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Abstract 
 
In this document, the specifications, commonalities, and fundamental differences between industrial use 
cases were gathered, analysed, and reported. Electron Microscopy (EM) and Unmanned Utility Vehicles 
(UUV) are the two target industrial use cases, which comprise sub use cases, are detailed down and 
described. These target use cases are entitled as (1) automated correction of defocus and astigmatism 
in the condenser system of a Transmission Electron Microscope, (2) automatic test case generation and 
sensor optimization from Unmanned Utility Vehicles domain. This document also provides domain 
analysis and contextual information about these targeted use cases. Additionally, assumptions, 
constraints, limitations, and dependencies associated with all these use cases are described with enough 
details. 
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1. Introduction 

This document provides a detailed analysis of the specifications, commonalities, and fundamental 
differences between the targeted industrial use-cases; Scanning Transmission Electron Microscopy 
(STEM) and Unmanned Utility Vehicles (UUV). These use-cases are each composed out of several 
industrial use-cases, which are detailed below. 
 
 The targeted industrial use-cases are: 

1. Transmission Electron Microscopy 
a. Automated correction of aberrations in the electron microscope 

2. Unmanned Utility Vehicles 
a. Automatic test case generation 

 
 
Further domain analysis on the individual industrial use-cases is provided in the next sections. In addition, 
information on the requirements, assumptions, constraints, limitations, and dependencies associated with 
all these industrial use-cases is provided. Based on the derived information of the different industrial 
applications, the commonalities and fundamental differences are derived. 
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2. Target Use Case: Transmission Electron Microscopy 
2.1 Overview of Target Use Case 
 
In what follows we will first provide the context needed to gain a full understanding of the targeted 
industrial use case. First, we introduce the field of nanoscience. Next, we highlight the role TEM has 
played in this field and provide a short summary on the working principles of a TEM. Finally, we introduce 
the type of images we will use to realize the targeted use-case, and discuss its scope and purpose in 
detail 

2.1.1 Domain Analysis 

 
Nanoscience investigates structures and materials with at least one dimension ranging from 1 to 

approximately 100 nm. Its focus is on harnessing the distinct properties of nanomaterials, which 

significantly differ from their bulk counterparts. As materials are scaled down, the surface-to-volume ratio 

experiences a substantial increase. Consequently, surface atoms play a more significant role, leading to 

the domination of surfaces in influencing the properties of nanomaterials. This dominance results in 

unique physical and chemical characteristics not observed in bulk materials, making nanomaterials 

particularly appealing for diverse applications. 

  

The distinctive features exhibited at the nanoscale have generated heightened interest in nanoscience, 

driving rapid advancements across various fields, including chemistry, materials science, energy, 

medicine, electronics, and food. The key to the progress in nanotechnology over the past century lies in 

research dedicated to understanding the interplay between nanomaterial structure and their physical and 

chemical properties. This understanding is vital for guiding the synthesis of new nanomaterials with 

predetermined properties in a systematic and reproducible manner. The specific properties of 

nanomaterials are intricately linked to their structure, size, and composition. Therefore, a precise 

structural and chemical characterization is essential to comprehend their unique properties. Transmission 

electron microscopy (TEM) stands out as an indispensable tool for studying nanomaterials, offering a 

resolution on the order of 50 pm. However, TEM is constrained to samples thin enough to allow electron 

passage, requiring technically challenging thinning processes and additional tools. 

 

2.1.2 Transmission Electron Microscope (TEM) 

 

The image formation process in a TEM is very similar to that of an optical light microscope. The main 

difference is related to the use of electrons as the source of light and the associated replacement of glass 

lenses by electromagnetic coils. In a TEM, electrons are accelerated towards the specimen using high 

voltages in order to obtain images with a resolution higher than achievable in optical light microscopes. 

These electrons are emitted from a thermionic gun or a field emission gun (FEG). Afterwards they pass 

through a system of condenser lenses, to produce a beam with desired size, intensity and convergence. 

In TEM mode, a parallel coherent beam is formed, which illuminates the sample uniformly. In STEM mode 

however, the beam is focused into a fine probe, which is scanned across the specimen.  

 

Once the desired electron beam is formed, it interacts with the specimen, which is placed in a dedicated 

specimen holder. This holder is located between the two pole pieces of the objective lens. The transmitted 

electrons are focused by the objective lens into a diffraction pattern in the back focal plane of the objective 

lens after which they recombine, yielding an enlarged image of the specimen in the objective lens its 

image plane.  

 

An ideal lens system is expected to image a single point source as a point. Scherzer, however, 

demonstrated that for round symmetric electromagnetic lenses, spherical and chromatic aberrations are 

unavoidable. Spherical aberrations cause rays, located far away from the optical axis of the spherical 

lens, to have a different focal point than rays with the same wavelength, close to the optical axis. 
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Chromatic aberrations are observed when rays with distinct wavelengths, focus differently. All together, 

these aberrations contribute to blurring of the image.  

 

For both the condenser- and objective lenses, stigmators are present that correct for astigmatism. 

Astigmatism occurs when the magnetic field in the lens is not symmetrical. Stigmators apply a correcting 

field to compensate for this asymmetry. 

 

Below the objective lens, a system of intermediate and projector lenses creates a magnified image of 

either the sample in real space or the corresponding diffraction pattern in reciprocal space. This image 

can e.g. be visualized using a Charged Coupled Device (CCD) or a direct electron detector. The complete 

build up of a transmission electron microscope is presented in Figure 1 

 

 

  

 

 

Figure 1: Structure of Transmission Electron Microscope 

 

 

2.1.3 System Decomposition 

Figure 2 shows the high-level view of the transmission electron microscopy. As shown, the transmission 

electron microscope is composed out of three distinct building blocks: (A) Electron Source, (B) Column, 

(C) Imaging System. The Electron Source block comprises electron gun, accelerator, monochromator 

components, and all other parts that are not shown in the figure but available at the real microscope. The 

Column consists of condenser, objective, projector systems and sample itself. The Imaging System block 

comprises the components for detectors and cameras. 
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Figure 2: Schematic View of Electron Microscope Components 
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2.1.4 The Ronchigram 

In the electron microscope use case, Ronchigram images are the key to finding the right parameters for 

the microscope’s lens system that maximize the spatial resolution.  The term Ronchigram is a reference 

to the “Ronchi test”; a standardized test for shaping aberration-free optical lenses. By placing a diffraction 

grating within the focus of the optical lens, the imperfections of the lens would be recognizable from the 

obtained interference pattern.  

 

Constructing Ronchi’s grating is not possible in an electron microscope. Due to the high frequency of the 

accelerated electrons the gratings’ spacing would have to be only a few picometers wide for interference 

to occur. Creating such a grating is therefore extremely challenging. Instead, the atomic arrangement in 

amorphous materials is used, to provide a nearly random assortment of atomic potentials. This random 

assortment provides a good approximation of a noisy grating and mimics the Ronchi test by providing 

interference patterns that reveal aberrations in electromagnetic lenses.  

 

Key features in the Ronchigram which can be exploited to measure the aberrations consist of the 

Ronchigram’s symmetry and magnification (Figure 3). When in focus, the center of the Ronchigram has 

a high local magnification that represents the aberration-free portion of the electron beam. Further away 

from the center, thus moving away from the optical axis, aberrations reduce the local magnification. 

Having as large as possible magnified central region is a first indicator for an optimal defocus. The 

presence of asymmetric aberrations breaks the rotational symmetry of the Ronchigram. Two-fold 

astigmatism unidirectionally stretches the region of high magnification, thereby producing distinctive 

streaks. Axial coma shifts the center of the Ronchigram and higher order aberrations further break the 

symmetry of the Ronchigram. 
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Figure 3: Illustration of Ronchigram features as a function of different aberrations. OF stands for over 
focus, UF for Under focus. [1] 

 

2.1.5 Goal 

 
Prior to shipping a microscope, it must be calibrated to ensure it can reach the desired resolution. This 
calibration is an intensive alignment procedure during which various experimental parameters have to be 
optimized to ensure that the electron beam coincides with the optical axis of the electron microscope (e.g. 
centering the apertures, gun tilt, gun shift, etc.). In addition, the current through the various 
electromagnetic lenses and correctors needs to be adjusted such that an electron beam with minimal 
aberration is formed. 
 
As of today, the microscope operators spent on average 200 working hours on the alignments of the 

electron microscope before the microscopes can be shipped to customers. Roughly half of that time is 

correlated to aberration corrections.  Therefore, there is a clear need to automate this process, as it will 

lead to a large cycle time reduction, and ability to produce more microscopes in the same amount of time.  
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2.1.6 Scope 

For the new use-case, the objective is to align and calibrate electron microscopes. As of today, 
microscope operators need to correct aberrations manually and go through time-intensive routines to 
calibrate the TEMS.  
 
All components that are integral part of the electron microscope column and required for generation of a 
Ronchigram are within the scope of the target use case. For digital twinning and training an AI model, the 
condenser system, electron beam interaction and detector are targeted. The electron source system (i.e., 
comprising the electron gun, accelerator, and monochromator) and imaging system will be ignored within 
the context of ASIMOV. The electron source system is considered as an ideal point source and is used 
as an input parameter to the condenser system. Given that we will focus on the Ronchigram image, the 
output of the column system, and not the final magnified STEM image, simulating the full imaging system 
is not required.  
 
Within the ASIMOV project we will investigate the use of digital twinning and AI-based optimization for 

automated microscope calibration. We envision that an AI based solution will allow for a faster, more 

reliable and automated calibration of the electron microscope.  

2.1.7 Context 

 
The main challenges that Thermo Fisher Scientific is facing regarding aberrations correction during 
electron microscopy calibration are: 

• Time-intensive and tedious procedure to minimize aberrations. Especially the correction of higher 

order aberrations can take multiple hours, thereby wasting valuable experimental time. 

• Images with a limited resolution due to the presence of aberrations 

• Requiring expert microscope knowledge to minimize the aberrations 

• The aberration correction needs to be performed repeatedly.  

• Since the systems are uncalibrated and agnostic approach is required with a notion of ‘better’ to 

calibrate and align the microscope 

 

An overview of the EM components targeted for sub use case 1 is depicted in Figure 4. As can be seen, 
the column block is subdivided into two sub blocks: 
 

• (B.1) condenser system (composed out of: condenser lenses, apertures, stigmators and 
deflectors), upper objective system, and sample 

• (B.2) lower objective and projector systems.  
 
For this subcase we aim to pursue an agile way of working. Therefore, we will first focus on modeling B.1 
and train an AI model to aberrations. In Figure 4, the components targeted for sub use case 1 are 
indicated in red. However, the end goal is to model both B.1 and B.2. 
 
 
 
 



IR1.1 
Specifications and Commonality Analysis 

Confidential 
 

 
 

    

Version Status Date Page 
M30 internal 2022.11.29 15/43 

 

 

Figure 4 - Overview of Components Targeted for Sub Use Case 1 

 

2.1.7.1 Envisioned experimental set-up 

Figure 5, displays the envisioned scenario for the correction of the defocus and astigmatism. The 
illustrated components are: 

• Digital Twin: The DT is composed out of models for all components in B.1 including; 

condenser system, upper objective lens, and electron-sample interaction. 

• AI Agent: an AI agent is trained on simulated data from the digital twin. Its purpose is to create 

necessary actions (e.g., values for multifunction and defocus knobs) to tune the microscope to 

reduce the condenser astigmatism. 

• Electron Microscope: Enable the AI agent to interact with the electron microscope. Based on 

experimental images, it will estimate the required actions and apply them autonomously. 
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Figure 5: Illustration of the envisioned experimental set-up 

 

2.1.8 Assumptions 

The following assumptions are made for the presented use-case: 
I) ASIMOV Solution 

1. The axial electron beam field is generated by an external application (e.g., Electron Optical 

Design (EOD) Software output) and provided as an input to the system. 

2. The electron source (i.e., electron gun, accelerator, and monochromator) and the imaging system 

of the electron microscope are excluded. 

3. The aberration corrector module is trained offline with the output of digital twin. 

 

II) Pre-conditions for the Correction Procedure 

1. The electron beam is nearly coherent, meaning that a small energy spread (e.g., 0.1eV) and a 

small angular distribution is assumed. 

2. The electron beam is already aligned along the optical axis; gun and aperture alignments have 

already been completed.  

3. A sample with amorphous areas (e.g., amorphous carbon) is inserted. 

4. The electron microscope is operating in STEM mode. 

 

III) Assumptions for the Correction Procedure 

1. There is no need to tilt the sample. 

2. The specimen is at eucentric height. 

3. The electron beam is axially well aligned 

 

2.1.9 Constraints 

The following constraints are relevant to the presented use case: 

• While calibrating a microscope, there exists no ‘linear’ relationship yet between the ‘buttons’ 

you use to control the microscope and the measured aberrations. Therefore, an agnostic 

approach is required which has a notion of ‘better’ 

• On a real microscope, lower objective system (if applicable) or projector systems might still add 

some aberrations. Their influence should be considered for digital twinning. 

•  
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Dependencies 

The following are the dependencies that are relevant to this use case: 

• The B.1 part of the digital twin has to be completed before the AI can be obtained.  

• The Digital twin is potentially dependent on third-party applications for simulating the electron 

beam generation. 

• Each hardware component in the B.1 depends on the output of the previous component. 

• Internal programming interfaces to the electron microscope are needed to translate the output 

of the AI agent to changes in excitation values for the lenses of the electron microscope and 

vice versa. 

 

2.1.10 Requirements 

2.1.10.1 Functional Requirements 

2.1.10.1.0 Digital Twin 

Table 1 - Details of EM_SUC1_FR_DT_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_DT_001 

Type Digital Twin Components 

Priority High 

Purpose The digital twin must model all components that contribute to the Ronchigram 
image formation including aberrations. 
 
These components are: (1) condenser system + upper objective system and (2) 
electron-sample interaction in the electron microscope chamber and (3) the 
detector. Electron source system, lower objective system and the projector system 
are out of scope for the model design as part of sub use case 1. 
 
Therefore, the digital twin should include the following components: 

• Condensor system 

• Upper part of objective lens 

• Electron-sample interaction 

• The used camera for the experimental acquisition 
 

Rationale These are the required components in a generic TEM system 

Mandatory Yes 

Dependency N/A 
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Figure 6 - Electron Microscope Components Included in the Digital Twin 
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Table 2 – Details of EM_SUC1_FR_DT_002 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_DT_002 

Type Digital Twin Input Parameters 

Priority High 

Purpose The digital twin should have tunable input parameters which are similar to the 
tunable settings of the physical electron microscope, In this way, the digital twin can 
mimic microscope operation when for instance correcting aberrations.  Figure 6 
shows the overview of different types of parameters in the digital twin model. 
 
The following are some of the input parameters for the digital twin of condenser 
system: 

• Source energy 

• Source spot size 

• Aperture diameter 

• Lens current 

• Sample thickness 
 

Rationale Digital twin needs to mimic the behavior of a physical microscope  

Mandatory Yes 

Dependency N/A 

 
 
 

 

Figure 7 - Overview of Digital Twin Parameters 
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Table 3 - Details of EM_SUC1_FR_DT_003 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_DT_003 

Type Digital Twin Subcomponent Interactions 

Priority High 

Purpose  The digital twin must model all components that contribute to the Ronchigram 
image formation and the condensor astigmatism. Several components are 
composed out of different sub components.  These need to interact with each other 
accordingly. 
 
The condensor component contains for instance: 

• Condenser lenses (C1, C2, C3) 

• Condenser apertures (C1, C2, C3) 

• Condenser stigmators 

• STEM deflectors 

• Probe corrector (only if needed in the next steps) 

• Mini condenser Lens 
 

Rationale Components in the column are connected to each other by nature 

Mandatory Yes 

Dependency N/A 

 

Table 4 - Details of EM_SUC1_FR_DT_004 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_DT_004 

Type Electron-sample Interaction Output 

Priority High 

Purpose Sample Simulation refers to the simulating electron-sample interaction. The sample 
itself is placed on a TEM grid within a sample holder, which is inserted between the 
pole pieces of the objective lens. 
 
The digital twin of electron-sample interaction system should generate realistic exit 
waves. 

Rationale Ronchigram/Probe images are necessary to capture aberrations 

Mandatory Yes 

Dependency N/A 

 

Table 5 - Details of EM_SUC1_FR_DT_005 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_DT_005 

Type EM mode for Target DT  

Priority High 

Purpose The digital twinning should model the components that are relevant to the 
condenser system aberrations and target STEM mode 

Rationale Aberration correction is more crucial for STEM mode than TEM mode 

Mandatory Yes 

Dependency N/A 
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2.1.10.1.1 Artificial Intelligence 
 

Table 6 - Details of EM_SUC1_FR_AI_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_AI_001 

Type AI Input Parameter 

Priority High 

Purpose AI model should use the output of the digital twin for training and verification. 

Rationale This allows offline training of aberration corrector module without interaction with 
real instrument 

Mandatory Yes 

Dependency N/A 

 

2.1.10.1.2 System Level 
 

Table 7 - Details of EM_SUC1_FR_SL_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_SL_001 

Type Target Configuration 

Priority High 

Purpose The system should have the following setup configurations: 

• Operate in STEM mode 

• Sample type is amorphous carbon or crystalline nanomaterials on an 
amorphous support 

Rationale Ronchigram/Probe images can be acquired when placing the STEM probe on an 
amorphous region within the sample 
 

Mandatory Yes 

Dependency N/A 

 

Table 8 - Details of EM_SUC1_FR_SL_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_SL_002 

Type Target Aberration Type 

Priority High 

Purpose The system should reduce the lower order aberrations. 

Rationale Start with simplest aberration 

Mandatory Yes 

Dependency N/A 
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Table 9 - Details of EM_SUC1_FR_SL_003 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_SL_003 

Type System Flexibility 

Priority Medium 

Purpose The system should be flexible and generic enough to adapt the other aberrations 
such as Axial Coma (B2), Three-fold Astigmatism (A2), etc.  

Rationale This allows the system to be independent from aberration type 

Mandatory Yes 

Dependency N/A 

 
 

Table 10 - Details of EM_SUC1_FR_SL_004 Requirement 

REQUIREMENT  DESCRIPTION  

ID  EM_SUC1_FR_SL_004  

Type  Target Tuning Actions  

Priority  High  

Purpose  The system should be able to generate appropriate tuning actions to correct 
Astigmatism (A1) and Defocus (C1)  

  

As can be seen in the Figure 7, the EM operator can physically control the level of 
Astigmatism by tuning the stigmator X and Y knobs. Through an existing python 
interface to the microscope, the stigmator values can also be tuned from command 
line. The RL agent should be able to interact with the python interface.  

Rationale  These are the knobs used by the microscope operator  

Mandatory  Yes  

Dependency  N/A  

 
 
 

2.1.10.1.3 Data 
 

Table 11 - Details of EM_SUC1_FR_DA_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_FR_DA_001 

Type Output Format 

Priority Medium 

Purpose The system should be able to generate and process tif/png/jpg formatted 
Ronchigram images of 256x256/512x512/1024x1024 and mp4 formatted 
Ronchigram videos 

Rationale Generated images have certain dimensions and format 

Mandatory Yes 

Dependency N/A 
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2.1.10.2 Non-Functional Requirements 

2.1.10.2.0 Compatibility 
 

Table 12 - Details of EM_SUC1_NF_CO_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_NF_CO_001 

Type Integration with External Application(s) 

Priority Medium 

Purpose The system should be compatible with the output of the  Electron Optical Design 
(EOD) application or a similar one. 

Rationale Since the Digital Twin will not comprise the electron source part, third party 
application(s) generate the required input data for condenser system 

Mandatory No 

Dependency N/A 

 

2.1.10.2.1 Extensibility 

Table 13 - Details of EM_SUC1_NF_EX_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_NF_EX_001 

Type Modular Architecture 

Priority High 

Purpose The system architecture should allow adding or removing extensions to the digital 
twin.  
 

Rationale Correction of each aberration requires a change in excitation of different lenses 
and/or stigmators 

Mandatory No 

Dependency N/A 

 

2.1.10.2.2 Performance 

Table 14 - Details of EM_SUC1_NF_PE_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_NF_PE_001 

Type Performance of Automated Correction 

Priority Low 

Purpose The system should be able to optimize the electron microscope, faster than a typical 
microscope operator, yet obtain the same robustness 

Rationale An automated system is expected to function better or close to manual scenario 

Mandatory No 

Dependency N/A 
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2.1.10.2.3 User Experience 

Table 15 - Details of EM_SUC1_NF_UE_001 Requirement 

REQUIREMENT DESCRIPTION 

ID EM_SUC1_NF_UE_001 

Type User Interface 

Priority Low 

Purpose The user should be able to monitor the progress of the correction and should be 
notified in case of a failure that might require manual intervention. 

Rationale The system could freeze at a certain step during the correction 

Mandatory No 

Dependency N/A 
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3. Target Use Case(s): Unmanned Utility Vehicles 
3.1 Overview of Target Use Case 

3.1.1 Purpose 

Unmanned Utility Vehicles offer a great possibility to deliver goods and lead to a sustainable alternative 
in public transportation while improving safety. In order to deploy a system of UUVs, which could support 
critical supply chains during lockdown, multiple different UUVs need to be developed and calibrated. 
Calibration reaches from UUV individual parameters for control units of the drive train up to parameters 
for communication between the UUVs or a teleoperator, which can act as Incident Management. 
Considering the large variety of possible UUVs, each designed with a specific purpose in mind, individual 
manual calibration becomes unfeasible when deploying a fleet of vehicles. To improve scalability of mass 
fleet deployment, as well as leading to a significant reduction in application cost during development, 
digital twins and AI-based system optimization can be used as an enabler for smart mobility solutions. 
 

 

Figure 8 - Unmanned Utility Vehicle on a University Campus [2] 

 
Digital Twins and AI-based system optimization for UUVs offers a tool to significantly lower the need for 
testing on proving grounds and public streets and therefore lead to a reduction in cost. ASIMOV not only 
provides large companies the possibility to scale in production, but also serves as a tool for development 
of alternative vehicle concepts in a more research orientated organisation. 
 
Digital Twinning and AI-Parameter optimization is also not limited to vehicle parameters but can also be 
applied to the testing itself. The testing process as such can benefit in two ways from the ASIMOV idea. 
A well calibrated test bed leads not only to more accurate data but also to a wider accessible range of 
possible tests, including highly dynamic ones, which offer insight into vehicles driving characteristics in 
safety relevant scenarios. Additionally, optimizing the parameters of the relevant test scenarios leads to 
a more effective way of gathering meaningful measurement data and therefore reduces the required 
testing time in the lab and on the road. 
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3.1.2 Scope 

The Unmanned Utility Vehicle Use case will be focusing on improving the testing itself by automatically 
creating a test plan that is best suited to test the vehicle while focusing on a specific component. 
 
As access to such a vehicle is rather limited, the use case will rely on virtual validation of the developed 
toolchain and methods. The autonomous driving (AD) stack itself will not be part of the optimization. 
 
3.2 Sub Use Case 1 - Automatic Test Case Generation 

3.2.1 Introduction 

This sub use case focuses on automatically creating a set of test case scenarios to test a specific vehicle 
component for development of complex UUVs. The created test case scenarios shall maximize 
information about the component under test with as little testing required as possible. As a starting point 
we therefore focus on a vehicle that offers a “Track & Follow”-Function. This function is mainly based 
around three basic functionalities. An Active Cruise Control (ACC) offers the functionality to adapt the 
speed of the unmanned utility vehicle based on the distance to and the velocity of the vehicle in front. A 
Lane Keep Assist System (LKA) takes over the lateral control of the vehicle in such a way that it follows 
the vehicle in front. Finally, an Autonomous Emergency Braking (AEB) system serves as a safety net to 
ensure that the UUV is aware of its surroundings and can avoid accidents caused by traffic or pedestrians 
that get in between the platoon of following vehicles. Each of these automation functions needs 
information about the vehicle and its behavior to be used successfully. While functions like ACC and LKA 
require models that reflect the real vehicles behavior in non-critical situations, the AEB system relies on 
more complex models that take more detailed dynamic physical effects into account. 
 
Using the ASIMOV approach, reinforcement learning is used to iteratively suggest new variations of a 
scenario template to find the most critical combination of parameters based on analyzing a variety of 
criticalities. A Digital Twin of vehicle and environment is therefore used to enable such an automated 
parameter identification process. 

3.2.2 Context 

Creating such an automated scenario suggestion requires several components that interchange and 
process data. 
 
Figure 9 shows an overview of the whole process. It can be divided into two separate tasks and the 
environment for data processing. As a first step, the environment model has to be set up manually. This 
is done with a specific environmental domain in mind. In our case, this will be a university campus. 
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Figure 9 - Process Overview Sub Use Case 1 

To create the campus environment, input data is required. For this process it can be measurement data 
of the road network (ASAM OpenDRIVE [3]) and GIS data for the environment. Both data sets can be 
manually adapted or extended depending on the requirements. This is a one-time process. During the 
operational phase of the automatic Scenario Generation, some parameters for the static environment and 
the dynamic traffic maneuvers (ASAM OpenSCENARIO [4]) will be varied by the reinforcement learning 
agent. 
 
The 3D environment model, as well as the corresponding description of the road network (ASAM 
OpenDRIVE) and description of the scenario (ASAM OpenSCENARIO) are then generated from this 
data. The environment model is converted into a format that is best supported by the simulation 
environment to be used. Geometry, texture, Physically Based Rendering (PBR) material description and 
segmentation information have also to be taken over. At present, the open-source simulation package 
CARLA [5], which is based on the Unreal Engine [6], could be a good option, since it fulfils all current 
requirements. Native Unreal will also be looked into. 
 
In the simulation environment, the project must initially be set up in terms of lighting, performance, and 
determinism. Likewise, CARLA offers multiple sensor models, whose position and parameters must be 
initially adjusted. Sensors for the visual image, LiDAR point clouds and radar images have to be modeled. 
 
OpenDRIVE and OpenSCENARIO data can be used to simulate scenarios on the environment model, 
which are recorded as data streams via the sensors set up. The measurement data can then be 
processed by the feature engineering to quantify the information value of the already gathered data. From 
this, a KPI value with the information density of the data set, obtained by the latest scenario is calculated 
as a reward. This reward and the state, formed by information about the tested component and the 
operational areas, where there is still high uncertainty in the data, is fed to the reinforcement learning 
agent. The reinforcement learning agent aims for the highest long-term reward and therefore modifies 
future scenarios in such a way that their simulation obtains the most amount of new data possible. That 
maximizes the information obtained over the course of the entire test plan. 
 
The automatic scenario generation relies on feedback about the criticality of the driven scenario. 
Therefore, an essential part of this process is the Feature Engineering, that quantifies the quality of data 
in different driving situations. Based on this information, the reinforcement learning agent tries to find 
parameters for scenario generation that would deliver valuable data in operational areas, where the RL 
agent expects critical scenarios or has a high uncertainty in the behavior of the vehicle. 
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The parameters that are being tuned by the reinforcement learning agent can be divided into a static and 
a dynamic part. The dynamic parameters control the routes the ego vehicle drives on, as well as where 
and when other traffic participants, such as cars, pedestrians, cyclists, etc. interact with the ego vehicle. 
Static parameters will setup the scene and define the road sampling, tree density, etc. 
 
Using different vehicles and components to adapt the test plan for, would be part of the training process 
for the reinforcement learning agent to make it more robust. 
 
When applying this technique to real components in Hardware-in-the-Loop (HiL) tests or a vehicle on a 
testbed (ViL), the corresponding components from the simulation have to be replaced by their physical 
counterparts. The scenario generation and therefore the stimulation of the components of interest will not 
change compared to a fully simulated setup. That way, the reinforcement learning agent can apply its 
experience to the real system. 
 

3.2.2.1 Data Management & Processing 

To enable repeated learning and counter-testing of scenarios later, data and project information are 
managed in an experiment and experience data store. This process runs automatically without manual 
intervention. 
 

 

Figure 10 - Overview Data Management and Processing 

In the data processing environment, there are 6 main interfaces for computing, storing and displaying 
results. 
 
To store and access data in the form of files and folders on a distributed filesystem there will be a Data 
Management Platform which can also be used to browse, search data and to make additional 
annotations. 
 
In addition, a streaming adapter will be developed and evaluated for raw data input and output of sensor 
data. This solution would accept a stream of data in a previously decided format with support to “replay” 
it. This would allow to save simulated sensor data while it is generated and to use it as an input source 
that is close to the conditions of a real environment. 
 
To keep track of the experiments that were made, an experiment management system is used to 
systematically store all experiment related information which allows to compare and analyze the results 
on the Analytics Platform. 
 
On the Data Analytics Platform the gathered information can be exploited by providing an environment to 
analyze data efficiently in a distributed environment. All computational tasks can be defined as apps or 
pipelines that are able to scale to multiple compute nodes. 
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A visualization platform allows to easily visualize key information of the simulations and the progress. 
Depending on the integration of the streaming adapter this could also allow to visualize the simulation in 
near-real time. 
 

3.2.3 Assumptions 

The creation of driving scenarios and sceneries based on a set of parameters needs to be possible and 
the restrictions of the vehicle or component under test must be known as input parameters. Furthermore, 
it is assumed that there is a way to quantify the uncertainty of a model in different driving situations. 
 

3.2.4 Constraints 

Due to costs and availability, the test bed can only be used for a limited time span. The lack of permanent 
availability of a physical UUV itself leads to further restrictions regarding the usage of real-world 
measurement data. 
 
The scenario generation is constraint to non-destructive scenarios. The limitations of test system and 
system under test must be respected at every time. 
 

3.2.5 Dependencies 

Creating the digital representation of a campus environment and the vehicle with its sensors lay the 
foundation and can be done in parallel. During implementation of the environment model, interfaces for 
scenario and static environment variations need to be developed. As information about the current density 
of the data in different operational areas serves as input for the RL agent, the feature engineering function 
needs to be developed next. The reinforcement learning agent has to be developed closely with the 
feature engineering function, as their interplay in combination with the KPI calculation is crucial. 
 

3.2.6 Requirements 

3.2.6.1 Functional Requirements 

3.2.6.1.0 Digital Twin 
Digital Twins need to be modelled, to enable the Reinforcement learning agent to gain experience. 
Instead of creating one large DT, that represents the whole vehicle, separate DTs for individual parts of 
the vehicle are being used. This approach offers greater compatibility for HiL and ViL testbeds, where 
individual components exist as real physical components. 
 

Table 16 - Details of UUV_SUC1_FR_DT_001 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_DT_001 

Type  DT of the Driving Function 

Priority  High  

Purpose  The driving function needs to be represented as if it was in the real system. 

Rationale  Vehicle will be controlled via this function block  

Mandatory  Yes  

Dependency  N/A  
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Table 17 – Details of UUV_SUC1_FR_DT_002 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_DT_002 

Type  DT of the Vehicle dynamics 

Priority  High  

Purpose  Reflect the vehicle dynamics as a DT 

Rationale  The vehicles behavior will deliver measurement data that is used to optimize the 
scenario generation. In the training stage, many different configurations of vehicles 
will be tested, to achieve robust AI functionality in the operational phase. An 
interface must be provided, to change vehicle configurations easily. 

Mandatory  Yes  

Dependency  N/A  

 

Table 18 – Details of UUV_SUC1_FR_DT_003 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_DT_003 

Type  DT of the Sensors 

Priority  High  

Purpose  At least LiDAR and camera sensor models need to be modelled, as they serve the 
perception of the vehicle. 

Rationale  The sensors behavior will deliver measurement data that is used to optimize the 
scenario generation and is key for the driving function to be able to run. 

Mandatory  Yes  

Dependency  N/A  

 

Table 19 – Details of UUV_SUC1_FR_DT_004 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_DT_004 

Type  DT of the Environmental model 

Priority  High  

Purpose  Provide a digital campus environment that the vehicle can drive in. The campus 
environment defines our operational design domain and is the basis for any sensor 
in- and output. 

Rationale  The digital campus environment will serve as a proving ground for the optimized 
scenario generation. 

Mandatory  Yes  

Dependency  N/A  
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3.2.6.1.1 Optimization-AI 
 

Table 20 - Details of UUV_SUC1_FR_OA_001 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_OA_001 

Type  KPI 

Priority  High  

Purpose  Implement a useful metric to measure the amount of new information in 
measurement data. 

Rationale  The KPIs will serve the Reinforcement Learning Agent as reward. Good KPIs will 
lead to more effective parameter optimization. The AI aims for maximizing the 
amount of new information contained in every test run. 

Mandatory  Yes  

Dependency  N/A  

 

Table 21 - Details of UUV_SUC1_FR_OA_002 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_OA_002 

Type  Reinforcement Learning Agent 

Priority  High  

Purpose  Implement the Reinforcement Learning agent itself. 

Rationale  The Reinforcement Learning agent will deliver optimized parameter sets for the 
scenario generation, based on the current state of information. 

Mandatory  Yes  

Dependency  N/A  

 

Table 22 - Details of UUV_SUC1_FR_OA_003 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_FR_OA_003 

Type  Experiment Storage and Analyzer 

Priority  High 

Purpose  Create an experiment storage, which collects all gathered data and an experiment 
analyzer that improves future actions of the AI 

Rationale  Data Storage for improving AI performance with knowledge acquisition 

Mandatory  No  

Dependency  N/A  

 
 
 
 
 
 
 
 
 
 
 
 



IR1.1 
Specifications and Commonality Analysis 

Confidential 
 

 
 

    

Version Status Date Page 
M30 internal 2022.11.29 32/43 

 

3.2.6.2 Non-Functional Requirements 

3.2.6.2.0 Data 

Table 23 - Details of UUV_SUC1_NF_DA_001 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_NF_DA_001  

Type  Vehicle State 

Priority  High  

Purpose  Vehicle State, generated by the vehicle model, need to be accessible by the 
environmental model  

Rationale  Vehicle interacts with the virtual environment and therefore has to be accessible 

Mandatory  Yes  

Dependency  N/A  

 

Table 24 - Details of UUV_SUC1_NF_DA_002 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_NF_DA_002 

Type  Environmental data  

Priority  High  

Purpose  Input data for sensor model 

Rationale  Sensor Model needs to have access to the environmental model in order to deliver 
sensor information to the driving function 

Mandatory  Yes  

Dependency  N/A  

 

Table 25 - Details of UUV_SUC1_NF_DA_003 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_NF_DA_003 

Type  Sensor data  

Priority  High  

Purpose  Sensor data for driving function 

Rationale  Sensor model needs to forward its information to the driving function for action 
planning 

Mandatory  Yes  

Dependency  N/A  

 

Table 26 - Details of UUV_SUC1_NF_DA_004 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_NF_DA_004 

Type  Driving instructions  

Priority  High  

Purpose  Controlling the vehicle 

Rationale  Driving instructions from the Driving function block need to be forwarded to the 
vehicle model. 

Mandatory  Yes  

Dependency  N/A  
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Table 27 - Details of UUV_SUC1_NF_DA_005 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_NF_DA_005 

Type  Actions / States / Rewards  

Priority  High  

Purpose  Linkage between the DT and the RL Agent 

Rationale  The Optimization AI needs feedback in order to optimize its actions 

Mandatory  Yes  

Dependency  N/A  

 

3.2.6.2.1 Performance 

 

Table 28 - Details of UUV_SUC1_NF_PE_001 Requirement 

REQUIREMENT  DESCRIPTION  

ID  UUV_SUC1_NF_PE_001  

Type  Overall simulation time 

Priority  High  

Purpose  The automated scenario generation has to lead to a reduction of overall simulation 
time, while delivering more relevant information compared to current methods. 

Rationale  If the automated scenario generation is slower than the conventional method, the 
ASIMOV optimization is unsuitable  

Mandatory  Yes  

Dependency  N/A  

 

3.2.6.2.2 Availability 
The ASIMOV approach would only be used for efficient data gathering in a development phase of the 
vehicle. The availability has to be high, as test bed use is expensive. 
 

3.2.6.2.3 Compatibility 
The automated scenario generation has to be adaptable to different vehicle components and vehicle 
specifications. Finding lumped parameters for a one-track model of a vehicle must be possible just like 
finding physical parameters for a sensor model. 
 

3.2.6.2.4 Resource Usage 
On vehicle resource usage shall be reduced to a minimum. 
 
3.3 Sub Use Case 2 - Sensor Optimization 
As the creation of a suitable DT of the vehicle and its optimization is a big topic on its own, Sensor 
optimization can be seen as a separate subtopic, which is described below. 

3.3.1 Introduction 

In contrast to sub use case 1, where the analysis of measurement data and model uncertainties is used 
to create an automatic test scenario generation, sub use case 2 uses the scenario generation for 
optimizing the configuration of vehicle sensors themself. The Positioning, Orientation, Field of View and 
other internal Parameters of a LiDAR Sensor will be optimized exemplarily so that objects are detected 
reliable and fast across different situations. 
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3.3.2 Context 

Positioning and configuration of vehicle sensors have a large impact on the perception quality and 
therefore must be optimized for different vehicles. This sub use case will use the approach from sub use 
case 1 to adapt and test these parameters.  
 
As in sub use case 1, the initial step is to generate a suitable family of scenarios to test the sensors 
perception. Ideally, the scenarios that were found useful in sub use case 1, are also useful for optimizing 
the sensors parameters for best perception. 
 

 

Figure 11 - Process Overview Sub Use Case 2 

In contrast to finding the best test plan in sub use case 1, the reinforcement learning agent in sub use 
case 2 focuses on finding the best parameters for the sensor setup, using the earlier developed test 
plans. Therefore, the environment simulation will still function in the same way, but instead of changing 
the parameters of the scenario generation, the reinforcement learning agent will change the parameters 
of the sensors. The whole process can be seen in Figure 11. 
 
Based on these inputs and the tailored test plan from sub use case 1, measurement data from the sensor 
can be acquired. These data streams will be used as training data for the AI algorithm. By using a 
segmentation image stream directly from the environment as a ground truth source, it can be checked if 
objects or situations are correctly recognized by the sensor. In order to recognize in time during the 
process whether the generated data streams are suitable for evaluation, a validation process has to be 
integrated. It checks the output data of the generation process for plausibility and consistency, as well as 
the data streams from the simulation itself. 
 
Information about the objects recognized by the sensor and those that were initially generated in the 
scenario, serves the reinforcement learning as input to further tune the sensor parameters. 
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3.3.3 Assumptions 

See sub use case 1. 
 

3.3.4 Constraints 

See sub use case 1. 
Besides the constraints from sub use case 1, the positioning of sensors itself is constraint due to the 
vehicle’s dimensions and possible mounting points. The optimization process must respect these 
limitations. 
 

3.3.5 Dependencies 

To optimize the position and configuration of a sensor, an adequate sensor model, as well as information 
about how its parameters were obtained, are required. Sub use case 1 offers the possibility to satisfy 
these dependencies. 
 
As backup, a traditional test plan can be used in place of the optimized test plan from sub use case 1 as 
well. 
 

3.3.6 Requirements 

3.3.6.1 Functional Requirements 

See sub use case 1. 
 

3.3.6.2 Non-Functional Requirements 

3.3.6.2.0 Performance 
See sub use case 1. 
 

3.3.6.2.1 Availability 
See sub use case 1. 
 

3.3.6.2.2 Compatibility 
See sub use case 1. 
 

3.3.6.2.3 Resource Usage 
See sub use case 1. 
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4. Analysis of Commonalities and Differences Between Use Cases 
In this section we analyze the use cases, described in the previous sections, to identify commonalities 
and fundamental differences that may be relevant for technology development in the work packages. The 
commonalities indicate opportunities for reuse and collaboration across the use cases. The differences, 
on the other hand, indicate required variation points in the overall ASIMOV methodologies and 
technologies. 
 
In the following subsections we describe our observations classified around 5 main themes: 

1. System 
2. Optimization 
3. Envisioned solution 
4. Digital Twin (DT) modeling 
5. Artificial Intelligence (AI) learning 

 
In general, observations for earlier themes (like system) also apply to later themes (like DT modeling). 
 
We use the following abbreviations to refer to the use cases and sub use cases: 

• STEM: Scanning Transmission Electron Microscopy 

• UUV: Unmanned Utility Vehicle 
o UUV.1: Automatic Test Case Generation 
o UUV.2: Sensor Optimization 

 
General impression based on the more detailed observations below: 

• STEM looks more like UUV.2 than like UUV.1 

• UUV.2 uses the results of UUV.1, but there is a workaround if necessary 

• 2D Image processing is a technological common denominator 

4.1 System 
In this subsection we focus on the characteristics of the system to be optimized. 
 

4.1.1 Commonalities 

• Product family of similar (but different) systems:  

• STEM: product families of microscopes  

• UUV.2: product families of vehicles 

• Control parameters are dependent: 

• STEM:  different control parameters of the lenses influence the same image 

• UUV.2: different control parameters of the sensor influence the same image 

• Control parameter values: 

• STEM: limited (but large) number of microscope settings 

• UUV.1: unlimited functional scenarios, limited number of concrete scenarios 

• UUV.2: limited number of sensor positions 

• Limited number of parameters to change; 

•  RL is specifically only allowed to change a certain number of knobs in a controlled 

manner. 

• Sensitivity to an uncontrollable physical environment: 

• STEM: high(e.g., we will attempt to align uncallibrated microscopes and are very 

dependent of its unknown starting conditions) 

• UUV.1: low (e.g., measurement and stimulation inaccuracies) 
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4.1.2 Differences 

• Pre-existing APi to control the system: 

• STEM: Python API available for controlling the electron microscope 

• UUV: No API for dynamically changing the 3D environment established. 

• Control parameters have boundary conditions for safety: 

• STEM:  potential damage to the microscope and the sample 

• UUV.1: no potential damage to the vehicle and the environment 

 

General Conclusion: Broadly speaking, there is a significant intersection between the two usage 

scenarios. In both cases, our efforts are directed towards creating artificial intelligence and digital twin 

technologies capable of maneuvering through extensive and unfamiliar application domains. 

Nevertheless, these AI/DT solutions operate within constraints, having only a finite set of 'control knobs' 

available for optimization. They therefore share the same aspects in terms of system safety and AI 

interface. While in the STEM use case, an already existing API can be used to control the system, such 

an equivalent had to be developed for the environment variation in the UUV use case. 

 

4.2 Optimization 
In this subsection we focus on system optimization. 

4.2.1 Commonalities 

• Classical techniques for system optimization are/become infeasible: 

• STEM: optics is well-understood, but does not deal with un-happy flow 

• UUV: number of optimization parameters is too large 

• Optimize the control parameters of a CPS: 

• STEM: find parameters to minimize lens aberrations 

• UUV.1: find parameters to generate critical scenarios 

• UUV.2: find parameters to optimize sensor configuration 

• Optimize a fleet of systems instead of a single system: 

• STEM: train an AI capable of optimizing various microscopes 

• UUV: train the AI to come up with meaningful test scenarios for various vehicles. 

• Need for virtualization: 

• STEM: expensive microscope time is hard to come by. 

• UUV: driving many critical scenarios is impractical, costly and potentially dangerous on 

public roads  

• Optimize non-deterministic systems: 

• UUV Variety and complexity of vehicles is high, which leads to slightly different results 

every time. 

• STEM: There are unknown parameters such as sample thickness/structure which can 

change the obtained data from day to day. 

• Frequency of applying system optimization: 

• STEM: Each time when calibrating an electron microscope to a certain high tension 

• UUV: iteratively during the development of a vehicle’s ADAS/AD system for a specific 

domain of operation 

• Required quality of the resulting optimization:  

• STEM: Predefined quantitative benchmarks need to be reached to ensure final 

resolution 

• UUV: leverage Vehicle-in-the-Loop capabilities to full extent by providing more 

representative detail compared to conventional scenario-based testing 
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4.2.2 Differences 

• Feasibility of manual optimization: 

• STEM: feasible, but requires scarce expertise (extensive training) 

• UUV: infeasible for a fleet of various UUVs 

• Required performance of the optimization process: 

• STEM: not dramatically slower than a human operator (low priority)  

• UUV: reduction of the overall simulation and testbed time (high priority) 

• Concreteness of the optimization: 

• STEM: control values with a visible effect on microscope images 

• UUV.1: set of test scenarios with a quantitative notion of criticality 

• UUV.2: control values with a visible effect on sensor images and perception accuracy 

 

General remark: Both use cases focus on optimizing a calibration process, which is essential before 

deployment. However, the application spaces are vast and filled with unknowns, posing challenges for 

classical techniques. Consequently, we explore AI-based solutions. Due to expensive and scarce 

machines, data generation using digital twin (DT) technology becomes crucial. While STEM already 

benefits from human operators for optimization, the UUV use case seeks to expand optimization 

parameters through DT/AI approaches. 

 

4.3 Envisioned solution 
In this subsection we focus on the envisioned high-level structure of the optimization procedure. 

4.3.1 Commonalities 

• Use of DTs (see the dedicated subsection for a deeper analysis) 

• Use of AI (see the dedicated subsection for a deeper analysis) 

• Required performance of the optimization subprocesses: 

• STEM: efficient computation times (scalability) 

• UUV: efficient computation times (scalability) 

• Use of Flask for managing microservices 

• DT-trained AI is used to optimize the physical system 

• Online learning with modular docker set-up 

4.3.2 Differences 

• Training situations: 

• STEM: virtual STEM + virtual environment and physical STEM + physical environment 

• UUV: virtual vehicle + virtual environment and physical vehicle + virtual environment 

• Hybrid solutions: 

• STEM: aside from AI based solutions we also explore DT based optimisations solutions 

and even hybrid solutions where we combine the best of both worlds. 

 

General remark: Both use cases will use the same solution architecture. The difference lies in the use 

of a physical system during deployment. While in the STEM use case, the AI is directly optimizing a 

physical device, in the UUV use case, the AI optimizes a virtual environment, with which a physical device 
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interacts.This makes interaction with a physical STEM during training much more important than in the 

UUV use case. As a result, more direct feedback is available for the STEM use case. 

 

4.4 Digital Twin (DT) modeling 
In this subsection we focus on modeling the system as a Digital Twin (DT). 

4.4.1 Commonalities 

• The type of environment (which cannot be controlled) that needs to be modelled: 

• STEM: the starting conditions of the to be aligned/calibrated  microscopes 

• UUV:, the unmanned vehicle, other vehicles and pedestrians as well as the majority of 
the 3D environment 

 

• The DT is expected to be imperfect (deviating from the physical system): 

• STEM: properties of the sample, contamination, slight mechanical misalignments 

• UUV: dynamics of the vehicle and its sensor models 

• The DT is expected to have limited fidelity (less than the physical system): 

• STEM: omitting quantum effects 

• UUV: limited details and resolution of the environment, limited set of physical effects in 

the sensor models 

• Common types of technologies: 

• STEM: 2D image processing (Ronchigram) 

• UUV: 2D image processing (camera) 

• Reuse requirements:  

• STEM: compositional collection of DTs for interdependent system components 

• UUV: compositional collection of DTs for sensors and vehicles from multiple suppliers 

4.4.2 Differences 

• Different types of technologies: 

• STEM: electron optics, microscopy, micro mechanics, thermodynamics 

• UUV: mechanics, 3D images (Lidar) 

• Modelling challenge: 

• STEM: detailed physics (hysteresis, drift, contamination) 

• UUV: dynamic environment based on a limited number of parameters 

• Ease of comparing DT with physical system: 

• STEM: relatively easy (comparing experimental Ronchigram/Probe images) 

• UUV.1: hard (comparing realism of 3D environment with reality) 

• Already available DTs: 

• STEM: some models and tools are available for electron microscopes 

• UUV: mature models for vehicles with drivers, but not for unmanned vehicles 

 

General Remark: When developing a Digital Twin (DT), a critical consideration is determining the 

necessary level of detail for simulating realistic data. The ultimate metric for data quality lies in the AI’s 

ability to train on simulated data and generalize to experimental data. However, striking a balance 

between detailed simulations (which can become slow and unwieldy) and the AI’s capacity to generalize 

is crucial. 
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Additionally, imperfections are inherent in DTs across both use cases. While some existing models vary 

in maturity, a commonality emerges in their composition from multiple sub-DTs. By composing the DT in 

a modular approach one obtains more control over the simulation and can more easily adapt the DT 

based on the AI needs. 

 

4.5 Artificial Intelligence (AI) learning 
In this subsection we focus on learning the optimization procedure using Artificial Intelligence (AI). 

4.5.1 Commonalities 

• Use of Reinforcement Learning 

• Training a single AI model to deal with multiple scenarios: 

o STEM: different kinds of aberrations/ microscope conditions  

o UUV.1: different scenarios from a scenario class (e.g., a driving situation) 

• Actions by the AI must be restricted by boundary conditions for safety reasons 

• Huge state space of the virtual or physical system that needs to be explored by the AI 

• Need to acquire training data sets, including sampling of dependent parameter spaces: 

o STEM: acquire Ronchigram images with set aberrations  

o UUV.2: derive object list from sensor images 

• Test environment: 

In both cases the test environment consists of a Cyber-Physical System CPS: 

o STEM: The AI is evaluated both on simulated data from the DT as on the PS under 

operation conditions 

o UUV: The AI is evaluated mostly on DT and most likely on a scale model of vehicle and 

testbed. 

• Components: 

o Both systems consist of a highly-interdependent chain of components for which an AI is 

trained on a virtual environment, applied and evaluated on a PS 

• Number of AI models for the sub use cases: 

o STEM:  Preference to restricted models which can operate in a smaller state space. 

o UUV: 2 different AI models corresponding to the 2 sub use cases 

 

4.5.2 Differences 

• Optimal parameters and quality KPIs: 

o STEM: optimal conditions known upfront in the DT;  

o UUV: not known upfront in a DT 

 

• Type of AI; The STEM use-case also explores to usage of supervised learning 

• Usage of AI: 

o STEM: to control the electron microscope directly 

o UUV:  to directly control scenario generation 

• Online vs offline learning 

o STEM; Offline learning 

o UUV; Online learning 
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General remark: The methods for handling the complex CPS are very similar between the use cases 

and include purpose-built AI models for different applications, training on variations of scenarios for better 

generalization and applicability on a real system, as well as constrained AI, that is affected in its control 

output by the same limits a human operator would have. The main differences lie in the upfront knowledge 

of how an ideally tuned system would look like, as well as the fact, that in the STEM use case, the AI 

directly controls the Electron microscope, while in the UUV use case, the scenario generation is purely 

digital and indirectly effects the UUV. 
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5. Terms, Abbreviations and Definitions 

 

Table 29 - Terms, Abbreviations and Definitions 

ABBREVIATION EXPLANATION 

A-Cor Automated Correction of Astigmatism in the Condenser System 

AAP Advanced Analytics Platform 

ACC Active Cruise Control 

AD Autonomous Driving 

AEB Autonomous Emergency Braking 

AI Artificial Intelligence 

CBED Convergent Beam Electron Diffraction Pattern 

CCD Charge-Coupled Device 

CPS Cyber-Physical System 

DT Digital Twin 

EELS Electron Energy Loss Spectra 

EM Electron Microscopy 

EOD Electron Optical Design 

GIS Geographic Information System 

HiL Hardware-in-the-Loop 

KPI Key Performance Indicator 

LKA Lane Keep Assist 

OEM Original Equipment Manufacturer 

PBR Physically Based Rendering 

PS Physical System 

SEM Scanning Electron Microscopy 

STEM Scanning Transmission Electron Microscopy 

TEM Transmission Electron Microscopy 

UUV Unmanned Utility Vehicle 

ViL Vehicle-in-the-Loop 
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