatness error can range from small thickness variations to waves in the product itself. These variations force customers to request thicker material than necessary to ensure that they receive product of a certain thickness. For this reason, models of the rolling process have been developed throughout history to predict how aspects of the final product, such as thickness and flatness, may be affected based on the configuration of the mill. 

[bookmark: _Toc142374703]Rolling Process 
The process of creating a finished flat rolled product from the original slab consists of several stages. These stages in a typical hot rolling mill are strip preparation, roughing, finishing, measuring, and coiling. In general, rolling mill stands are composed of the set of rolls between which the strip passes and the structure that supports those rolls. Figure 23 shows a typical rolling stand and a graphical representation of all its parts. 
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[bookmark: _Ref144878979]Figure 23  A schematic representation of rolling process for a 4 Hi rolling mill

Ideally, a final product coming out of a mill would be perfectly flat across its width and length. Crown represents flatness error across the width of the strip, but error can also occur along the length of a strip. If the change in thickness at a stand is not nearly uniform, then it causes the strip to lengthen unevenly across its width. This change in length can cause either edge wave or center buckle. Edge wave occurs when the strip crown increases too much within a stand and center buckle occurs when the strip crown decreases too much within a stand. This rule says that the strip crown can only be changed so much within a stand before creating additional flatness error besides profile flatness error. Flatness error along the width and length of the strip must be controlled to create a usable product. 
The only way to control the flatness error is to precisely control the strip crown. The strip crown is affected by the geometry of the rolls, the gap between the rolls, roll stiffness, roll bending, stand stiffness, and the strip material properties. While rolling the strip it is only possible to control a few of these parameters. The essence of controlling strip crown lies in determining which stand parameters have the greatest effect on crown and how they can be controlled. 
[bookmark: _Toc142373864][bookmark: _Toc142374198][bookmark: _Toc142374567][bookmark: _Toc142374704]Recent advances in finite element analysis and computing have made it possible to simulate the complex rolling process in great detail. The development of highly accurate models of the rolling process will lead to the more efficient production and use of steel.
[bookmark: _Toc142374705]Modelling Rolling Process
Metal working problems are studied using various kinds of approaches viz., analytical models, physical simulations, and high-performance computations. There are pros and cons for each type of simulations. A more popular approach to solving metal working problems in general and the hot rolling process is the Finite Element Method (FEM). A brief introduction to this method is given in introduction chapter. In the following sub-sections FEM and analytical methods are described.

Finite Element Modelling of Rolling Process: 	

FEM was used to simulate the structural deformation and dynamics of the roll-stack system. The purpose of the finite element method is to solve partial differential and integral equations over irregularly shaped domains. FEA breaks down the body into regular domains called elements through a process known as meshing. The characteristics of each element depend on the element’s size, shape, and material properties. The elements are then assembled to represent the entire body of the original system. Initial conditions such as velocities or accelerations are also applied. With the system fully described, it is possible to solve for element displacements and deformations. In addition, stresses, strains, velocities, accelerations, contact pressure, reaction forces, internal energy, and kinetic energy can be found. From these results, predictions about how a system behaves can be gathered and analyzed.

Since 1950s the development of FEM methods in rolling started. The improvements are then made with more and more computational power. Further, more and more complex models could be created. The general applications of FEM are discussed in detail by Reddy[footnoteRef:40]. During rolling, the extension in width direction of strip is not significant, plain strain conditions can be assumed. This simplifies the simulation to 2D FEM model. Several 2-D finite element models of the rolling process have been created and shown to offer more accurate approximations of rolling load[footnoteRef:41].  The model developed by Mori32 demonstrated the strip deformation during rolling. However, 3D models are more advanced models in predicting strip crown more accurately. Finite element models for predicting strip profile fall into two categories: static and dynamic. Static finite element model considers only applied loads and elastic forces. Dynamic models include inertial and damping forces in addition to applied loads and elastic forces. [40:   J. N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, New York, NY, 3rd edition, 2006..]  [41:   K. Mori, K. Osakada, and T. Oda. Simulation of plane-strain rolling by the rigid-plastic finite element method. International Journal of Mechanical Sciences, 24(9):519 – 527, 1982.] 


The simulation of metal forming for a control system is a step on the way to realizing digital twins. The simulations take a long time to compute, so the requirement of a short computation time of 0.1 s, in on-line control systems prevent the application of FE simulations. A longer computation time would be a serious issue in the direct use of FE simulation in DT. To overcome this issue, FE simulated data and results must be stored instead of computing every time, or a rapid computing method based on phenomenological model must be used for the control system[footnoteRef:42].   [42:  Ohara K, Tsugeno M, Imanari H, Sekiyama Y, Kitagoh K, Yanagomoto J, Process optimization for manufacturing of sheets with estimated balance between product quality and energy consumption, CIRP Annals manufacturing technology 63(1) (2014) 257-260 ] 


Strip Profile Models
Strip profile models attempt to represent deformation across the width of the rolls due to bending and contact. The interaction between the strip and the rolls is modeled in greater detail than is possible with rolling load models. Most strip profile models are based on beam or finite element theory.

Beam models are analytical models, based on beam theory and can be classified as simple beam models or slit beam models. The simple beam model represents the entire roll or rolls as a single beam and integrates the beam equation over the width of the roll using a distributed rolling load to determine deflection. Whereas the slit beam model represents the roll as a series of beam segments by subdividing the rolls. Hence the variation in the loads along the width of the strip can be better represented through equivalent nodal loads[footnoteRef:43]. [43:   Arif S. Malik and Ramana V. Grandhi. A computational method to predict strip profile in rolling mills. Journal of Materials Processing Technology, 206(1-3):263 – 274, 2008. ] 


To summarize, the slit beam model does not completely model the roll-strip contact, which is approximation with discreet spring elements representing an elastic foundation[footnoteRef:44]. The 3-D rolling finite element model better represents the roll geometry and deformation along with the contact and nonlinear strip properties. [44:   Vladimir B. Ginzburg. High-Quality Steel Rolling: Theory and Practice. Marcel Dekker, Inc., 1993.] 

2D FEM models can predict rolling loads accurately. However, they do not consider lateral flow of sheet for predicting crown. Since lateral flow can significantly affect crown development, it cannot be neglected[footnoteRef:45]. Dynamic 3D finite element (FE) models provide the most precise depiction of roll and strip deformation, accounting for appropriate boundary conditions. These models replicate genuine roll rotation and strip translation, requiring contact conditions and pressure distributions to mirror the actual rolling process, assuming accurate material and geometry models. Nevertheless, these dynamic models must also address achieving stable conditions and handling substantial computational time. Slaughter[footnoteRef:46] developed a 3D dynamic finite element model for strip crown prediction. It could predict the rolling load, exit thickness, and strip crown within 5% of the test data measurements. There are attempts at combining FEM with analytical models for improving accuracy as well as computational efficiency. Several algorithms have been developed to improve the simulation of strip crown[footnoteRef:47].  FEA has been widely used for the flatness prediction, roll contour design, investigating the flatness control ability of rolling mills and buckling analysis of strips. [45:   G P Bernsmann, Later material flow during cold rolling of strip, Iron Steel Eng., 49(3) (1972) 67-71.]  [46:   Derek E Slaughter, MS Thesis, Strip crown prediction: Developing a refined dynamic roll-stack model for the hot rolling process, 2009 Virginia Polytechnic institute and state university.]  [47:   Z Y Ziang, A.K. Tieu, Elastic plastic FEM simulation of thin strip with tension in cold rolling, J. Mater. Proc. Technol. 130-131 (2002) 511-515.] 

[bookmark: _Toc142373865][bookmark: _Toc142374706]Methodology

The following methodology is proposed to meet the above-mentioned objective. 

As described in Figure 24 the modelling is planned to be carried out using FEM, phenomenological and data-based models.


                       [image: Shape
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[bookmark: _Ref144879043]Figure 24  The methodology of application of various modelling tools to meet the objective

With the methodology proposed and once the models are validated with the plant data, the results will provide deeper understanding of the manufacturing processes. 

The following deliverables are expected from this use case:

· Digital twin that mimics the rolling process closely
· DT with data analytics to provide deeper understanding
· Better product quality, increased yield. 
· More efficient use of controlling actuators in hot rolling

With the above deliverables, one will be able to:
· Plan and optimize process parameters in a better way
· Maximize rolling power and torque without exceeding the performance of the work
· Get increased control of the profile and flatness of the substance during rolling
· Minimize variations in the end properties of the substance

This project proposal includes the development of so-called off-line process models for the entire hot rolling process i.e. reversible and tandem rolling. Off-line means that the models can be applied to the process but that there is no automatic interaction between operating parameters and process models. Fig. ?? shows the progress of numerical simulation in metal forming applications. 

However, the process models will be developed and implemented in such a way that they can be used in both in-line and "on-line" design in a possible future continuation.

Since the process models are developed and validated, they are implemented in a GUI-based application format so that it can be easily absorbed by process specs in a process environment. This aspect is separately discussed in platform development section.

[bookmark: _Toc142373867][bookmark: _Toc142374708]Use case 4 (Blow moulding)
[bookmark: _Toc142373868][bookmark: _Toc142374709]Problem description and goal
Industry demand: Use case 4, a contributes to a digital twin development for optimization tasks in extrusion blow moulding[footnoteRef:48], a widely used manufacturing process with 0.452 million tons of plastic currently processed in Germany[footnoteRef:49]. It operates by extrusion and inflation of a tubular melt strand into a mould and is adequate for thin-walled shell bodies at high production rates. It stands in the critique of high resource demand; yet, the potential for savings is large along this intensive value chain. Blow moulding is extremely sensitive to material property fluctuations (polypropylene/polyethylene) with inadequate control measures to assure product quality for higher rates for recyclates. This will be possible, once optimization of the process is enabled at scale through a digital twin system, requiring significantly less energy than new material[footnoteRef:50]. Also, the wall thicknesses can be decreased and an AI-supported component design could also guide engineers towards more efficient geometries, again saving up to 10% of material. One requirement is a data infrastructure for dynamic exchange of data between machines and predictive tools coupled with the various model types for the process and components. [48:  Use case 4 is a (self-funded) use case lead by Fraunhofer SCAI based on a long-term collaboration with Dr. Reinold Hagen Stiftung.]  [49:  https://kunststoffverpackungen.de/marktdaten, Access: 21.10.2022]  [50:  D. Spancken; Zwischenbericht Promotion: Der Einsatz von Rezyklaten zur nachhaltigen Ausle-gung zyklisch belasteter Struktur-bauteile aus Polypropylen, Vom Promotionszentrum für Nachhaltigkeitswissenschaften an der Graduiertenschule Darmstadt, 2022.] 

[image: ]
Figure 25 – Extrusion blow moulding process [adopted from Dr. Reinold Hagen Stiftung]
Goals: VMAPanalytics mainly aims at the goal to bridge the gap in data interoperability between measurement and simulation. Most of the formalization of the processes and interface development is out of the scope of this use case and left for funded work. In this project, we focus on the software-infrastructure – a necessity before the actual optimization tasks – and derive a proposition for the use of VMAP in a digital twin scenario. Concretely, this means two main outcomes: a) a VMAP ontology with recommendations for querying data, and b) a VMAP extension for experimental data with recommendations to parse and use CAE-experimental correspondences.
[bookmark: _Toc142373869][bookmark: _Toc142374710]CAE-based Digital Twin 
Digital twin technology is mostly driven by the “smart factory” system perspective. However, joining digital twins with simulations to understand and control of the physics of a system requires a perspective that is not yet established in industrial digital twin standards. Dr. Reinold Hagen Stiftung has developed a unique simulation workflow in the first ITEA VMAP project[footnoteRef:51] that uses VMAP as exchange format between high-resolution simulations. [51:  Letellier, P., Modelling & Simulation, ITEA Magazine (35) 2020, available at https://itea4.org/project/vmap.html] 

[image: ]
Figure 26 - Holistic CAE workflow for moulding assessment [adopted from Dr. Reinold Hagen Stiftung]

CAE-workflows: We start from a well-defined framework of rule-based simulations and transfer based on VMAP between CAE codes. Each individual simulation as well as intermediate mapping are validated and automated. However, the overall workflow is not fully formalised and disconnected from measurements and production machines. Interfacing to such data is required for automation of calibrations, comparisons or uncertainty quantification, global optimizations and use of analytics tasks with data based (ML) models. Still, there are no common principles for the interfacing of other data sources and model types into a CAE chain and joint management of such assets is not generally solved yet. For example, simulation data management (SDM) systems are commonly used to track and handle different simulation tracks with varying material assumptions, boundary conditions and numerical parameters - with large overlap with product design data (SPDM)[footnoteRef:52], i.e. CAD data and parameters, bills of material etc. On the data structure level, STEP AP209[footnoteRef:53] is a standard that addresses both design and simulation data, but comes short in effectively storing large structured data on the CAE side (as opposed to VMAP). Moreover, SDM systems lack the capacity to merge with tracks of other types of data, i.e. they cannot be used when interfacing heterogeneous data sources.  [52:  Norris, M., How to - Get Started With Simulation Data Management. NAFEMS, 2020.]  [53:  ISO 10303-209:2014. Industrial automation systems and integration - Product data representation and exchange - Multidisciplinary analysis and design. Standard, 2014.] 

Overall target: Since SDM software does not offer these features, we propose to formalize the CAE workflow semantically and embed it in a meta-framework that allows interoperability with measurement / process data. This effectively results in a semantic digital twin system, which, from a CAE-perspective, could benefit greatly from a simpler way to pull measurement data into the simulation environment. The full formalization of the workflow will not be part of VMAPanalytics.
Project target: One option is to identify the relevant data from its semantic meaning and then store a required except of it directly alongside the corresponding simulation (that it should be compared/processed with). We propose the extension of the VMAP specifications towards the ability to store experimental data along with the CAE data. This should by no means replace a type-optimal management of measurement data, but allow for the joint propagation of corresponding measurement and simulation data through such workflows. 
Status: The first version for the storage principles is defined and implemented. We demonstrate the methodology to use VMAP in the digital twin context at the example of one simulation step from the blow moulding chain.
[bookmark: _Toc142373870][bookmark: _Toc142374711]Data driven models
[bookmark: _Ref63685976][bookmark: _Toc55558807]Surrogate models: Data-based models that learn to approximate high-fidelity simulations often need to reduce the number of configurations to calculate or fast-estimate indicative changes. They are often needed for efficient online analysis and optimization of manufacturing processes and have been studied with machine learning techniques for 20 years[footnoteRef:54], now rapidly growing in scale and scope[footnoteRef:55]. Recent examples include nonlinear material behaviour[footnoteRef:56] and quality control[footnoteRef:57]. Therefore, it is important to harmonize digital twin environments with the ability to train and run data-models, such as surrogates. Challenges with ML-based surrogate models are robustness and uncertainties[footnoteRef:58], the limited availability of training data in many simulation tasks (partly to be addressed with transfer learning[footnoteRef:59]), and the need to incorporate domain-specific prior knowledge[footnoteRef:60] or have some degree of interpretability[footnoteRef:61]. As we see from examples of data models in blow and injection moulding[footnoteRef:62][footnoteRef:63], they are individually built for specific applications. In lack of commonly applicable “standard” structure of meta-information, selecting the appropriate approach is still an elaborate manual task[footnoteRef:64]. In the long run, digital twin systems will become more interoperable, if a common structure for meta-information can be found. [54:  Monostori, L., et al., AI and ML techniques combined with simulation for designing and controlling manufacturing processes and systems. IFAC Proceedings 33(20), 2000.]  [55:  Shao, G. and Deogratias K., Digital manufacturing: requirements and challenges for implementing digital surrogates. 2018 Winter Simulation Conference (WSC). IEEE, 2018]  [56:  Hürkamp, A. et al. "Combining Simulation and Machine Learning as Digital Twin for the Manufacturing of Overmolded Thermoplastic Composites." Journal of Manufacturing and Materials Processing 4.3 (2020): 92]  [57:  Pfrommer, J. et al., Optimisation of manufacturing process parameters using deep neural networks as surrogate models., Procedia CiRP 72 (2018): 426-431]  [58:  Zhu, Y., et al.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Computational Physics, vol. 394, 2019]  [59:  Chakraborty, S., Transfer learning based multi-fidelity physics informed deep neural net-work., J. Comp. Phys. 426 (2021): 109942.]  [60:  von Rueden, Laura, et al. „Informed Machine Learning-A taxonomy and survey of integrating knowledge into learning systems. arXiv preprint 1903.12394 (2019). Submitted to Transactions of Knowledge and Data Engineering.]  [61:  Yang, Zhuo, et al., Investigating grey-box modeling for predictive analytics in smart manufacturing. Computers and Information in Engineering Conference. Vol. 58134. American Society of Mechanical Engineers, 2017]  [62:  Arsenii, U. et al., Surrogate modeling for injection molding processes using deep learning, Struct. & Multidis. Opt. 65(11), 2022]  [63:  Saad, S., Towards an accurate pressure estimation in injection molding simulation using surrogate modelling, Int. J. Mat. Form 6, 2022]  [64:  Alizadeh, R. et al., Managing computational complexity using surrogate models: a critical review. Res Eng Design 31, 275–298, 2020] 

Overall target: Although required and a research interest of SCAI, the development of new surrogates is not a focus within the project. In fact, when infrastructural challenges are resolved, the complexity of the analysis can increase towards smart process control based on material properties using and advancing algorithms that already exist at SCAI (e.g. dimensionality reduction, transient predictions, object detection/tracking, model-based optimization).
Project target: Meta-data descriptions of VMAP should be able to be combined with meta-data models of data-driven models within the same digital twin information model. We propose demonstration of this incorporation by two simple models: a) a merge and comparison of a key quantity of interest from simulation and measurement, and b) a query resolving the semantics of the sought feature.
Status: Both simple models have been implemented and tested on a minimal case and are currently in a revision.
[bookmark: _Toc142373872][bookmark: _Toc142374713]Platform development and deployment
As mentioned in the previous sections, the various use cases in this project employ digital twins for deeper understanding of manufacturing processes. Depending on the type of numerical tools employed, the results are quite complex for a non-modelling specialist. Simulation tools create visual results, but often these graphics are densely technical and require refinement to make their information accessible to a wider audience. It is important to visualize the results from DTs in a good way so that non-modelling specialists such as operators get a good support system. Keeping this in view a platform is being developed for each use in this project.

Platform is a graphical representation of the results obtained from various kinds of DTs (physics based, phenomenological and data based) and also representation of current data. Development of such a kind of platform needs iterative discussions with plant operators as well as engineers to design the GUI. The following strategy is being adopted in the present case as shown in Figure 27. This is a schematic picture and giving a general representation that can be adopted to any use case in manufacturing. 
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[bookmark: _Ref144879243]Figure 27   Concept of Platform

As given in Figure 27 the platform receives results from various DTs and present them in a form suitable for the operators as well as process engineers. This needs close interactions between modelers, platform developers and domain experts. 

[image: Graphical user interface, application, table

Description automatically generated]The various phases of platform deployment are given in Figure 28. The literature is scarce for developing platforms to visualize the modelling results in manufacturing processes. This project proposes to present the simulation results in aCurve platform. The GUI that is planned to be developed helps in visualizing various results from various software packages. One such example is given in the Fig. ?? where the results from CROWN software can be seen and the plant engineer/operator can modify the input data to see the predicted crown. This is an offline platform where the results from this project can be visualized.
[bookmark: _Ref144879369]Figure 28  GUI in aCurve showing the model results.

As given in the Figure 28, the various controls are provided. The GUI is similar to the one reported for Polymer Electrolyte Membrane Electrolyzer (PEMEL) [footnoteRef:65]. Through the GUI user takes control over all aspects of the models: setting the parameters, running the models, displaying results, saving data etc. The input variable window allows the engineer to modify the input parameters that prepares the input file for the software. Model control facilitates to run the model, prepare data for plots etc. The GUI control helps in plotting specific data, menu options, save data and plots. Model internal parameters are those important parameters which the user can see always. In the present case the use can see roll diameters, roll speed, roll gap etc.  [65:  Francisco Javier Folgado, Isaias Gonzalez, Antonio Jose Galderon,, Simulation platform for the assessment of PEM electrolyzer moderls oriented to implement digital replicas. Energy Convesion and Management 267, 2022 115917 ] 


It is planned in this project to develop such platforms for other use cases as well where the user can vary the input parameters and visualize the results. The on-line visualization of data, predictions and control forms future scope and extension of current project. This platform is planned to be developed in aCurve.


aCurve is a Self-Service Data Analytics platform designed for high user-friendliness. The system offers pre-built connectors to a wide range of industrial SCADA systems, utilizing various technologies like APIs, OPC, and database queries. Additionally, aCurve addresses data wrangling challenges, standardizing different sampling frequencies and storage formats within the system. The platform also provides an array of tools for data visualization and analysis.

Within the platform, users can develop and deploy different AI models. Additionally, models created outside of aCurve, for instance in Python, can be uploaded to the platform and seamlessly deployed with real-time data. Building dashboards is swift and uncomplicated. Everything operates dynamically, meaning a dashboard doesn't require a separate publishing step and is immediately ready for use. Furthermore, any data accessed by aCurve can be utilized by third-party software through a standardized REST API. This enables seamless integration with external applications and systems.

[bookmark: _Toc142373871][bookmark: _Toc142374712]Data permeability and interoperability
Data spaces: In essence, the goal to create a CAE-based digital twin system is driven by its ability to handle data-models, simulation models, measurement and machine data jointly. Usual data and model management systems do not have these features, mainly due to the missing alignment of concepts and meaning of meta-data, for which there are no obvious management rules. Even terminology often changes from model type to model type. Moreover, the data sources become distributed, such that the connection and IT-integration of the data becomes another challenge. In the domain of internet of things (IoT) and smart factory twins, solutions to the distribution tasks have reached into standardization, especially contributions of ISO/IEC JTC 1/SC 41[footnoteRef:66] and the RAMI4.0[footnoteRef:67], the Reference Architecture for I4.0 components in factories that are managed by the Asset Administration Shells (AAS). This domain is rapidly developing, but still mostly detached from the perspectives of CAE simulation and data analytics. Infrastructural tasks are complex; one stream of work to address the distributed heterogeneity of data is to standardize data space architectures. The most prominent examples in Europe are GAIA-X (div. publications from 2022[footnoteRef:68]) and the International Data Space Reference Architecture Model[footnoteRef:69], efforts that are in the process of alignment[footnoteRef:70]. Especially with a community of participants, data space principles need strong coordination, which is the central effort of e.g. OpenDEI[footnoteRef:71]. The incorporation of CAE workflows remains an open task. [66:  https://www.iec.ch/dyn/www/f?p=103:30:516465943824222::::FSP_ORG_ID,FSP_LANG_ID:20486,25, Access: 21.10.2022]  [67:  DIN SPEC 91345:2016-04 - Reference Architecture Model Industrie 4.0 (RAMI4.0), Technical Rule, 2016]  [68:  https://gaia-x.eu/mediatech/publications/, Access 21.10.2022]  [69:  Otto, B. et al., IDS REFERENCE ARCHITECTURE MODEL, v3.0, 2019, IDSA]  [70:  Otto, B. et al., GAIA-X and IDS. International Data Spaces, 2021, https://doi.org/10.5281/zenodo.5675897]  [71:  Nagel, L. and Lycklama, D., “Design Principles for Data Spaces”, position paper of Horizon2020 OpenDEI, 2021] 

Ontologies: Besides connectivity with data spaces, a flexible and expandable data management system needs descriptions of CAE data, models and workflows in terms of open information models that are in line with information models for measurement data, etc. Ontologies are one possible solution to this, as they allow for alignment and extension of logics and even inference of implicit information[footnoteRef:72],[footnoteRef:73]. Closure axioms allow automatic data set validation. Ontologies in the manufacturing domain are still not widely used due to the variety of information sources and in many parts incompatible sub-domain conventions. Existing ontologies focus on smart factory planning or system level properties[footnoteRef:74] with little reconciliation of spatially and temporally resolved physics / behavioural properties of the physics of components. While ontology recommendations exist for primitive data structures, for complex structures they are generally not available and no fundamental definitions clarify the data sources in a reusable way. On the top-level, EMMO[footnoteRef:75] was developed recently for material science, and also BFO[footnoteRef:76] is available for the top-level, but it is more difficult to establish semantics more concrete. An intermediate engineering ontology, aligned with DOLCE, was developed to allow for a broader connectivity and nicely compares the expressivity of existing domain ontologies, all of which are oriented towards bill-of-material type tracking and without connection to the simulation and analytics domains[footnoteRef:77]. To bridge this gap, Fraunhofer SCAI has developed the MpCCI Ontologies[footnoteRef:78], a framework of mid-level ontologies to describe the logics of CAE workflows and assets, and to connect these to the domain logics of manufacturing, materials, etc., centred on the main engineering disciplines: design, simulation, experiments and measurement, material properties, and manufacturing processes. As far as possible, they follow publicly available definitions, industry standards (e.g. DIN EN 10027, DIN EN 573, EN 1753 for Materials or DIN 8580, DIN 8583, DIN 8584 for Manufacturing Processes) and literature for the major taxonomies and relations. Besides for VMAP for CAE, ontologies for standard interfaces in other disciplines should be built and aligned with this framework, as they offer type-optimal structures. Examples are FMI[footnoteRef:79], which is important for containerization and interfacing between models of various types and STEP, for which efforts are undertaken to derive ontologies[footnoteRef:80], practical us is not yet tractable. ONNX[footnoteRef:81] is an open format to represent (a currently limited set of) machine learning models and is a candidate for integration of data models. In machine control, the OPC Unified Architecture is a de-facto standard in industry[footnoteRef:82] with a (non-ontological) information model and ongoing harmonization activities with e.g. AAS. Other relevant standards could include optimal handling of image-based data, e.g. DICONDE[footnoteRef:83]. Inspired from the medical domain, it has a clear framework of meta-data for non-destructive testing that helps for semantic modelling of image meta-data. It is being evaluated currently, how it IIoT interfaces, in particular OPC-UA[footnoteRef:84]. [72:  Berners-Lee, T. and Fischetti, M., Weaving the Web: The original design and ultimate destiny of the World Wide Web by its inventor. DIANE Publishing, 2001]  [73:  Wagner, A., Linked Product Data: Describing Multi-Functional Parametric Building Products using Semantic Web Technologies. PhD Thesis, Technische Universität Darmstadt, 2020]  [74:  Lemaignan, S. et al., “MASON: A Proposal for an Ontology of Manufacturing Domain,” in Coll. Intelligence App., 2006.]  [75:  Ghedini, E. et al., “European Materials & Modelling Ontology (EMMO),” 2019. http://github.com/emmo-repo/EMMO/.]  [76:  Smith, B. “Basic Formal Ontology 2.0,” Tech. Rep., 2015]  [77:  Ocker, F. et al., Applying knowledge bases to make factories smarter. at – Automatisireungstechnik (6) 67, 2018, https://doi.org/10.1515/auto-2018-0138]  [78:  Meyer, M. et al., Whitepaper: ontologies for digital twins in smart manufacturing, 2020, doi: 10.13140/rg.2.2.11346.17607]  [79:  https://fmi-standard.org/literature/, accessed 21.10.2022]  [80:  Krima, S. et al., OntoSTEP: OWL-DL ontology for STEP May, NIST Report, 2009]  [81:  https://onnx.ai/onnx/tutorial_python/concepts.html, accessed 21.10.2022]  [82:  OPC-UA Specification Documents, available at https://opcfoundation.org/developer-tools/specifications-unified-architecture]  [83:  https://4nsi.com/the-diconde-standard/, accessed 21.10.2022]  [84:  Vrana, J., The Core of the Fourth Revolutions: Industrial Internet of Things, Digital Twin, and Cyber-Physical Loops. Journal of Nondestructive Evaluation 40(46), 2021] 

Knowledge graphs: The core advantages of ontologies mentioned above become clear when considering the remaining elements of semantic data organization besides interfaces and storage. Knowledge graphs are node-edge-node-structures and as such outperform relational data bases with respect to cross-referencing and interrelations, since each data entry also includes a connection-type. When structured with ontologies, they can be queried according to the logics of the modelled system, i.e. the actual meaning of the roles that components play rather than their name. This makes these graphs currently the most powerful and promising core for digital twin systems, but readiness for industrial use cases is still low due to the logic complexity and the required alignment of many disciplines[footnoteRef:85]. In practice, an additional challenge is the population of such graphs, i.e. the automatic creation of entries according to rules. No general solution exists for the use of ontologies to form knowledge graphs, but it is possible to derive task-dependent mechanisms. For example, if all rules affecting a data source are clear, they can me leveraged to parse information into the graph – yet, the resolution must be pre-defined (entries in the graph are considered meta-data, not data)[footnoteRef:86]. [85:  Jethro Akroyd, J., Universal Digital Twin - A Dynamic Knowledge Graph, Data-Centric Engineering 2(14), 2021, doi:10.1017/dce.2021.10]  [86:  Leshcheva, I. and Begler, A., A method of semi-automated ontology population from multiple semi-structured data sources. J. Inf. Sci. 48(2), 2022, 223–236 DOI: 10.1177/0165551520950243] 

Overall target: CAE-based digital twins should be able to semantically resolve the meaning of its data assets through ontologies, find and create asset descriptions within knowledge graphs, reach data through standard connectors within a data space irrespective of the kind of data source and finally process it in deployable models – a complex and application-specific task for several projects.
Project target: In the project VMAPanalytics, the MpCCI ontologies are extended towards an ontology for VMAP v1.0 and integrated in the framework. The task is to establish a methodology to populate VMAP ontologies to form demonstrator knowledge graphs. This methodology also includes identifying the location of data entries from the graph and querying them from the VMAP sources.
Status: The VMAP ontology now incorporates the structural relations required for the project and is embedded in the framework. A first population test was done and the query of a single value tested. Further evaluation and improvement is ongoing.
Summary
Tools and techniques employed in VMAP analytics project
It is very important to choose suitable computational tools and methods for meeting the objectives in the project. Selection of suitable model decides the accuracy of the results. The various models and algorithms are discussed in the previous chapters for developing necessary digital twins for simulating manufacturing processes. The table 2 summarizes the models used as per the literature survey for specific manufacturing processes.
Table. 2  Summary of models selected for present project
	Process
	Models in literature
	Model Selected
	Pros and Cons

	Hot Rolling
	FEM: 
2 D TM model, rigid rollers
2D TM model, deforming rollers
Same as (c) with multiple passes
3D TM model, rigid rollers
3D TM model, deforming rollers and multiple rolling passes
	3D TM model, deforming rollers and multiple rolling passes
	- Accurate results
- Complex model
- High computational times (weeks)

	
	Analytical methods:
Beam model
Slit beam model
	Slit beam model
	Very fast solution
Not very accurate

	
	Data models:
ANN 
Decision tree
	 XGBoost
	Highly efficient and flexible algorithm

	Degassing
	Data models:
ANN 
Decision tree
	 XGBoost
	Highly efficient and flexible algorithm

	Reheating Furnace
	FEM:
2D model
3D model
	3D model with view factor
	More realistic boundary conditions

	
	Data:
ANN
	 XGBoost
	Highly efficient and flexible algorithm



It can be seen from the table that the tools and techniques employed in the project are the advanced techniques discussed in this State of The Art (SoTA) document. 
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regard of rolling bearing study, Piltan and Kim [35,36], and Piltan et al.
[37] investigated a Digital Twin-based model to identify the crack and
other anomalies of bearing. Desai et al. [38] and Qin et al. [39] con-
structed the lifetime prediction model and life-cycle management model
of bearing based on DT. Le Grognec et al. [40] applied DT to simulate the
operating condition of ball bearing with elastohydrodynamic lubrica-
tion. However, the present study of bearing based on DT possesses
unicity and the computational model is ultra-simplistic to some extent.

As shown in Fig. 4, we can predict that the number of papers is still
undergoing exponential growth and the advancement of DT is being

the physical entity, which are the foundations and requisite inputs to the
formation of the digital representation. In the rolling bearing study, the
primary detection technologies include surface profile measurement,
anomaly detection (surface and subsurface) and lubrication detection.

(1) Surface profile measurement

The surface profile measurement is of great significance in knowing
the physical properties of the bearing used in the dynamic analysis,
which can be divided into two main methods: contact, and non-contact
method. In the first place, the contact method is a simple and convenient
tactility way to obtain the full surface morphology because of its zood
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directions. One is the direction of complexity. Needless to say, the
thermomechanical simulation of metal forming processes is very
popular, but we need to introduce more complex and multi-physics
phenomena such as electro-thermomechanical or magneto-thermo-
mechanical modeling. A second direction is high accuracy, which is
in continuous demand and is still driving the research on the model-
ing of plastic anisotropy, flow stress, physical constants, and so forth.
A third direction is that of easy-to-use software. From the 1960s to
the 1980s, the simulation of metal forming was part of the realm of
scientists, and many in-house software packages were developed.
Since the 1960s, commercial software has appeared on the market
and has been developed to widen the coverage of the forming process
and make it easier to use. The simulation of metal forming has
expanded from an activity carried out by a few select people to the
public domain, and it is still evolving to incorporate modern achieve-
ments in metal forming science. We start our review by describing
the simulation of metal forming to highlight its basis and historical
progress.

All numerical simulations require a governing equation. For the
continua, momentum Eq. (1) is the governing equation that must be
solved for bodies in the equilibrium state. Then, an equation of heat
conduction (2) can be used to visualize the temperature distribution
across the deforming materials as well as the forming tools:

2/

_ i )
plti = % + p8i (1)

ar 3 ( aT au

g2 (20 2
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The above governing equations are common to many phenomena
in nature such as the collision of galaxies in space, as illustrated in
Fig. 1. A simulation to reproduce the transformation of galaxies
[44,160] cannot be reproduced experimentally, and we cannot turn
back time. No one can see the collision of galaxies dynamically unless
a numerical simulation based on acceptable governing equations is
realized. The birth of a galaxy is not similar to the deformation of
plastically deforming materials inside dies and tools, but it is similar
in terms of the invisible nature. Invisibility requires an appropriate
governing equation and its accurate solution and modeling. Neglect-
ing the body force, Eq. (1) yields the equilibrium equation for the
dynamic analysis of metal forming with the effect of inertia. More-
over, if we assume that the acceleration in the left of momentum
Eq. (1) is much smaller than the gradient of stress, then the equilib-
rium equation of quasi-static phenomena in metal forming can be
obtained.

6% v

had to walt fora few more decades for the capability tu reahze satisfac-
tory numerical simulations. Several simulation methods have been
investigated and utilized in the numerical simulation of forming, such
as analytical methods (elementary, energy, and slip line field meth-
ods). Most of the numerical simulations of forming are now based on
the finite element method (FEM). FEM is mainly utilized in the macro-
scale analysis of a plastically deforming material. Fig. 2 shows the
progress of FEM over several decades. The first application of FEM was
the structural analysis of lightweight bodies such as airplanes [225]. It
was extended to nonlinear analysis in the 1960s, and the analysis of
plastically deforming materials using the small-strain FEM became
possible from this period [146,255,256]. Large-scale finite element
analysis using the total Lagrangian [94] and updated Lagrangian [167]
formulations became possible in the early 1970s. FEM has been used
in metal forming since the 1970s, especially after the flow formulation
was proposed by Cornfield and Johnson [64] and Zienkiewicz and God-
bole [266], and rigid-plastic formulation by Lung and Mahrenholtz
[140] and Lee and Kobayashi [123,128]. The time integration scheme
was extended from static-explicit to static-implicit and dynamic-
explicit. The development of the remeshing algorithm provided the
capability to apply the numerical simulation of metal forming to large
plastic deformations. Then, the linkage of FEM with computer-aided
design (CAD) allowed FEM to be part of the tool design process in the
forming process. Along with the progress of FEM at the macroscale,
methods of mesoscale or microscale analysis such as cellular automata
(CA), the representative volume element method (RVE) 144}, molecu-
lar dynamics (MD) [261], and crystal plasticity (CP) [9] were intro-
duced. Presently, the numerical simulation of metal forming uses
more computer resources than ever before. Its applications have been

Static-explicit Dynamic-explicit

Staticimplict
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Fig. 2. Progress of numerical simulation
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In the last two decades the ubiquity of electronic devices
and sensors, the use of social networks and the capacity of
storing and exchanging these data all have dramatically in-
creased the opportunities for extracting knowledge through

data mining projects. The diversity of the data has increased

F. Martinez-Plumed, L. Contreras-Ochando, C. Ferri, |. Herndndez-Orallo
and M]. Ramirez-Quintana are with Universitat Politécnica de Valencia,
Spain e-mail: {fmartinez,liconoc,cferri,jorallo,mramirez)@dsic.upv.es.

M. Kull is with University of Tartu, Estonia e-mail: meelis.kull@ut.ee.

N. Lachiche is with Université de Strasbourg, France e-mail: nico-
las.lachiche@unistrafr.

P. Flach is with the University of Bristol and the Alan Turing Institute,
UK. e-mail: peter flach@bristol.ac.uk.

Manuscript received X, 20XX; revised X, 20XX.

Q Wultiors D Quize @ Cisix Workspace O

Cirx Gateway Gran... 55 Use cases VMAP S
introduced ASUM-DM [3], and SAS introduced SEMMA [4],
and many others, as we will review in more detail in the
following section. However, the original CRISP-DM model
can still be recognised in these more recent proposals, which
remain focused on the traditional paradigm of a sequential
list of stages from data to knowledge. We would argue that
they are still, in essence, data mining methodologies that do
not fully embrace the diversity of data science projects.

In this paper we investigate the extent to which, after
twenty years, the original CRISP-DM and the underlying
data mining paradigm remain applicable for the much
wider range of data science projects we see today. We
identify new activities in data science, from data simulation
to narrative exploration. We propose a general diagram
containing the possible activities that can be included in
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a data science project. Based on examples, we distinguish
particular trajectories through this space that distinguish
different kinds of data science projects. We propose that
these trajectories can be used as templates for data scientists
when planning their data science projects and, in this way,
explore new activities that could be added to or removed
from their workflows. Together, they represent a new Data
Science Trajectories model (DST).

On one hand, this DST model represents an important
overhaul of the original CRISP-DM initiative. However, we
have been careful not to discard CRISP-DM completely, as it
still represents one of the most common trajectories in data
science, those that go from data to knowledge when there
is a clear business goal that translates into a data mining
goal. One could say that DST is “backwards compatible”
with CRISP-DM, while allowing the considerable additional
flexibility that twenty-first century data science demands.
In this paper we identify some other trajectories that cap-
ture the common routes of data science projects, but the
flexibility of the DST map makes it possible to incorporate
current and new methodologies in the development and
deployment of data science projects.

The contributions of the paper are the following:

o Recognition of the limitations of the original CRISP-DM

Fig. 1. The CRISP-DM process model of data mining.

methodologies, providing for each an overview of its evo-
lution, basis and primary characteristics. For a more com-
prehensive description of these methodologies we refer the
reader to [5], [6]. Fayyad, Piatetsky-Shapiro and Smyth de-
fine Knowledge Discovery in Databases (KDD) as “the overall
process of knowledge discovery from data, including how
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Fig. 2. Evolution of most relevant Data Mining and Data Science models and methodologies (in white and light blue, respectively). KDD and
CRISP-DM are the ‘canonical’ methodologies, depicted in grey. Adapted from [6]. The years are those of the most representative papers, not the

years in which the model was introduced.

a process starting from a relatively clear business goal and
data that have already been collected and are available for
further computational processing. This kind of process is
akin to mining for valuable minerals or metals at a given
geographic location where the existence of the minerals
or metals has been established: data are the ore, in which
valuable knowledge can be found. Whenever this kind of
metaphor is applicable, we suggest that CRISP-DM is a good
methodology to follow and still holds its own after twenty
years.

However, data science is now a much more commonly
used term than data mining in the context of knowledge
discovery. A quick query on Google Trends shows that the
former became a more frequent search term than the latter
in early 2016 and now is more than twice as common. So
what is data science [
in which the term i
(b) applying scientif
perspective, data sci
that studies data in
methods and algorit]

and enrich data It ic me

New desktop

and different tasks and roles within those processes. It views
the data as an ingredient towards achieving the goal — an
important ingredient, but not more. In other words, from
the data mining perspective, the process takes centre stage.
In contrast, in contemporary data science the data take centre
stage: we know or suspect there is value in these data, how
do we unlock it? What are the possible operations we can
apply to the data to unlock and utilise their value? While
moving away from the process, the methodology becomes
less prescriptive and more inquisitive: things you can do to
data rather than things you should do to data.

To continue with the ‘mining’ metaphor: if data mining
is like mining for precious metals, data science is like
prospecting: searching for deposits of precious metals where
profitable mines can be located. Such a prospecting process
pntally exploratory and can include some of the
ctivities:
ration: finding business goals which can be
ed in a data-driven way;

e exploration: discovering new and valuable
s of data;
2 value exnloration: findine out what valiie micht be
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data and the performance of the learning algorithm. There are three
main steps to build a ML model: preparing database, learning, and
evaluating the model.

« Step 1: Initial data used to build a ML model is usually presented in
the form of input and corresponding output variables which are
characterised in ML terminology by feature (input variable) and label
(output variable). When predicting the behaviour of a structure, for
example, its geometric dimension and material properties are cate-
gorized as features, whilst its ultimate strength and deflection are
used as labels. Some ML algorithms require all input data to be scaled
in the range [0,1] for having a better performance [46]. To test the
performance of ML models, initial data is randomly split into training

Training
dataset

v B2 aDmaQ

applied in ML under the supervised learning algorithm to predict the
output values based on the values of the input variables. There are
different types of regression models developed in ML based on (i) the
number of variables, (ii) the type of variables, and (iii) the shape of the
regression line. RA models commonly used in structural engineering
include:

2.2.1.1. Linear regression (RA1). This is the simplest regression model
in ML where the output variable and the input variable(s) are best fitted
in a straight line (linear function). The coefficients of the linear equation
are determined by minimising the cost function (e.g., MSE and MAE)
defined as the difference (error) between the predicted value and the
actual value. If a single input variable is used, the model is called the
simple linear regression. In the case of more than one input variable, it is
called the multiple linear regression.

Predict

New data

Feedback

Prediction

ML model

Fig. 1. Typical workflow of ML.
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Linear regression
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Neural network

Random forest
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Boosting algorithm

Support vector machine
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Naive Bayes (NB)
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Density-based clustering
Distribution-based clustering
Components/factors based

Projection based

Q-learning

Markov decision process

Fig. 2. ML algorithms grouped by learning type.

2.2.1.2. Multivariate regression (RAZ2). Multivariate regression is an
extension of the multiple linear regression when dealing with the
problem that has more than one output variable. The word “multivar-
ate” refers to more than one output variable, whilst the word “multiple”
refers to more than one input variable. The merit of this method is that it
helps to understand the correlation between input and output variables.
‘This method is also widely used in ML for regression problems.

2.2.1.3. Polynomial regression (RA3). The difference between RA3
model and RA1 model is the shape of the regression line. The best fit line

regularized version of RA1. However, the regularisation term used in
RAS is L2-norm (squared value of the weight) instead of L1-term used in
the case of RA4. The aim of the RA5 technique is to try to eliminate the
weight of the least important features [47].

2.2.1.6. Logistic regression (RAG). This regression technique was
developed for classification problems when the output variable is binary
or discrete in nature (e.g., True/False, 1/0, Yes/No, etc.). In RA6, the
relationship between the input and output variables is expressed by a
logistic function also known as sigmoid function. This method is based
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The behaviour of each neuron unit is defined by the weights w
assigned to it. When the data x; is fed to the input layer, they are
multiplied by corresponding weights w;. Then, a transfer function is used
to calculate the weighted sum of the input plus a bias b, which is
gradually adjusted to minimise the difference between the predicted and
actual outputs. The value of the transfer function is then passed through
an activation function f to check if the node should transmit data to the
output layer or not. When an ANN is trained, random values of weights
are assigned to all nodes. Once the activation function passes the pre-
dicted value y to the output layer, an error function is used to calculate
the difference between the predicted and actual outputs. Based on the
result, the ANN model adjusts the weights of all its nodes to minimise the
error. Such training process known as back-propagation [56] is iterated
until the convergence condition is satisfied.

There are a number of hyper parameters that need to be optimised
when training an ANN model because they control the learning and
training process of the network. They include the architectural choices
of an ANN (i.e., the number of hidden layers used, the number of nodes
per hidden layers, and the type of activation functions) and the training
variables (i.e., leaning rate, the number of epochs, momentum, and
batch size). Increasing the number of hidden layers and hidden nodes
can increase the accuracy of the network, but it causes computational
cost. The activation function is used to account for the nonlinearity of

The applic... Machine ...
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Hidden layer (s)

Input layer

Output layer

(a) Network architecture
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CNN is considered as one of the best ML algorithms for image
recognition. A detailed review on the development of CNN for the
application of image classification can be found in Wang et al. [59]. In
the context of SHM, CNN has been widely used to detect crack in
structures based on either image classification approaches or segmen-
tation techniques. The image classification method detects crack at the
image level rather than the pixel level used in the segmentation method.
Reviews on the use of CNN for structural crack detection and condition
assessment were reported by Ali et al. [39] and Sony et al. [36],
respectively.

2.2.2.3. RBFNN. This is a specific ANN that uses RBF as an activation
function as proposed in one of the early works by Broomhead and Lowe
[50]. The RBFNN has only one hidden layer called feature vector, and its
output is a linear combination of RBFs of the inputs and neuron pa-
rameters (i.e., weight and bias). The merit of RBFNN over a regular NN is
its fast-training ability thanks to the universal approximation of RBFs.
The only concern when using RBFNN is how to properly choose the
shape parameters and centres of RBF [60].

2.2.2.4. ANFIS. This algorithm combines the adaptive control tech-
nique of neuro-fuzzy systems and the learning ability of ANNs. There-
fore, ANFIS can leverage the merits of both fuzzy logic and NN to

X; = input
w;i = weight
b =bias

f= activation function|

(b) Processing neuron (computing unit)

Fig. 3. Example of an ANN.
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examination is necessary. A stand like those pictured measures several stories tall. Whether it is ’

used for roughing or finishing, the stand is the primary way to deform the strip. Since the finishing

stage determines the final shape of the strip, the finishing stands are of the most importance.
Figure 1.5 shows a single finishing stand and a graphical representation of all its parts. Only a
portion of the stand in the photograph is visible as it extends below the ground.

[ Frame [ Work Roll [ Bending Actuator
M strip [ Backup Roll [l Gap Actuator

Figure 1.5: Stand configuration. (Left) Side view of a finishing stand [19]. (Right) Front and side view detail
of stand components.

The stand is broken down into several parts: rolls, frame, and actuators. The rolls can be
categorized as work rolls and backup rolls, which have similar features though they differ in size.
There are generally two actuators in each stand, one to control the gap through which the strip
passes, and the other to control the bending of the rolls. The arrangement of the bending actuators

+ B o 29«
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