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Abstract 
 
This document proposes requirements for AI-technology for DT-based AI-training, and for DT-supported 
system optimization. The requirements cover general practical data collection methods and practices, 
and data quality measurement related aspects to ensure AI training will be done with valid input data. 
Extraction of physics-based thresholds for data validation and boundary conditions for optimization will 
be covered. The specified requirements are aligned with digital twinning solutions for WP2. 
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1 Context and objective of the task 
This document proposes requirements for AI-technology for Digital Twin (DT) based AI-training, and for 
DT-supported system optimization, where DT stands for Digital Twin. The requirements cover general 
practical data collection methods and practices, and data quality measurement related aspects to ensure 
AI training will be done with valid input data. Extraction of physics-based thresholds for data validation 
and boundary conditions for optimization will be covered. The specified requirements are aligned with 
digital twinning solutions for WP2.  
  
The documentation of requirements for AI-technology will not cover issues related to the essential tech-
nological methodologies to facilitate the data collection. Therefore, the topics of standardized AI-model 
descriptions such as the ones given with the Predictive Model Markup Language (PMML), standards for 
machine learning interoperability such as Open Neural Network Exchange (ONNX) or standards for sta-
tistical models and data transformation engines such as Portable Format for Analytics (PFA) will not be 
addressed. Moreover, possible technical issues inherited from messaging technologies such as the 
MQTT, the Advanced Message Queuing Protocol (AMQP), the Extensible Messaging and Presence Pro-
tocol (XMPP) or the Simple Text Oriented Messaging Protocol (STOMP) are not covered. Addition-
ally, novel concepts of meta data related technologies such as Web of Things (WoT) Description, or de-
velopment platform type of implementations such as FIWARE or EdgeXFoundry are not covered ei-
ther. Anyhow, the DT-based AI-training will be executed eventually by following the standards and good 
practices as given e.g., in [1].  
 
In Section 2 an overview is given of the basic general practicalities regarding the data collection without 
the detailed specification to the use cases or technological methodologies. A digital twin, as a surrogate 
system, can ensure extensive system-level trials, model tunings, and adaptations. With a digital twin, an 
infinite number of repetitions and scenarios can be executed in virtual environment effectively. In this 
context, the basic formulation of the reinforcement learning (RL) [2] is that the model learns from rewards 
when taking actions in a virtual environment. The couplings between digital twins and reinforcement 
learning are fully justified by the intrinsic nature of both methodologies. Thus, the considered training 
requirements are given for reinforcement learning, but can be generalized for other methodologies as 
well. The basic components and requirements for the reinforcement learning are given in Section 3. 
 
Based on basic general requirements of the ASIMOV-solution, and included in it, the general RL-algo-
rithm, we provide in Section 4 and Section 5 further general requirements on the data processing for the 
RL-solution and on the digital twin with focus on ASIMOV-solution. 
 
The remaining of this document is devoted to the discussions on the requirements for the specific use-
cases within the ASIMOVs project.  

2 Data: Basic Requirements 
Data collection is the first step into problem solving with RL after the goals are defined. Without valid data 
any effort in reaching the desired goal will be in vain. Even though a few iterations might be needed before 
understanding the data requirements for a specific problem, there are good practices that can be followed 
from the first iteration on. In this section the focus lays on those basic practices that any AI dataset needs 
to satisfy before taking up an implementation.  
  
The nature of the requirement set for the data can have a diversity of aspects that will be covered.  
But to be clear, there is no right or wrong data without a clear goal to be followed. The following data 
checks and definitions should later also be examined in the light of the goal, in all iterations followed for 
all goals. 
 
These points are generated from experience in the field by members of the project: 
 

1. Assessment of the data that is already available, or definition of desired data if no prior dataset 
is available. 
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2. Assessment of tools that can generate data and limitations. 
 
A list of tools and parties delivering the tools is highly recommended to understand data gener-
ation possibilities and capabilities available to generate data, as well as to understand the limi-
tations. Standards to which the tools comply could be of added value. 
  

3. ype of data available.  
 
Knowing the structure, form and shape of the data will limit or open possibilities in the next im-
plementation steps, especially of the software components.   
 

4. Examine data with domain knowledge and statistically 
 
Representativeness: Is the data covering the many aspects that are needed to find a solution 
(e.g., diversity of parameters, frequencies, diversity of errors)? Rule of thumb dictates, if all in-
formation is available that the human expert would need to solve the problem, representative-
ness is covered.  
There are no (software) tools available to cover this point. Definition of what representativeness 
means for each goal is needed. Domain experts are required to fill the definition. 
 
Volume: Any specific data-driven solution will need a minimum of data samples to be able to 
solve the problem. There is no golden rule, even though having in mind the data input, the com-
plexity of the problem, the given state space and the solution are guides to determine minimum 
amounts.  Some algorithms are much more data intensive than others. Reinforcement learning 
is known to be (extremely) sample inefficient, e. g, the current SOTA algo-
rithm for Atari games requires 18 million frames or 83 hours of equivalent human play for train-
ing. 
 
Bias: Are some aspects overrepresented o underrepresented in the data? s there more granu-
larity or detail in one or more aspects of the problem? These problems should be avoided at the 
input to avoid bias at the output.   
Many programming languages such as Python or R provide numerical computation and statisti-
cal libraries where numbers and figures can be created to be sure to avoid bias at the input.  
It is good practice to incorporate software which makes these basic checks to avoid problems at 
the solution. 
 
Completeness: Checking the data distributions at the different aspects of the problem, together 
with getting the other data aspects right will make the dataset complete. 
 
Basic Quality Control for Data: In the data acquisition process, it's crucial to be aware of poten-
tial systematic errors. Common examples of such errors include data duplication and data cor-
ruption. Data duplication can introduce bias into the creation of RL models, while data corrup-
tion can lead to errors in the learning process, often due to mismatches in data formats. To ad-
dress these issues, several steps should be taken. First and foremost, it's essential to regularly 
inspect the data to identify any errors. Once identified, efforts should be made to pinpoint the 
sources of these errors and rectify them. If fixing the source is not feasible, basic operations 
can be employed to mitigate the error. For instance, duplicates in the data can be removed, and 
corrupted data can be replaced with default values such as the statistical mean or median. Al-
ternatively, interpolation methods can be employed to estimate values based on neighboring 
data points, or input from informed users can be used to populate missing values. However, it's 
important to note that employing these techniques can potentially result in certain aspects of the 
data being overrepresented. Therefore, caution must be exercised when applying such meth-
ods to ensure the integrity of the data. 
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5. ccessibility and ownership of the data 
 
Who is responsible for the data? Who will allow access to the data? 
 

6. hysical location of the data. 
 
Which company or entity is saving or hosting the data or tools that generate data?  Knowing the 
answers to these questions would help to back trace possible issues occurring in building the 
RL-model.   
 

Except for point 4, 5, and 6, there are no wrong or right answers to be given, being informed of all the 
points above is paramount before starting to develop other steps further to operate having the right in-
formation and avoiding missteps.  

 
In Section 4 the specific data requirements per use case in hindsight will be defined. 
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3 Reinforcement Learning: basic components and requirements 

 
Figure 1: General conceptual view of elements in RL 

Reinforcement learning solves a particular type of problem where decision making is sequential, and the 
final goal is typically long term. Examples of such problems include computer games, robotics, or supply 
chain logistics. RL aims to learn good strategies from experimental trials and relatively simple feedback 
from the environment.   
 
To provide a more formal description, in RL, an RL agent engages with an environment by taking a series 
of sequential actions. Each action taken by the agent leads to a specific state within the environment. 
The precise way the environment responds to these actions is determined by a model, which may or may 
not be known to the agent. Moreover, what adds complexity to RL is that this response from the environ-
ment is generally characterized by stochastic behavior. Once the agent finds itself in a particular state 
following an action, the environment provides feedback in the form of a reward. The agent's objective is 
to maximize the cumulative sum of future rewards, considering the concept of discounting for rewards 
occurring in the future. RL has been extensively studied resulting in rich varieties of algorithms and meth-
ods, as well as applications (see Figure 1). 
 
In the following, we outline the key challenges within RL that must be tackled by the ASIMOV solution. 
Additionally, these challenges can serve as a framework for establishing the requirements for the ASI-
MOV solution. Details on the points below is also given in D2.2 [1] and D3.2/3.3 (the deliverables are in 
the current state of this work in progress and will be published in the future).  
 
The exploration-exploitation dilemma: This issue arises because the RL agent typically does not have 
prior knowledge of how the environment will react to its actions. Therefore, it's crucial for the RL agent 
not only to maximize rewards based on the information it currently possesses but also to actively explore 
the unknown aspects of the environment, especially in terms of how states change when specific actions 
are taken. Without a balance between exploration and exploitation, the agent could become trapped in 
suboptimal solutions, as it would rely solely on exploiting known information and miss out on the potential 
for discovering more favorable strategies through exploration. 
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Sample Efficiency: In addition to the need for a balance between exploration and exploitation, another 
challenge in RL arises from the inherent stochasticity of unknown environments. Within the RL algorithm, 
there exists a sampling component, and executing this component can often be resource intensive. While 
RL algorithms can demonstrate impressive capabilities, such as learning to play complex Atari video 
games without prior knowledge of the game's rules or mechanics (the model), it's noteworthy that even 
state-of-the-art algorithms like "rainbow" [2] demand a considerable amount of training time. To put it in 
perspective, this algorithm requires roughly 83 hours of training, equivalent to the amount of time a human 
player might spend on the same game, to achieve proficiency [3]. 
 
RL Capability Compared to Domain-Specific Algorithms: In various scenarios, domain-specific algo-
rithms often demonstrate superior performance compared to RL. Examples of these scenarios include 
applications like optimal control or the use of Monte Carlo Tree Search (see, e.g., [4]) in gaming contexts. 
Furthermore, leveraging any domain-specific knowledge or information at hand can often result in better 
outcomes than relying solely on RL algorithms. The reason behind this performance difference lies in the 
fundamental nature of RL problems, which operate without making any specific assumptions except for 
the abstract structure defining the interaction between the environment and the optimizing agent. This 
structure must follow the principles of the Markov decision process (MDP). Therefore, before applying an 
RL algorithm, it is imperative to assess whether domain-specific algorithms tailored to the specific use 
case are available or if any priori or domain-specific information can be used to enhance the RL algo-
rithm's performance. 
 
Reward Function Design: In the realm of RL, the primary objective of RL agents is to devise an optimal 
strategy for maximizing a long-term reward function. This objective must be closely aligned with the goal 
of the use case. However, it's essential to approach this task with caution because reward functions that 
appear suitable at first glance may not necessarily lead to the desired behavior in an agent. Comprehen-
sive discussions and illustrative examples regarding this challenge can be found in documents D3.2 and 
D3.3 (the deliverables are in the current state of this work in progress and will be published in the future). 
Additionally, D2.2 [1] outlines specific overarching requirements pertaining to the structure and charac-
teristics of the reward function: 

• The reward function should quantify performance on a predefined task using a single scalar 
value. 

• The reward function should encompass the overall objective and should not grant rewards for 
intermediate steps that might seem reasonable to the user. 

• The reward function should define what needs to be achieved without specifying how to achieve 
it, focusing solely on the desired outcomes.	

 
Stability: A notable challenge within the realm of RL is that trained agents tend to become highly spe-
cialized, and their acquired knowledge often does not generalize to other environments. To illustrate the 
extent of this challenge, even when using identical agents in identical environments but initializing them 
with different random seeds, they may end up learning entirely distinct strategies. This characteristic 
underscores a significant degree of instability during the training of RL algorithms. Consequently, achiev-
ing stability and consistency in RL training is a formidable task. Tuning hyperparameters (parameters 
controlling the learning process) and ensuring the reproducibility of results become exceedingly difficult 
in such an environment. One approach to addressing this issue is to implement a sophisticated docu-
mentation and logging system that supports the training process. 
 
Dealing with Continuous-Valued Data: In certain scenarios like UUV [5], specific environmental data 
exhibits continuous characteristics. However, traditional RL methods are typically designed to operate 
with discrete-valued data. Apart from the approach of discretizing the data, another effective way to ad-
dress this challenge is to employ a sophisticated RL algorithm capable of effectively handling continuous-
valued data. Moreover, in case of UUV, we require that the RL agent can both handle continuous- and 
discrete-valued data simultaneously. 
 
Markov Property: The theoretical foundation of RL heavily depends on the Markov Property inherent in 
the underlying environment. In essence, all theoretical guarantees, including concepts like optimality and 
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convergence, assume that the underlying environment conforms to the principles of an MDP. Conse-
quently, it is crucial to establish and maintain this property within the environment, as the absence of the 
Markov Property can potentially lead to failures. 
  
A digital twin will act like the environment for the RL agent in ASIMOV framework. Next to the above-
mentioned challenges, the mayor hurdle will be formed by the differences in data distribution generated 
by the digital twin and the actual machine. If they don’t match, learned behavior will not generalize. 

4 Data: Pre- and Postprocessing 
Besides the basic requirements on the data discussed in the Section 2, further requirements on the data 
are also needed for ensuring the functionality and success of RL-Solutions. Especially on the aspect of 
how the raw data needs to be processed in order that the RL-model can work efficiently with it. Specific 
aspects have been discussed thoroughly in ASIMOV deliverables 2.2 M16 [1]. We summarized the find-
ings in the following. 
 

4.1 Preprocessing 
To begin with, it is essential to preprocess the raw data in a manner that reduces the complexity of the 
learning problem. Various methods can be employed for this purpose: 
 
Discretization of Continuous-valued data: In the realm of RL, input spaces may not always be discrete, 
whereas traditional RL algorithms are designed for discrete data. Situations where RL problems involve 
continuous-valued data arise, as seen in the UUV Use Case (as detailed in D1.3). The solution here could 
involve either discretizing the data or utilizing RL algorithms capable of handling continuous-valued data, 
as discussed in the previous section. The latter sort of algorithms is discussed in D1.3 [5] 
 
Parametrization of Input Data: To streamline the training of AI models, one can simplify the problem by 
parametrizing the input space. This technique reduces the underlying dimensionality to match that of the 
parameter space. For instance, dynamic inputs like movements can be represented using parametrized 
trajectories. Another approach is to use basis functions, such as wavelets for processing image data. 
Data Encoding: Frequently, the data that the RL agent needs to be trained with that an AI agent needs 
to perform to achieve system objectives are inherently complex. However, it is often possible to group 
these complex signals into families with similar characteristics. These groups operate at a higher level, 
typically having lower dimensions and reduced complexity. This approach aids in mitigating the overall 
complexity of the AI training problem by simplifying the action space. 
 
Constraint Handling: Systems operating in the real world have physical limitations that must be consid-
ered in their control architecture. These limitations may encompass constraints on feasible input ranges 
or constraints on internal states/observations. Examples of input constraints include physical limits on 
valve positions or voltage domains. One basic requirement for ensuring a functioning RL-algorithm is that 
data, both training and input, must be processed in order that the given constraints are fulfilled. For de-
tailed discussions, we refer to D2.2 [1]. 
 

4.2 Postprocessing 

To ensure the functionality and efficiency of an RL algorithm, additional data processing steps may be 
necessary. Most of the requirements are aimed for the data used in the training phase of the RL-agent. 
These steps include: 
 
Data Cleanup: After the initial preprocessing steps, it's important to perform basic data processing tasks, 
such as removing duplicate entries and repairing corrupted data, as discussed in the "Data: Basic 
Checks" section. 
 
Noise Reduction: Noise can disrupt the learning process of the RL agent, and it's essential to eliminate 
or minimize such disturbances whenever possible. For instance, addressing high-frequency noise can be 
crucial. 
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Data Normalization: RL algorithms rely on optimization methods, and the effectiveness of these methods 
often depends on the scaling of the optimization space. Therefore, normalizing the data can be beneficial 
to enhance the performance of the RL solution. 
 
State Shaping: The state in RL contains all the information available to the RL agent at a given moment, 
and the Markov property is a fundamental concept in this context. The section initially discusses the 
Markov property and its various types. Once the type of process is identified, further steps in state shaping 
can be undertaken. These steps may involve restoring the Markov property if necessary, extracting fea-
tures from the process output, or developing observers to estimate hidden information. 
 
Reward Function Design: Part of the post-processing involves formulating the reward function, which 
generates a reward signal based on the system's outputs. The primary objective of the reward signal is 
to express the performance on a predefined task as a single value. The RL agent then aims to maximize 
cumulative rewards over time to optimize its long-term performance. It's important to note that the reward 
function should focus on defining the overall objective and should not be used to guide the trajectory to 
the goal based on a priori knowledge. Instead, it should specify what needs to be achieved without pre-
scribing how to achieve it. 
 

5 Digital-Twin Requirements for AI-Training 
 
ASIMOV's approach incorporates the use of DTS as a valuable resource for training RL solutions. In this 
context, DTs serve as a simulated environment or playground for training the RL agent. This approach 
offers several benefits, including enhanced agent availability and control, rapid training capabilities, cost 
reduction in operation, and the ability to explore extreme or hazardous scenarios, among others. 
 
The concept of employing DTs for RL training has been explored in depth in documents D2.1 and D2.3 
within the ASIMOV project. In the following sections, we provide a summary of the key findings from those 
documents, with a specific focus on the requirements that have emerged from the discussions in those 
tasks. 
 
Execution Efficiency of DT: To ensure low divergence between DT and Physical system and therefore 
the effectiveness of AI Training on DT, DT should possibly be updated in real-time using the input from 
the real system, and vice versa. 
 
Decision for Trade-Off between accuracy and execution efficiency: In many practical cases there is 
a trade-off between accuracy and execution efficiency, keeping in mind that both must meet the require-
ments of the system. 
 
Robustness of DT-Model: The digital model used in a DT should be robust, generate reproducible data, 
be comprehensible, but most importantly it should be accurate and deliver results fast.  
 
Minimal DT-Model parameter choices: When creating a digital model, parameters are determined 
which can be used to control the model. To reduce the complexity of the model, it is advantageous to use 
the smallest possible number of parameters which are required to produce a valid model. The minimal 
number of parameters that still meet the requirements of the use cases is referred to as relevant. One 
objective when creating a model is to determine the relevant parameters. 
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6 Specifics per use case 
6.1 Use case STEM  
One of the critical measures to have the desired final image on an electron microscope (EM), is to out-
put a Ronchigram with the desired pattern that indicates that beam is calibrated and aligned. In 
the Dutch use case automating the process of outputting this Ronchigram result of a calibrated EM is the 
goal.  
  
From the RL perspective: the input image (Ronchigram) is the current state, the environment is the DT of 
the EM column (consisting of subparts condenser system, deflectors, stigmator, upper objective sys-
tem, electron-beam interaction), the actions the RL agent can take are the interface controls (e.g. current 
intensities). The actions taken at the interface controls are also the output provided to the DT, in order 
the DT can generate a next state (Ronchigram image).  
  
The desired Ronchigram:  
The Ronchigram represents the diffraction pattern of the electron beam which is obtained through the 
interaction with the sample. The beam is influenced by components in the column and by other external 
factors such as temperature. When the Ronchigram shows no patterns in the relevant part of the image, 
we can consider that the column of the EM is calibrated, so we can consider that the goal is accom-
plished.   
  
That is to say that the desired metric for this goal could be a white noise-alike metric, at the desired part 
of the image. In image processing, constant power spectral density can be calculated. Other known met-
rics as Average Peak Signal-to-Noise-Ratio (PSNR) and Structural Similarity Index Measure (SSIM) could 
also be used. Thinking and defining the reward function in this direction is an important step for the RL 
module.  
  
Initial situation:  
The initial Ronchigram generated by the DT reflects the state of the beam at a given moment, and once 
the machine is functioning, realignment of the electron beamneeds to be performed eventually; the EM 
is a very sensitive device, where any minimal change in the state of a component or the environment can 
cause unacceptable performance problems. An uncalibrated column will result in distorted end im-
ages (and aberrated Ronchigrams); the Ronchigram will then show undesirable patterns. There are 
many types of aberrations that need automatic correction within the project's lifetime. The initial state of 
the beam and the elements in the EM column are influenced by many factors that vary. Those varia-
tions are simulated in the DT and are in the scope of work package 2.  
  
The result of having many initial combinations of variables is that many aberrations of different degrees 
can be present, outputting a very large range of possible states (i.e., Ronchigram images). Deciding 
which aberrations will be simulated in the DT, and to which degree, is of great importance to decide how 
the initial dataset will look like. More information about the types of aberrations can be found in the main 
case description in Deliverable 1.2 [6]. The objective of the RL is to turn those aberrated (patterned) im-
ages into constant non-patterned regions as just mentioned.  
  
Initially the aberration correction of choice to be automated is defocus and astigmatism (two-fold astig-
matism A1), which is the first case of subcase 1.1. In this first instance the initial Ronchigrams will show 
patterns only reflecting two-fold astigmatism A1. That also means that the first solution will be an RL 
agent that only needs to correct for an A1 astigmatism, given the interface controls that will be given 
(see Subpart “Interface and Actions”).  
  
Ronchigram image requirements:  
In any case, the images generated by the DT need to be Ronchigrams of a certain size and resolu-
tion. The minimum requirement will be images of size 512x512. The images are per definition gray-
scale, with a bit depth of 16 minimal. Ideally all data generated is saved with the same extension, as 
different extensions could generate different compression styles messing with the RL algorithm under-
standing (even though not visible for our eyes). Further iterations and initial implementation will guide the 
process further.   
  

https://en.wikipedia.org/wiki/Power_spectral_density
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Those images are in first instance generated by a single-slice simulator that generates Ronchigram im-
ages from an amorphous carbon sample statistically generated. The next tool that will be used is a multi-
slice simulator; this tool simulates the electron beam and sample interaction between different slices of 
the sample. The multi-slice simulator assumes the sample contains multiple slices as opposed to the sin-
gle slice in single-slice simulator. In the latter tool, other image processing techniques may be used to 
improve the initial state of the image.   
  
In a later stage, not in the scope of this document, the images will be generated by the end DT, simulating 
the actual machine in more detail, and generating images closely matching the ‘real’ Ronchigram.  
  
Images are per definition non-structured data, and quantitative pixel by pixel. Generalization is this kind 
of environment is known to be a hard problem for state-of-the-art RL approaches.  
  
For each dataset generated a statistical analysis as indicated in the fourth requirement stated in Section 
2 should be done, and report as to if the data requirements are met should be done before undertaking 
next steps. An important fact is that for each goal the dataset requirements are met. Generating a dataset 
requirement per goal will be a hard requirement that can be found in the table of requirements below.  
  
The high dimension of data and states at the input for any AI system requires systems that can cope 
with that. This kind of input already limits the approaches that can be used at the RL module.  
    
Interface and actions:  
In the bigger use case scenario, no information is currently available in the main document about the 
interface simulating the action possibilities to be taken by the agent, even though requirement 
EM_SUC1_FR_DT_002 in the main use case description indicates controls that are available in the real 
machine.   
  
The current intensities that can be tweaked are represented in the microscope control panel as ‘Multi-
function knobs X and Y’ as it can be seen in Figure 2. Those knobs regulate stigmatism values in the 
lens, specifically they regulate Stigmator X and Stigmator Y. For now, it is assumed that there will be 
some initial float values (e.g. 1e-6) and that the knobs increase by certain tolerance (e.g. 1e-10). A draw-
ing on the real interface can be found below, and red circles around the knobs of choice that need to be 
available in the first implementation step can be seen.  
  
The intensities to adjust astigmatism are also the knobs found by the EM operator when fixing the astig-
matism problem. Relevant for the interface is that the implementation concentrates on direct con-
trols available to the machine operator, and no other underlaying mechanisms that would not be used 
normally. Also, simulating other underlaying mechanisms is out of scope for parameters considered for 
this task. The objective is to automate this task away from the operator so that the time can be focused 
on the experiment instead of the calibration of the machine. Validating that RL technologies can be used 
to solve such a task is also in the goals.   

 
Figure 2: Electron Microscope operator control panel view with buttons of interest. 
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Table 1: Requirements Use Case STEM 

RID  Component  Requirement type  Requirement description  Priority 
Rq_EM_1_01  RL-input  Non-func  The input for the RL module will be an image of minimal dimension 

512x512, grayscale and minimal 16 bit depth.  
H  

Rq_ EM_1_02  RL-input  Non-func  All images generated will be of the same size and grayscale depth.  H  
Rq_ EM_1_03  RL-input  Non-func  All images generated will be generated in the same image extension.  H  
Rq_ EM_1_04  RL-input  Func  Images generated will have read and (write) permissions.  H  
Rq_ EM_1_06  RL-input  Non-func  All datasets generated will be accompanied with a .csv file where 

all metadata information about the dataset generated will be availa-
ble, and metadata about the generator tool will be available (e.g. setting 
with which datapoint was produced).  

H  

Rq_ EM_2_01  Infrastructure  Func  All relevant datasets generated will be published and hosted at an avail-
able location for partners. Tools could be shared too.  

M  

Rq_ EM_3_01  RL-interface  Func  The actions that the agent will be able to perform to fix Astigmatism 
A1 and where the DT will be able to react to because modelling al-
lows are: 1.Multifunction X and 2.Multifunction Y.  

H  

Rq_ EM_4_01  RL-output  Non-func  The RL will output a set of parameters (actions taken), in the first sub use 
case consistent of  value for ‘Multifunction X’ and 'Multifunction Y.’  

H  

Rq_EM_5_01  DT-tooling  Non-func  Document describing simulated parameters in DT tooling, and ranges 
expected. Combinations possible on simulator should also be present.  

H  

Rq_EM_6_02  Ronchigram state  Func  A function measuring how well the Ronchigram is looking is needed to 
stop the optimization by the RL agent when column is calibrated. Defin-
ing metric to reach this point is necessary eg SNR, probability density 
function etc.  

H  

Rq_EM_7_01  Data generation  Non-func  A description of what representative data means needs to be filled out by 
an expert-matter topic for each goal, including astigmatism A1.  

 M 

Rq_EM_8_01  Data_generation  Non-func  Output numbers and figures to assure data distribution is right, and to 
avoid bias and incomplete datasets.  

 M 

 

Other Requirements 
 
Further requirements for the TEM Use Case are given below: 
 
Table 2: Requirements use case STEM (Other Requirements). 

RID  Component  Requirement 
type  

Requirement description  Priority 
Rq_ EM_1_05  RL-input  Func  All images will be generated with label nomenclature ‘Ronch_number_aberra-

tiontype.extension’.  
This is currently a technical limitation of the DT that needs to be fixed  

L  

Rq_ EM_2_01  Infrastructure  Func  All relevant datasets generated will be published and hosted at an available 
location for partners.   
When the site is available also renaming of files in a more coherent manner will 
be possible too.  

M  

Rq_EM_5_01  DT-tooling  Non-func  Document describing simulated parameters in DT tooling, and ranges ex-
pected. Combinations possible on simulator should also be present.  

H  
Rq_EM_6_01  RL agent perfor-

mance  
Non-func  The RL agent should be able to perform with high requirement, given that RL 

problem solving should cover the most complex scenarios. Metrics should be 
defined to measure the RL agent success.  
Defining the metrics of success is a hard problem highly dependent on the so-
lution to be chosen, and at this stage the information is not available yet.  

H  

 
Some requirements important but not mentioned in the requirement table, are momentarily working pro-
gress and will be given in other deliverables. 

6.2 Use case UUV 

6.2.1 Scenario Generation for Digital Twin based UUV-Tests  

In “Unmanned Utility Vehicle” (UUV), the first goal is to test components of a vehicle (e.g., chassis, Sen-
sors, Driving function) in the most effective manner possible. The output of this use case would be a Test 
Plan that describes a sequence of scenarios that need to be tested on a vehicle testbed, to gain the 
most amount of information about the component under test. The main goal for this use-case is to provide 
test scenarios ensuring safety coverage of the autonomous vehicle.  
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Together, the factors mentioned above deliver a rough range of test scenarios. However, during RL train-
ing, to verify and validate the test scenario coverage to ensure safety coverage, component level simu-
lation in this sub use case could be considered as the foundation for higher level simulation such as 
system level simulation and on road driving in the later phase of RL training.  
  
Inputs 
 
The reinforcement learning agent employs KPIs to assess the actions it generates. In the context of RL, 
these KPIs serve as the agent's rewards. Since RL algorithms typically operate with a single numerical 
value as reward, the KPIs must undergo aggregation into a single value through a weighted sum. The 
selection of weights is specific to the use case and dependent on the objectives encoded within these 
metrics. 
 
The choice of KPIs is driven by the goals of achieving safety in critical UUV scenarios and introducing 
diversity in environmental conditions. Within this framework, the KPIs can be divided into two categories: 
criticality KPIs and diversity KPIs. In the initial phase of the prototype, the focus lies on achieving critical 
scenarios. Once this objective is met, attention will shift towards incorporating diversity into the environ-
ment. A detailed list of criticality KPIs is provided in D1.3 [5]. Whenever feasible, these KPIs are supple-
mented with a reference value to facilitate the normalization of the resulting value. 
 
The criticality furthermore needs to be split up into different categories to pinpoint the type of criticality 
that was present in the scenario. This could be, e.g., a poorly tuned lane keep assistant influences differ-
ent criticality types compared to a poorly tuned adaptive cruise control. Also, an important aspect is to 
link the criticality with the underlying driving function of the UUV. KPIs in this aspect are, e.g., metrics 
measuring the reaction time of the UUV. 
 
The information about the component under test, as well as the actual information about the component’s 
state, serve the input to the reinforcement learning agent.  
 
The exact type of information that will describe the state of a component will require careful feature engi-
neering (for further details see D1.3 [5]). The data streams from vehicle sensors, e.g., for accelerations, 
wheels speed, ground speed, yaw, pitch, roll, wheel travel, can be compared with the data from the sen-
sors for AD functions, such as camera images and LiDAR point clouds, to evaluate their similarity in var-
ious scenarios. That way, the reinforcement learning agent can generate parameters for follow up sce-
narios, that will yield data with as little similarity to already collected data as possible.  
 
Actions 
 
The reinforcement learning agent control the scenario generation. Therefore, it should output a set of 
parameters, which describe scenarios and their variations.  A scenario can be seen as an instance of a 
traffic situation, in which different traffic objects interact with each other. One prominent example being a 
pedestrian, that suddenly walks on the street and is therefore intersecting with the vehicle’s trajectory. To 
describe such a scenario, multiple parameters are required in the static and dynamic part of the scenario.  
 
The static part of the scenario describes the surroundings of the scene. This could be the density of trees 
next to the road, weather information, the type and visibility of lane markings on the street and so on. By 
varying these parameters, a wider operation window regarding the perception (e.g., LiDAR, camera) can 
be tested. 
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Most of the static scenario is no subject for optimization. However, after receiving the variation information 
for the 3D environment from the RL agent and the creation of the 3D environment, a validation check 
process is initiated. This involves evaluating whether objects are logically and probably located in the 
scenario, considering factors such as size, position, and count. The validation mechanism includes the 
following criteria: 
 

1. Validation of object placement:  
 
After the creation process of the 3D environment, Trian Builder [7] generates a validation text 
file with information about the placed objects. The system compares the intended number of 
objects (from JSON data) with the number of resulting objects in the generated variation. The 
system provides feedback based on the comparison and indicates conformity or deviation from 
the intended placement. 
 

2. Analysis of overlaps and collisions:  
 
The generated text file also contains information about overlapping or colliding elements in the 
environment. A numerical value describes the extent to which these elements overlap. This in-
formation is communicated to the RL agent as a penalty and influences its behavior in subse-
quent iterations. 
 

3. Concrete implementation criteria:   
 
The "overlap value" is expressed as a percentage and indicates the extent to which the bound-
ing boxes of certain objects overlap. This percentage allows the generated value to be calcu-
lated independently of differences in the size and shape of the overlapping scene elements. For 
more detailed information, we refer to T2.5. In the status of this deliverable D2.5 is not yet pub-
lished. However, that deliverable will be published soon in [8].  

  
The resulting action defines then critical cases which can be used for testing the UUV behavior. The 
dynamic part of the scenario describes how the different traffic participants interact with each other. Ve-
locities, routes, as well as parameters that control when a critical situation should occur and which traf-
fic object types are involved, are part of that category. Defining the current list of parameters that aim to 
define these scenarios is the task of T2.1-Workgroup whose deliverable will be published in [8] soon. 
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Infrastructure 

 
Figure 3: Architecture of UUV Use Case 1 

Micro-Service Oriented Structure: For the UUV use case, we require that the RL solution is structured 
into manageable components that are loosely connected through communications. The rationale behind 
this approach is as follows: 

• Independence of Development: By isolating the components, developers can work on each com-
ponent independently without causing conflicts or dependencies on other parts of the system. 
This modularity enhances the development process's efficiency and flexibility. 

• Simplified Debugging, Testing, and Validation: With distinct, well-defined components, debug-
ging, testing, and validating the functionality solution becomes more straightforward. Issues and 
bugs can be identified and addressed within specific components without affecting the entire 
system, making the development process more manageable and efficient. 

• Scalability Advantage: Isolation provides a significant advantage when it comes to scaling the 
application. Developers can focus on scaling individual components as needed, rather than at-
tempting to scale the entire system at once. This targeted approach to scaling enhances the 
system's overall efficiency and performance. 

• Efficient Communication: The loose coupling of these isolated components allows for more effi-
cient communication between them. Developers can implement communication methods that are 
tailored to the specific needs of each component, optimizing data exchange and overall system 
performance. 
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In the context of the UUV 1 use case, our system comprises four key components as shown in Figure 3: 
the RL Agent, Scenario Generation, Simulation, and Feature Engineering. To achieve our defined objec-
tives, we need to establish a specific organizational structure among these components. This organiza-
tion also includes the order in which these components operate. 
 
Containerization of the Components: To effectively deploy our components, we find it essential to 
employ containerization techniques. This approach enables each component to operate within its own 
encapsulated and self-contained runtime environment, thoughtfully defined by our developers. Through 
this method, we can ensure consistent deployment of our components across various environments, 
leading to enhanced portability and the ability to seamlessly adapt to different deployment settings. 
 
Data-Storage Infrastructure for the Component Interfaces: Additionally, we emphasize the need for 
a well-defined data-storage infrastructure to facilitate data interchange among these components. Access 
rights to the database are granted based on necessity, ensuring that each component can access the 
data it requires without unnecessary access to unrelated information. Furthermore, we maintain a clear 
separation between different databases, ensuring that they are distinct and independent to prevent data 
overlap or interference among the components. This separation enhances data integrity and the overall 
efficiency of our system. Such databases can be realized as folders mounted in components container. 
Other alternative would be the hierarchical labelling structure (facets) discussed in the next part (see the 
data management part) 
 
Task-Processing Structure: In the initial phase of the project, we establish a structured sequence, 
meaning that the components are ordered in such a way that each component triggers the start of the 
subsequent one once it has completed its task. In the future stages of our project, we intend to implement 
a more efficient communication structure, specifically a queuing system. In this improved setup, tasks will 
be organized and executed within designated queues, eliminating the need for direct triggering between 
components. Instead, each component will independently process and complete tasks from its respective 
queue. This shift to a queuing structure enhances system performance and streamlines the workflow by 
allowing components to work autonomously, responding to tasks as they become available in their 
queues. 
 
Alignment of data with the usual standard: For the practical use of the ASIMOVs solution, we require 
that the data is available in the usual industry standard. The OpenDRIVE [9] and Carla World file formats 
[10] align with usual standards and ensure the integrity and reliability of the simulation process within the 
ASIMOV project. OpenDRIVE, developed by the ASAM organization [11] for realistic simulations of virtual 
road networks, offers elements such as lanes and pedestrian crossings. This ensures safe testing of 
vehicles in simulated environments. Carla World files are integral to the Carla (Car Learning to Act) sim-
ulation environment. Carla features highly developed sensor models such as lidar or radar and serves as 
a simulation platform in UUV use case. Both data formats are designed to meet standards for accurately 
representing 3D environments and are thoroughly discussed in the document of new sections of D2.2. 
For the time-series data, we suggest that such data is available in the so-called ASAM-ODS format [12], 
which is suited for Big-Data processing. 
 
Scenario Engine: For simulation purposes, Scenario Engine which can playback the provided scenario 
in the given standard OpenSCENARIO is required, developed, and maintained by the ASAM organiza-
tion, is an established standard in the automotive industry. It defines the traffic scenarios and focuses on 
the dynamics and interaction of road participants within the road networks provided by OpenDRIVE in 
context of UUV. OpenSCENARIO files are then simulated in a varied 3D environment. Details on this 
aspect is treated in the workgroup for T2.2 [1]. 
 
 
Data and Training Management 
 
To achieve complete control over the optimization process in the UUV use case and to have reproducible 
results for ASIMOV’s solution, it is essential to employ advanced frameworks specifically designed for 
documentation, data, and resource management purposes. 
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Figure 4: Logging Architecture 

Model Logging Framework: To begin, our first requirement in this hindsight is the implementation of 
logging and tracking components within the RL process. This component should possess the capability 
to securely store the RL model, including its associated parameters, during the training phase. The incor-
poration of robust logging and tracking of RL experiments provides several distinct advantages, as it 
empowers us to: 

• Monitor Experiment Parameters: We can easily observe the specific parameters utilized in 
each experiment, allowing for a detailed examination of the configuration settings. 

• Retain Historical Models: The system retains previous models employed in experiments, 
providing a valuable reference for understanding the evolution of the RL model. 

• Optimize Hyperparameters: Through comprehensive tracking, we can pinpoint the best-per-
forming hyperparameters throughout the entire experiment, enabling us to refine and enhance 
our models effectively. 

• Analyze Learning Progress Over Time: Continuous monitoring of learning experiments facili-
tates the comparison of results over time, revealing trends and progress. 

The presence of this functionality not only opens the potential for transferring learning results between 
different timeframes and various learning agents but also enables domain experts to engage in in-depth 
analysis of the learning outcomes. Additionally, it offers the capacity to reproduce learning experiments 
when further analysis or validation is required, contributing to the robustness and transparency of the RL 
process. A suitable framework for such purposes is given by MLFlow [13] illustrated in Figure 4. Essen-
tially, MLFlow provides a framework for logging the learning experiments, both, the parameter in a struc-
tured database (here SQL-Database), and the created model in a separate database suited for storing 
files. 
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Figure 5: Data Management and ASIMOV Solution 

 
Data Management Platform: Furthermore, to optimize the utility of ASIMOV's solution, it proves advan-
tageous to establish a comprehensive management and documentation framework that extends beyond 
the training phase and encompasses the data management aspect as well. This holistic approach en-
sures that the RL solution is seamlessly integrated into the entire data lifecycle, covering further critical 
stages such as data preprocessing, ingestion, curation, discovery, and subsequent utilization across a 
spectrum of analytical applications. 
When the RL solution is intricately woven into the data management system, it stands to benefit from 
enhanced database query accuracy and performance. Moreover, as the foundational data platforms 
evolve to better support emerging initiatives, such as providing direct compatibility with tools like Jupyter 
notebooks, it becomes feasible to facilitate the development of AI-driven applications and the creation of 
further intricate data models. 
As for the specific requirements in the realm of data management: 

• Rapid Application Development: There's a need for expeditious application creation based on 
the available data, with the added capability to design user interfaces for no-code deployment of 
ASIMOV's solution. This streamlines the process of building and deploying applications that lev-
erage the data effectively. 

• Hierarchical Data Labeling (Facets): It's advantageous to have the ability to assign hierarchical 
labels to the data. This hierarchical labeling system facilitates structured organization and cate-
gorization of data, making it easier to access and utilize effectively. Such labels can be seen as 
facets of the data. Furthermore, this label can be also used for realizing the component data 
interface replacing folders allowing flexibility in handling. 

• Integration with Applications: The data management system should seamlessly integrate with 
various applications, allowing for a cohesive connection between data and applications, i.e., 
based on the assigned labels. This integration enhances the accessibility and utility of ASIMOV's 
solution within the broader ecosystem. 

By fulfilling these data management requirements, ASIMOV's solution can unlock its full potential, ena-
bling efficient application development, structured data organization, and seamless integration with ana-
lytical tools and models. 
 
Further Requirements for Solution Optimization 
 
Parallelization Concepts and Advanced Resource Management for the Solution Creation and Op-
eration: If additional performance gain is needed in term of execution speed in the training. 
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and operation of RL solution, one can make use of parallelization. The first step to be taken for this is the 
division of the solution into smaller components which is one the first requirements for the solution archi-
tecture. Then parallelized processing can be realized as already discussed previously by queueing archi-
tecture. Besides the processing paradigm, we require efficient processing suitable resource management 
which e.g. organize the components and assign resources to them. Such a resource management should 
ideally fulfill the following properties:  

• Scalability: The resource manager's primary role is to facilitate the effortless scaling of applica-
tions, either up or down, as the situation demands. This can be achieved by dynamically adding 
or removing resources for the respective components when necessary. Such adaptability ena-
bles the solution to autonomously respond to fluctuations in demand, guaranteeing its capability 
to efficiently handle substantial workloads and datasets. 

• High availability: The resource manager should possess the capability to automatically maintain 
high availability for applications. This is achieved by proficiently scheduling task execution con-
tainers across numerous computational nodes within a computing cluster and swiftly substituting 
any failed executing containers. This proactive approach serves to prevent downtime and as-
sures that applications remain continuously accessible to users. 

• Improved resource utilization: The resource manager should possess the capability to auton-
omously arrange task scheduling in accordance with the currently available computational re-
sources. This proactive allocation strategy contributes to enhanced resource utilization while min-
imizing wastage. Consequently, it not only leads to cost reduction but also enhances the overall 
efficiency of applications. 

• Easy deployment, updates, and version control: The resource manager should streamline 
the deployment and updating of applications through the adoption of a declarative configuration 
approach. This empowers developers to articulate their application's desired state, and the re-
source manager will automatically align the actual state with this specification. Additionally, it is 
essential to incorporate version control functionality within the resource manager, facilitating a 
comprehensive understanding of its configuration and simplifying deployment across the consor-
tium's member environments. 

 
Parallelization Concept for Handling Big Data Analysis: When dealing with the analysis of Big Data 
in the context of RL solutions for UUV, it's crucial to acknowledge that a substantial amount of data will 
be generated and necessitates thorough analysis and validation. Furthermore, users of the ASIMOV so-
lution for UUVs may want to utilize the processed data for various purposes, including integration with 
other systems. To efficiently manage this task, it becomes essential to explore strategies for data han-
dling, and one promising avenue is the adoption of parallelization techniques. However, it's important to 
recognize that implementing parallelization methods requires data to be structured in a specific format, 
which introduces a certain time cost that must be factored into the overall cost and benefit analysis of the 
parallelization solution. At present, the state-of-the-art approach in this regard is the utilization of Spark, 
which necessitates data to be presented in the Parquet format. For even swifter data processing in the 
automotive use case, an alternative option involves transforming the data into the ASAM ODS format. 
This can lead to significantly enhanced processing speed and efficiency. 
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Summary 
 
We summarized the requirements given above in this table: 
 
Table 3: Requirements Use Case UUV 

RID Component Name Type Func-
tional? 

Requirement description Priority 

Rq_ 
UUV_1_01  

Infrastructure Containerization 
of Components 

Appli-
cation 

Func Solution is realized as containerized compo-
nents. Specific components in the first step: 
Feature Extraction, Scenario Generator, 
Simulation, and Reinforcement Learning. 

H 

Rq_ 
UUV_1_02 

Infrastructure Ordering and Or-
ganization of the 
Components 

Appli-
cation 

Func The components are well-ordered accord-
ing to the specified workflow. In the first step 
each component triggers after the comple-
tion of its task the subsequent component. 
In the next prototype, queueing infrastruc-
ture might be realized instead the subse-
quent trigger structure. 

H 

Rq_ 
UUV_1_03 

Infrastructure Data Infrastruc-
ture 

Appli-
cation 

Func Database structure for the interaction be-
tween the components should be well-de-
fined. Access right to the databases should 
be provided regarding to the necessity 

H 

Rq_ 
UUV_1_04 

Infrastructure Task Status Appli-
cation 

Func Every task done by the components is la-
belled by the corresponding status. Status 
should reflect whether the task is initialized, 
running, failed, or succeeded. 

H 

Rq_ 
UUV_1_05 

Infrastructure UI Appli-
cation 

Non-Func Learning process can be controlled and ad-
justed by user via UI in a no-code environ-
ment. 

M 

Rq_ 
UUV_1_06 

Infrastructure Framework for RL 
Logging 

Log-
ging 

Non-Func Framework for documenting the learning 
process should be given. The Framework 
should be able to store RL model and fur-
ther information created in the training step. 
Moreover, the information should be retriev-
able and ergonomic possibilites to analyze 
the generated data should be given. 

M 

Rq_ 
UUV_1_07 

Infrastructure Logging Log-
ging 

Non-Func  Every parameter set and RL input will be 
saved in the storage platform for tracking.  

H  

Rq_ 
UUV_1_08 

Infrastructure Data Manage-
ment Platform 

Appli-
cation 

Non-Func A platform which allows the interaction of 
user with the data arises in the ASIMOVs 
solution, e.g., for analysis and validation 
purposes 

M 

Rq_ 
UUV_1_09 

Infrastructure Data Availability Data 
Stor-
age 

Func All relevant datasets generated will be pub-
lished and hosted at an available location 
for partners.   
When the site is available also renaming of 
files in a more coherent manner will be pos-
sible too.  

M 

Rq_UUV_2_
01  

RL-interface RL-input Re-
ward/S
tate 

Func  The Inputs for the RL agent come out of the 
Feature Engineering Component, 
which provides information about the ob-
served crticality of the scenario. 

H  

Rq_UUV_ 
2_02  

RL-interface RL-input Re-
ward/S
tate 

Func  The inputs must be normalized to improve 
learning of the Agent. 

 H 

Rq_ 
UUV_2_03  

RL-interface  Dimension of 
States 

State Func  The outputs contain discrete and continu-
ous parameter values.  

H  

Rq_ 
UUV_2_04  

RL-interface  Output Feasibility Output Func  The outputs must be in the respective range 
for each parameter.  

H  

Rq_ 
UUV_2_05 

RL-interface State Definition State Func The state shall consist of criticality metrics 
(Rq_UUV_3_05), and basic vehicle config-
urations (Rq_UUV_3_06). 

H 

Rq_ 
UUV_2_06 

RL-interface 
 

State Transition State 
 

Func In each iteration, the criticality values of the 
new scenario are created. 

M 

Rq_ 
UUV_2_07 

RL-interface 
 

Criticality Values State 
 

Non-Func If multiple critical values are available, it 
must be ensured that each of the critical val-
ues represents one unique criticality metric. 
The specific critical values are given by the 
outcome of FE workgroup [5]. 

M 
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RID Component Name Type Func-
tional? 

Requirement description Priority 

Rq_ 
UUV_2_08 

RL-interface Basic Vehicle 
Configurations 

State Non-Func Basic vehicle configurations are used to 
give the RLA some basic knowledge about 
the vehicle, e.g., vehicle weight. This infor-
mation shall be as restricted as possible.  

H 

Rq_ 
UUV_2_09 

RL-interface Initial State State Func The first state is blank (values = 0) except 
basic vehicle configurations. 

H 

Rq_ 
UUV_2_10 

RL-interface Episodicity Train-
ing 

Non-Func The application of the RLA is structured in 
episodes. The characteristics of the vehicle 
change slightly, but we stay inside the oper-
ational design domain (ODD. 

H 

Rq_ 
UUV_2_11 

RL-interface 
 

Complex Environ-
ment 

Train-
ing 

Non-Func We need to assume that the system the 
RLA shall optimize is highly complex. Thus, 
the algorithm needs to be capable to deal 
with this level of complexity. 

H 

Rq_ 
UUV_2_12 
 

RL-interface 
 

Distributed Learn-
ing 

Train-
ing 

Non-Func Ideally, the algorithm is capable of being 
trained in parallel. 

M 

Rq_ 
UUV_2_13 
 

RL-Interface Input Train-
ing 

Func The RLA shall be able to take one numerical 
variable as the reward. 
 

H 

Rq_ 
UUV_2_14 

RL-Interface Weighted Sum Train-
ing 

Func The reward shall be a weighted sum out of 
all KPIs. 

H 

Rq_ 
UUV_2_15 
 

RL-Interface KPIs Train-
ing 

Func The KPIs are aligned with the goal of provid-
ing safety critical scenarios and diverse en-
vironment variations. 

H 

Rq_ 
UUV_2_16 

RL-Interface KPI and driving 
function 

Train-
ing 

Func The set of KPIs should include metrics 
linked with the driving function of the UUV 

H 

Rq_ 
UUV_3_01  

RL-output   Output Func  The RL outputs parameters for the scenario 
generation, which afterwards get translated 
into the ASAM OpenSCENARIO for-
mat. Additionally, some parameters of the 
campus environment are variated  

H  

Rq_ 
UUV_3_02 

RL-Output One Action – One 
Scenario 

Output Func In the first step, one action of the RLA shall 
be the input for one scenario. 
 

H 

Rq_ 
UUV_3_03 

RL-Output 
 

Systematic Sce-
nario Errors 

Output Func The possible actions shall be designed in 
such a way that any parameter combination 
produces a valid scenario. 

H 

Rq_ 
UUV_3_04 

RL-Output 
 

Output Parame-
ters 

Output Non-Func In the first step the output parameters shall 
be static environment parameters, e.g., time 
of day. In the later step the output parame-
ters shall include dynamic environment pa-
rameter. 

H 

Rq_ 
UUV_3_05 

RL-Output 
 

Output Values Output Func The actions shall support both discrete and 
continuous values. 

H 

Rq_ 
UUV_4_01 

Other Re-
quirements 

KPI-Logging Diag-
nostics 

Non-Func The implementation should be capable of 
logging the main KPIs to track training pro-
gress. 

M 

Rq_ 
UUV_4_02 

Other Re-
quirements 

Language Imple-
menta-
tion 

Non-Func The RLA shall be written in python to sup-
port the latest RL advancements. 

M 

Rq_ 
UUV_4_03 

Other Re-
quirements 

First Step I/O Imple-
menta-
tion 

Non-Func The RLA shall store a file with its actions 
and receive the state and reward as files in 
a folder as well. 

H 

Rq_ 
UUV_4_04 

Other Re-
quirements 

Data Efficiency Imple-
menta-
tion 

Non-Func The algorithm should be data efficient. M 

 

6.2.2 Environment Interface for UUV 

In contrast to the discussions made in Subsubsection 6.2.1 regarding the scenario generation for UUV, 
here we address a more basic question concerning the requirements of AI training data used for autono-
mous driving, i.e. how realistic artificially derived training data has to be even in small details. 
 
Background: Autonomous driving functions not only need to be able to identify and classify objects 
around the ego-vehicle, but to identify traffic situations, so called scenarios, and assess if the ego-vehicle 
needs to react. A typical scenario is a cut-in, e.g. on a highway with several lanes in one direction: A 
faster car takes over the ego-vehicle and cuts-in on the ego vehicles lane. Already here several sub 
scenarios are possible: the other car cuts-in too close, or breaks during the cut-in, one, two or three other 
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vehicles are present and interact, the weather is rainy or windy, the street is dry, wet or covered with 
leaves, the scenario occurs in Germany or the United States, which have different traffics laws, or in the 
United Kingdom, where vehicles drive on the left not the right side of the road.  
It becomes obvious that there are thousands, if not millions, of scenarios AI based driving functions need 
to be capable to recognize. Collecting all this data for training has been proven highly inefficient. Espe-
cially since some scenarios are relevant, but do not occur often. 
A possible solution is to generate scenario data by utilizing digital twins, consisting of an environment 
simulation, a simulation of the used sensor, and, for validation purposes, the object perception software 
itself. 
 
Drawback of Carla Sensor Model: There are several tools available to simulate both and that can 
stream raw data to the perception software. One is Carla, which is used in the described UUV use case 
in Scenario Generation for Digital Twin based UUV-Tests Scenario Generation for Digital Twin based 
UUV-Tests. However, each setup does not include all factors needed for a detailed digital twin of the 
components. E.g., Carla uses ray-casting to determine what a specific sensor detects of the environment. 
Unlike ray-tracing the technique does not consider multiple reflections, therefore the result will be a sim-
pler representation of reality. Implementing other factors, such as the exact roughness of the road to rock 
car and sensor as in the physical system, would consume a considerate number of resources (collecting 
the information, building the model, running the model). Resulting in the question, if such a level of detail 
can be achieved economically. But also, if it is needed. Except for corner cases, most of the mentioned 
perturbations would only cause a minimal variation in the data stream. 
 
Requirement for more Sophisticated Environment Sensor (LiDAR): This use case evaluates the 
question how detailed a digital twin environment for LiDAR sensors must be, one of the integrals sensor 
types used to realize autonomous driving, to produce good enough scenario data for AI training without 
consuming to many resources. LiDAR is an abbreviation for Light Detecting and Ranging. Laser beams 
of a specific wavelength are emitted by the LiDAR head. These are reflected by objects in the environment 
and finally propagate to the detector. Because the speed of light is constant for every given medium and 
the time of the emission is known, the system can calculate for every detected burst of light where it got 
reflected1. Therefore, each frame of information the sensor issues is a three-dimensional cloud of reflec-
tive spots of different intensities, called point cloud, see Figure 6. The result is in principle not only influ-
enced by the position of objects that caused the reflections but also by their reflectivity in the wavelength 
range of the laser, the local air density, weather (especially fog, but also rain), vibrations perturbing the 
measurement, e.g. smaller and larger road bumps that rock the vehicle together with the vehicle suspen-
sion, possible multi-reflections and other factors. A precise representation of the physical system would 
have to regard all these factors. But is such a detailed simulation needed? 

 

 
1 The distance is calculated based on the time of flight, the detection of the angular orientation of the 
reflective spot depends on the LiDAR type. 
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Figure 6: LiDAR 3D Point cloud of an Autobahn scene. The scene was analyzed by a perception software. Identi-

fied objects have been marked with bounding boxes, which have been annotated with additional information (class, 
e.g. car, and speed). 

Figure 7 shows a LiDAR image of a target plate (usually used for calibration) generated in CARLA (left) 
and overlayed with data from the measurement of the physical system in a lab with a fixed LiDAR position 
is shown.  The basic properties of the physical LiDAR have been reproduced, additionally a 0.05 per cent 
of noise where added. Still the resulting points reflected from the target appear very ordered and with a 
continuous change in intensity from top to bottom (left). The points of the physical measurement do not 
show such a distinctive intensity change and especially in the top part of the target the pattern is signifi-
cantly disturbed (right). However, the target is well recognizable in both instances. Also, the edge meas-
urements of the target taken in the digital system fit the edges of the target of the physical system well. 
Compared to the absolute dimensions the deviations are large on point level and small on object level.      
  

 
Figure 7: LiDAR Measurement of a Target plate in Carla (left) and overlayed with the measurement in the physical 

system. 
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Because AI-based object perception is based on point groups (shape etc.), therefore on object level, and 
works despite different noise levels on a variation of typical roads and (mild) weather conditions, the 
deviations caused by a simplified framework as CARLA uses it, should not alter the result, i.e., the object 
still gets recognized, classed, and positioned as in the physical system. Of course, for AI training purposes 
the noise level of the digital twin should be of similar type and strength as in the physical counterpart. But 
in a time-dependent data stream, the noise pattern, caused by several factors, appears random, which 
can be easily modelled. 
  
Practices for Sensor Validation: To test this hypothesis, LiangDao designed a hunter/target experiment 
with a physical and digital counterpart. In the physical system, see Figure 8, the target is represented by 
an autonomous shuttle. The hunter is represented by a mobile roadside unit (RSU) consisting of two 
LiDAR and the hard- and software for object detection2. While the shuttle propagates on its course, the 
RSU records its environment. The raw data is analyzed by the object detection, the shuttle gets identified, 
positioned, and tracked. The object data is recorded and saved in an object list.  

 

 
Figure 8: Scheme of physical system part of the LiDAR experiment 

The experiment is then rebuilt and repeated within CARLA. The basic properties of the RSU, especially 
the used LiDAR, the shuttle and the environment are modelled to match the physical counterparts. The 
general steps of the experiment are depicted in Figure 9. In both counterparts the shuttle is identified, 
positioned, and tracked. The digital twin of the LiDAR is positively validated if the shuttle gets identified 
and the position of both shuttles (physical and digital) is matched within an error margin given by the 
intrinsic measurement error of the physical system. At the current stage, the experiment is set up and 
first runs have been carried out. These indicate that in principle a digital twin of LiDAR sensor and envi-
ronment with reduced fidelity and properties produces usable data for LiDAR perception software, which 
in principle can be used for training purposes. Therefore, at least for some scenarios the used tools can 
be used to generate training data. For a more precise evaluation additional results are needed. 
 

 
2 The object perception of the RSU is based on the autonomous driving function perception software. 
The results can be translated. However, using the mobile RSU allows a greater freedom positioning.   
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Figure 9:  Flow diagram of the LiDAR validation experiment 

The development of the use case has highlighted several points. Data derived from digital twins can be 
used for AI training purposes, if gathering data in the physical counterpart is too complex. To ensure 
efficient use of resources, the number of reproduced properties and their fidelity can be reduced. How-
ever, a very good understanding of the requirements is needed. In case of the described use case the 
reproducibility on point group level, not on single point level. Also, the limitations of the digital twin need 
to be regarded. For example, in case of this use case the limitations of CARLA concerning ray-casting: 
certain weather conditions with a drastic change in reflective properties, such as fog or heavy rain and 
snow, will not lead to realistic results. Also, corner cases, e.g., distant objects represented only by a small 
group of points, where the noise level on point level becomes critical, should be avoided. 
If such limitations are kept in mind, using data derived from digital twins for AI training purposes can 
speed up the process, reduce costs, and can even be used to reduce bias that may be introduced by 
training data gathered in the physical world.      

7 Conclusion and Future Work 
This document outlines the present progress of our efforts in defining the prerequisites for DT-based RL 
learning. To outline these prerequisites, we initially offer a high-level perspective on Asimov's solution 
and then proceed to specify requirements for individual use cases. 
This document is to be considered as a condensed summary of the prerequisites featured in the ASIMOV 
project's various deliverables. Hence, we advise diligent readers to refer to the published deliverables for 
more comprehensive information.  
Requirements form an integral part of an ongoing project and are intended to be incorporated into most 
feature deliverables delivered by the ASIMOV consortium. 

8 Terms, Abbreviations and Definitions 
 
Table 5 - Terms, Abbreviations and Definitions 

ABBREVIATION  EXPLANATION  
ACC  Active Cruise Control  
AD  Autonomous Driving  
AEB  Autonomous Emergency Braking  
AI  Artificial Intelligence  
ASAM Association for Standardization of Automation and Measuring Systems 
DT  Digital Twin  
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EM  Electron Microscopy  
KPI  Key Performance Indicator  
LKA  Lane Keep Assist  
LiDAR Light Detection and Ranging 
MDP Markov Decision Process 
RL Reinforcement Learning 
RSU Mobile Roadside Unit 
SEM  Scanning Electron Microscopy  
STEM  Scanning Transmission Electron Microscopy  
TEM  Transmission Electron Microscopy  
UUV  Unmanned Utility Vehicle  
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