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Abstract 
This document describes fundamental considerations towards a process for identification of relevant 

parameters for a digital twin. The process includes identifying parameters in the real-world product 

(physical twin) which are relevant for its digital twin given a specific use case and describing methods to 

acquire and use these parameters. Despite its importance for the creation of a DT, there is little knowledge 

about how a parameter identification process must be structured to identify relevant parameters. When 

developing such a process, solutions must be found for several challenges. On the one hand, it must be 

determined at which point in the development process methods for identifying relevant parameters can 

be applied.  On the other hand, after all the relevant parameters have been identified, the digital twin that 

is finally produced must possess certain quality characteristics. The two most crucial quality 

characteristics that have been identified are accuracy and execution time.  Maximizing both of these 

characteristics typically poses a challenge. Parameter combinations must be found that lead to a digital 

model that satisfies all these quality characteristics equally. The document can be used as an introduction 

to the subject of identification of relevant parameters for a DT. 
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1 Introduction 

 
A digital twin (DT) can be defined as a virtual duplicate of a system built from a fusion of models and data 
[1]. Depending on the requirements of a DT and the system it shall represent, it can include logic, control, 
sub-DTs and adaptation capabilities (see [2]). Today, DTs are an important part of product development 
at different stages of the product life cycle [1]. Among other benefits, DTs help to make complex and 
expensive processes feasible.  
 
In the context of ASIMOV, the DT serves as the data source for training an AI-based agent. The trained 
agent is then employed to optimize the configuration of the actual system by adjusting the relevant 
parameters identified for optimization purposes. 
 
The DT should represent the real system (object/process) as comprehensively and realistically as 
possible. Therefore, the model accuracy is a crucial part of the DT development.  
Another aspect is the training of the AI-based agent using a DT. For a reliable result, a high number of 
training runs is required. To keep the total training time as low as possible, a single run should be 
significantly faster than real time as long as parallelization is not possible. 
Moreover, a DT often represents a complex system, where the status of the system is dynamic and thus 
its DT also needs to change its configuration over time. This means that the DT should be updated in 
real-time using the input from the real system, and, vice versa, the real-time control on the real system 
should be possible by the output from the DT. Therefore, an additional requirement on DT is its execution 
efficiency. In many practical cases, there is a trade-off between accuracy and execution efficiency, 
keeping in mind that both must meet the system's requirements. 
  
A DT should be robust, comprehensible, capable of generating reproducible and accurate data, as well 
as being efficient in its execution. These characteristics should be fulfilled within the scope of the 
requirements for which the DT is designed. This document mainly focuses on the last two quality 
characteristics. 
  
When creating a digital model, parameters are determined which can be used to control the model. To 
reduce the complexity of the model, it is advantageous to use the smallest possible number of parameters 
which are required to produce a valid model. The minimal number of parameters that still meet the 
requirements of the use cases is referred to as relevant. One objective when creating a model is to 
determine the relevant parameters. 
For the determination of a model, methods from system identification can be used. One of these methods 
is parameter estimation. The aim of this method is to determine a model from the data of the system 
boundaries. The system boundary is defined as the set of inputs, outputs and disturbances acting on the 
boundary of a system. 
  
 
The document is structured as follows:  

- What we understand as “parameters” is described in chapter 2 in more detail. This includes both 
the parameters that can control a system and those that a system outputs. In addition, it is defined 
when parameters are considered relevant. 

 
- Chapter 3 provides an overview of the state of the art. The section on parameter identification 

begins by emphasizing the relevance of system boundaries for the modelling process. This is 
followed by a detailed examination of modelling through system identification and parameter 
estimation, with a focus on structure and data. Different model structures used in the modelling 
process are discussed in detail. The last section is dedicated to optimization methods. In addition, 
the trade-off between accuracy and execution efficiency in optimization is discussed. 

  
- Chapter 4  contains the current process of parameter identification for the two use cases in order 

to set a base line. The current process for identification is based on the knowledge of experts 
and does not follow any generic process. The parameters identified here can be found in the 
Appendix. 
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- Chapter 5 describes at which point in the product development process methods for the 
identification of parameters for a DT can be applied. The parameter identification process 
includes methods for system identification (e.g. model selection, data-driven models) and 
methods for identifying all possible parameters of a known model and subsequently determining 
the relevant parameters for the purpose for which the DT is built.  
In addition, the process covers methods that optimize the model in terms of execution efficiency. 
This includes the identification of the most important relevant parameters (e.g. sensitivity 
analysis) and methods to generate a surrogate model. Finally, the process describes which topics 
should be addressed or considered in the future. The process has been evaluated during the 
project, documented in this deliverable. 
 

- Chapter 6 discusses specific topics for the EM and UUV use cases. In the STEM section, which 

relates to the EM use case, the focus is on fine-tuning of parameters to increase the precision of 

the microscopy and on parameter identifiability problems. The second part focuses on research 

related to the UUV use case. Firstly, the influence of the level of detail of the objects in the 3D 

environment on the criticality metrics is analyzed. In addition, the development of a DT sensor is 

analyzed in terms of process. Finally, the validation of a LiDAR is analyzed as an example of 

parameter identification. 
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2 Definitions 

As mentioned in the introduction, the goal of this task is to identify relevant parameters for a valid DT. 
The word “parameter” is a broad term which needs further explanation. In this section, the word 
“parameter” is clarified in the context of DT development within the ASIMOV project. 
 
Parametrizing is a mechanism to express the variation of a function, process, or system (using a value). 
A parameter has a name and a value (and optionally a unit). “Parameter” as a word has several definitions 
but not an explicit one in this context. INCOSE for example, speaks of “critical system parameters such 
as weight, speed, accuracy, reliability, and cost” [3]. 
 
In DT development (WP2), where a cyber-physical system is modelled, several types of parameters can 
be distinguished. The goal of DT development is to represent the system as accurately as possible, while 
keeping the development process as efficient as possible. This is called ‘fit-for-purpose’. In order to 
achieve this goal, all relevant parameters that are important for the representation need to be identified. 
To explain which parameters are covered in this task,  Figure 1 is presented, where the system is placed 
in the structure used in the ASIMOV project. The way the system is described with input, output and 
disturbances, is a common method in control engineering, see e.g. [4]. The system (or its DT) is 
connected to an agent, with in-between pre- and post-processing components (pre- and post-processing 
are covered in T2.2). The agent determines which optimization action needs to be executed based on 
the current state. The development of the agent is covered in WP3. The definition of the abbreviations 
used in the figure (𝑢, 𝑑, 𝑐, 𝑦, ℎ, 𝑅, 𝑆, 𝐴) is as follows: 

• 𝒖 - Control input 
The control input u denotes all input parameters that can be changed by the agent (or  
operator), also called ‘knobs’ and their values ‘knob positions’. 

• d - Disturbances  
Disturbances are system inputs that change over time, but cannot be influenced by the agent or 
operator. (e.g., environmental conditions) 

• 𝒄 - System parameter 
Parameters that describe the system, which influence the behavior from the control input and  
disturbances to the output (e.g., masses of components in a mechanical system). 

• 𝒚 - Output 
The outputs are all available signals from the system. (e.g., sensor values) 

• 𝒉 - Hyperparameters 
Hyperparameters of the agent. 

• 𝑹,  𝑺,  𝑨 - Reward, State, and Action 
Nomenclature in reinforcement learning for the available information to the agent (State), the 
performance of the previous action(s) (Reward), and the action provided by the agent (Action) 
[5]. 

 
The relevant types of parameters in DT development are the control input, output, disturbances and 
system parameters (visualized in red in Figure 1). The purpose of T2.1 is to develop methods to identify 
them. Outputs are included in this list, since they are input for the AI system. The combination of DT and 
agent has a purpose: optimization, see Figure 1. Therefore the purpose of the combination determines 
which parameters are relevant for optimization.  
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Figure 1 AI-training architecture with the parameters of interest for this document marked in red. 

 
The objectives of T2.1 are visualized in Figure 2. At start there are many parameters, which can be 
everything one can imagine that can influence the system. Only a subset of these parameters is 
considered as relevant. What the relevant parameters exactly are depends on the design goal of the DT. 
Therefore, the relevant parameters are an unbounded subset within the complete parameter space. What 
is bounded is the subset of candidate parameters. Candidate parameters are an initial list of all the 
parameters the developer can come up with. It is however still unclear whether these parameters are 
relevant or not. The goal of T2.1 is to identify the relevant parameters as well as possible, without 
containing irrelevant parameters. 
 
 

 

 
Figure 2 Parameter sets, where the goal of T2.1 is to identify all the relevant parameters. 

Besides the parameters mentioned in Figure 1, there is a set of parameters not directly related to the 
properties of the physical system. Amongst this category are the hyperparameters ℎ of the (configuration 
parameters specific to the tuning of the agent’s behavior) or hyperparameters of the DT (e.g. the step 
size of the simulation). We will not explore this set of parameters further in this document as they do not 
map to any physical system parameters. 
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3 State of the art  

3.1 Parameter Identification 
In this section, the state of the art regarding modeling from the perspective of the parameter identification 
process is presented. The majority of the modeling process is detailed in Task 2.3. However, topics like 
data-driven quantification/estimation of parameter values are part of the parameter identification process, 
hence they will be included here. These topics are part of the larger field of system identification, which 
is also covered in this section. The section starts by detailing the procedure of defining the parameters 
which constitute the system boundaries. Next, some important results in system identification are 
presented which are relevant to WP2 in ASIMOV. 
 

3.1.1 Defining the System Boundary 

The parameter types as established in Figure 1 are an essential first step in the generation of the model. 
The system boundary is defined as the collection of the inputs (u), the outputs (y) and the disturbances 
(d), as these are the parameter types that act on the boundary of the system. The system boundary is 
typically used to perform system identification, as this boundary allows for data-driven model estimation. 
Naturally, the primary parameters of a model are the inputs and outputs of the system. A good model 
accurately predicts how the inputs map to the outputs. In the case of a dynamic system, the current output 
is generally dependent on a history of past outputs and inputs. For a static system, the output is only 
dependent on the current input.  
 
Choosing the input/output during the system design: 
Outputs, typically implemented as sensors which provide data to the AI agent, should generally be chosen 

as quantities that can be used to measure the performance of the system or as quantities which have a 

large effect on the correct input, (e.g., in chess) the optimal move choice depends on the current game 

state, so choosing the game state as the system output greatly improves the attainable performance. For 

inputs, choose quantities that allow for manipulation of the performance of the systems through the 

outputs. The choice of input is often limited by physical restrictions. For instance, even though 

transportation through space is the main objective for a car, one cannot directly change the position of 

the car with any input. Instead, we can only manipulate the gas pedal which controls the amount of gas 

being fed into the engine, resulting in more or less torque in the wheels, which in turn results in a change 

in position over time. 

 
The inputs and outputs follow from the design, and thus are already given during the modeling phase, as 

the system already exists. However, one can still place additional sensors/actuators to obtain more 

outputs or inputs, should the system's performance not be sufficient. Additionally, given a set of inputs 

and outputs, one can analyze which inputs correlate to which outputs using system identification 

techniques. If there are inputs that do not correlate with any outputs or vice-versa, these might not be 

relevant to the system behavior and thus can be removed. 

 
Disturbances (d):  

What signals affect the way the system behaves? How to find what these are? Can we measure the 

disturbances? If they can be measured, this effectively turns them into inputs (u) for the purposes of 

system identification. Getting insight into the disturbances is therefore important, since they could impact 

the system significantly.  

 
System properties (c):  

System properties (physical properties of a system): sizes / weights of components etc. But how can we 

find which ones are relevant? One can use first principles or existing modeling techniques for similar 

systems to obtain a preliminary set of system properties. 
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3.1.2 System Identification 

Given a set of system boundaries, how do we come up with a model? An overview of different methods 

is presented in Figure 3. The basic premise for all is to utilize structure and/or data in order to construct 

models. The structure creates a bias in the model towards behavior which is expected due to prior 

knowledge of the system. The inclusion of data biases the model toward behavior that has been 

experienced and observed. First principles-based modeling is mostly covered in Task 2.3. Instead, this 

section focuses on system identification and more specifically parameter estimation.  

 

 
Figure 3 Options for the modelling process of a system [6].  

 
System identification consists of statistical methods to build models for dynamical systems from 

measured data [7]. Depending on the type of system and the modeling assumptions, different methods 

are needed.  

 

The following system characteristics have an effect on the choice of system identification method: 

 

• Class: Linear vs. nonlinear 

• Dimensionality of the system boundaries: Single-input-single-output (SISO) vs. Multi-input-multi-

output (MIMO) 

• Behavior: Static vs. Dynamic 

 

While these assumptions influence the accuracy of the applied method: 

 

• Type and prevalence of measurement noise 

• Type and prevalence of unmeasured disturbances 

 

System identification focuses on cases where we can make these types of assumptions and 

characterizations in order to use the available data more effectively. One such example is parameter 

estimation. In parameter estimation, we ask ourselves; given a (parametric) model structure, how can we 

fit the model to the available data? This approach is often called grey box system identification, because 

there is uncertainty in the resulting model due to the unknown parameter values, even though the 

structure is fixed. These model structures can be for instance: polynomial, basis function expansion. An 

example of a linear parametrized model structure is given by: 



D2.1 
Identification of relevant parameters modelled in DT 

Non-Confidential 
 

 
 

    

Version Status Date Page 
Version 2.0 Public 2024.05.01 14/62 

 

 

𝑦(𝑡) = 𝑎1𝑦(𝑡 − 𝑇𝑠) + ⋯+ 𝑎𝑛𝑦(𝑡 − 𝑛𝑇𝑠) + 𝑏1𝑢(𝑡 − 𝑇𝑠) + ⋯+ 𝑏𝑚𝑢(𝑡 − 𝑚𝑇𝑠), 

where 𝑇𝑠 is the time in between measured data samples and 𝑎𝑖 ,  ∀𝑖 ∈ {1, … , 𝑛},  𝑏𝑗 ,  ∀𝑗 ∈ {1, … ,𝑚} are the 

unknown parameters. This type of model is called an infinite impulse response (IIR) in which the modeled 

output at time 𝑡 depends linearly on a history of past input and output values [8]. Quantifying the values 

for the parameters 𝑎𝑖 ,  ∀𝑖 ∈ {1, … , 𝑛},  𝑏𝑗 ,  ∀𝑗 ∈ {1, … ,𝑚}  is commonly performed by finding the least 

squares fit to an experimental data set. The presence of disturbances or noise on the measurements is 

then averaged out if the dataset is rich enough. 

 

However, many systems do not fit the model structure of an IIR, such as nonlinear systems. For systems 

in this class, there also exist nonlinear parametrized model structures, but in general nonlinear system 

identification is a much more complicated task. 

 

Alternatively, there is black box system identification in which no prior model structure is assumed. 

3.1.3 Model Structure 

In the modelling process, one of the first steps is selecting the model structure. The model structure 

depends mainly on the knowledge of the system that is already available. All information about the system 

that is available a priori, can simplify the modelling process significantly. The types of model structures 

can be divided into three categories: white-box models, grey-box models, and black-box models, see 

Figure 4 [9]. This division is made based on prior knowledge and physical insight. 

 

White-box models 

A white-box model completely relies on physical insight in the system; there is no data needed to build 

such a model. Another name for these types of models is first-principle models.  The advantage is that 

there are no assumptions in these models, and the model gives therefore very accurate results. The 

disadvantage is that it can be very complicated to make such a model when the system is complex (or 

even impossible).  

 

Grey-box models 

These models rely both on physical insight as well as available data. Examples are physical models 

where the parameters are estimated based on data, or state-space models where the order and structure 

are known, but the matrix-values have to be determined. The advantage is that the estimated unknowns 

are still interpretable. The disadvantage is that this method also can become complicated, if there are lots 

of parameters to be estimated with complex, nonlinear relations. 

 

Black-box models 

When the model only relies on data, and no physical insight is added, it is called a black-box model. 

Black-box models require a flexible model, such that the behavior of the estimated model matches the 

actual system as close as possible. The advantage is that it doesn’t require any prior knowledge, and one 

can make the structure as simple or complicated as desired, depending on the required accuracy. The 

disadvantage is that the model is not interpretable anymore; the parameters have no physical meaning. 
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Figure 4 Different types of model structures [10]. 

 

 
  
3.2 Optimization 
 

Model identification and parameter estimation techniques have been well developed in the past, 
especially for linear systems. For complex systems with non-linear dynamics, where the linear analytical 
and numerical approaches are inadequate, there is a need to develop advanced approaches. 
Besides overcoming the significant non-linearity of the use cases, in ASIMOV we are looking for models 

that not only represent the CPS accurately, but they also need to be efficient enough in favor of facilitating 

their application to train AI with the purpose of optimizing system settings of the real-world counterpart. 

The objective is to formalize how we can optimize the accuracy-efficiency trade-off during the parameter 

identification and the parameter estimation to make a DT of the CPS. The main question in this part is to 

investigate whether the existing methods of parameter identification, and more precisely identifying the 

relevant parameters, can be used or modified such to meet the requirements of developing DT or we 

should come up with new methods. We start by reviewing a number of promising approaches that aim to 

balance the accuracy and execution efficiency level within one model. 

 

Reducing the number of parameters of an existing model can be done in different ways. On one hand, 

the modeler might apply techniques which help to find the most relevant parameters to adjust the original 

model. Such a method is primarily a sensitivity analysis. On the other hand, the field of "surrogate 

modelling" provides Model Reduction (MR) methods [11] which create a new model with a reduced 

number of parameters.  

 

Sensitivity analysis (SA): Sensitivity analysis quantifies the importance of the model’s parameters on 

the behaviour of the system. It is applied to study how uncertainty in a model output is attributed to 

different sources of uncertainty in the model input [12]. Such estimation can be used to find the relevant 

parameters in favour of dimensionality reduction and to ensure the robustness and accuracy of the model 

across the range of inputs. We can use sensitivity analysis results to rank the parameters according to 

their influence on the model output (before optimization), and the impacts of their small changes on the 

key indicators of the optimization that the model is used for (after optimization). The sensitivity analysis 

can be executed in either global or local manner. While local sensitivity analysis assesses the variation 

of model output around a fixed, single point in the parameter space, global sensitivity analysis aims to 

measure the sensitivity of the model output over the entire parameter space. Variance-based sensitivity 

analysis like “Sobol method” [13] is a form of sensitivity analysis that is common in use to identify the 

most impactful parameters (see e.g. [14]). In addition, also more sample-efficient methods should be 

taken into account as well as sampling algorithms. Examples are tree-based techniques which can 

approximate a global sensitivity analysis (see [15]).  

 

Optimization under uncertainty (finding the most relevant uncertain parameters for the system 

optimization): In optimization under uncertainty, although the uncertainties of parameters are not always 

known, but the selection of the relevant uncertain parameters is required. Using the whole set of 

identifiable or partially identifiable parameters results in unnecessary noise in the parameter estimation. 
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Therefore, the subset of identifiable parameters should be reduced such to include the most relevant 

parameters for the optimization objectives. The expected values and variances of the subset parameters 

are explored during the estimation while other parameters are fixed to their expected values. The 

prerequisite of this approach is to take the optimization objective function into account while selecting the 

relevant parameters. Several modelling frameworks have been proposed in the literature for optimization 

under uncertainty, e.g., stochastic programming and fuzzy programming. Generally, a deep 

understanding of problem structure and properties is prerequisite for selecting an applicable algorithm 

[16]. The state-of-the-art algorithm to identify relevant uncertain parameters for optimization purposes, is 

presented by [17]. The algorithm selects a subset of parameters based on the sensitivity analysis, with 

respect to the model accuracy as well as the purpose (user)-defined objective function. After estimating 

the expected values of the identified parameters, the algorithm ranks the uncertain parameters according 

to their linear-dependencies analysis. The parameters within the selected subset with lower 

dependencies will be considered uncertain while fixing the rest of the parameters. 

 

Model Reduction (MR): The model reduction target is to reduce the computational load by generating 

reduced models [11]. These models represent the original system behavior as accurately as possible 

while their simulation remains fast and cheap. Dedicating time and cost to obtain a reduced model in the 

development phase can result in cutting the computational cost down in latter phases enormously. The 

model reduction is realized in different ways, for instance by eliminating the insignificant terms in statistical 

models, or by finding a low-dimensional approximation for a system of ordinary differential equations 

(ODEs). The model reduction techniques are classified into two broad categories: (1) Conceptual 

approaches in the physical-mathematical domain, and (2) Numerical approaches and data driven 

techniques in systems engineering.   

 

In a mathematical context, the complexity of a dynamic system is characterized by the number of its state 

variables which is referred to as the dimension of the state space vector. Model order reduction studies 

properties of dynamical systems in application for reducing their complexity, while preserving the 

character of the input-output relations as closely to the main system as possible [18]. It is necessary to 

keep the reduction procedure computationally efficient, while concurrently preserving the main properties 

of the original system, i.e., the approximation error remains small. 

For instance, [19] introduced a model order reduction such that "the knowledge of a smaller number of 

variables is required to compute and optimize the target variables"(output). They first use spectral 

clustering to create clusters of input variables that are similar to each other. This is done by creating an 

adjacency matrix from which a graph Laplacian is calculated, including eigenvalues and eigenvectors. 

The number of clusters are decided based on the eigenvectors. The clusters are then ranked using a 

“page rank” algorithm. The cluster(s) with the variables that have the highest page rank is the most 

important one. 

 

In machine learning context, the number of input variables and features in data is considered as the 

dimensionality of the learned model. A large number of dimensions in feature space, is likely to result in 

overfit to the training data and decline the performance. Dimensionality reduction, in return, results in 

simpler models with improved generalizability and explainability and higher execution performance. 

Feature selection is one of the most common techniques in this context. It mostly applies scoring or 

statistical methods to select the irrelevant/unimportant/redundant parameters. Specifically for DTs, MR 

methods have been applied in order to improve computational efficiency and is identified as a key 

technology for their development [20]. The authors of [21] show how MR can be applied to DTs in six use 

cases: Virtual sensors, Predictive maintenance, Operation control, Drivetrain analysis, Lifetime analysis, 

and Circuit Simulation. 

 

The model compression techniques are useful to reduce the complexity of ensemble models. These types 

of models are generated by combining multiple other models to represent one original system or process. 

The disadvantage of ensemble models is that they are mostly large and complex, which increases their 

application cost concerning the required memory space and computational power, specifically for real-

time predictions. The model compression techniques are learned to be convenient solution for this issue, 
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such to gain a simpler yet accurate model. For instance, the proposed compression technique by [22] is 

to first train the ensemble model with the original data set, and then train the neural net on this ensemble 

model outcome. The final trained neural net performs similar to the ensemble, and much better than a 

neural net trained with the original training data, but with lower computational cost compared to the 

ensemble model.  

 

During modeling optimization, the parameter space is considered as one of the targets to alter in order to 

reach a higher execution efficiency. Applying MR techniques, for instance, reduces the parameter space 

in such a way that it generates a less complex but accurate model. Apart from that, the field of surrogate 

modelling supplies other techniques that can help us to generate the surrogate model of the CPS without 

necessarily altering the parameter space but changing the structure of the model. In the following we 

present a short excursion to some other means of optimization. 

 

[23] defines surrogate models in general as an “Algebraic approximation fitted to available data points.” 

[24] makes the definition more specific by stating: “[…] surrogate models (also known as metamodels, 

regression models or emulators) […] are mathematically simple models that map or regress the input–

output relationships of a more complex, computationally intensive model.” In other words, given sample 

points generated by the original model which does not meet the execution efficiency requirements, 

methods can be applied to generate a mathematical model which mimics the input-output relationship 

without adopting any knowledge about the inner workings of the system itself. Thus, converting white-

box or grey-box into black-box models. The main goal is to reduce computational demand while losing 

only a little accuracy due to the approximation in order to perform applications where high number of 

samples are required such as optimization, sensitivity analysis or, as in our case, AI training [24]. In order 

to counter the error arising between the original model and the surrogate model, an additional model can 

be put in place which simulates the difference between the two models based on the sample sets [25]. 

[24] performed a literature review on the use of surrogate modelling for the generation of DTs. They list 

25 publications where the surrogate modelling methods have been applied and showcased different 

methods together with the required sampling methods. Examples are Kriging, training neural networks, 

fitting polynomial functions to name a few.  

While the usage of surrogate models is advantageous in many use cases with respect to DTs, [24] points 
out two difficulties that remain. On one hand, the creation of the sample points required for fitting might 
not be feasible and annuls the expected saving of resources. [23] suggests here lower-fidelity simulations 
using e.g., simpler geometry, physics etc. On the other hand, continuous maintenance of those models 
is required since they were created at one point in time and do not evolve as the original model might do. 
 
Surrogate models are often applied in multi-fidelity approaches. A Multi-Fidelity Model (MFM) is a “model 

constructed using the information of multiple models with different levels of accuracy” [23]. They differ 

with respect to two concepts of sub-model relation in MFMs. A Multi-Fidelity Surrogate Model (MFSM) 

where surrogate models are constructed using the information of multiple models with different levels of 

accuracy and Multi-Fidelity Hierarchical Models (MFHM) where the fidelity (or surrogate model) is chosen 

based on a criterion.  

The authors of [26] have used a multi-fidelity approach to estimate the crashworthiness of a bus bumper 

system. It showed that the computational costs were reduced by 33% while the composite objective 

function value deviated 2% from the original high-fidelity optimization alternative. An example for the 

application of this framework close to the application of ASIMOV, is from [27] which have applied a multi-

fidelity framework, thus using multiple versions of surrogate models, to optimize the training of an Artificial 

Neural Network (ANN). Their idea is to dynamically increase the fidelity of the models when needed over 

the course of the training as at the start it is assumed that the AI does not need such accurate results.  

 

A new approach for parameter identification based on Particle Swarm Optimization (PSO) algorithm is 
proposed in [28] for non-linear model of Permanent Magnet Synchronous Motors (PMSM). They provide 
simulation as well as experimental results to validate the effectiveness of their method. The approach is 
developed through finding an efficient model parameter tracking method for PMSM that operates under 
different conditions, and meanwhile avoiding the more complicated model structures, e.g., Finite Element 
Analysis (FEA). The summary of their algorithm is illustrated in Figure 5. 
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Figure 5 PSO based parameter identification block diagram [28] 

 
An identical system input, u, is given to the original system that should be identified and its model. Their 

outputs are input to the performance evaluator component to output the fitness. The calculated fitness is 

then input to PSO based identifier to identify the unknown parameters vector. The identification can be 

applied in both offline and online processes. 

 
In [29], a process is described, which isolates the relevant parameters from the ones with less impact on 

the result. It is based on providing ranges for parameter values based on expert knowledge, where then 

individual calculations are performed with discrete samples of parameter combinations inside the limits 

of their respective ranges. After that, the results are analyzed, in terms of how accurate they show the 

behavior of the real process. By using a Monte-Carlo process, the relevant parameters can then be 

separated from the less important ones. 

  

https://www.researchgate.net/profile/Robert-Spear/publication/236357160_An_Approach_to_the_Preliminary_Analysis_of_Environmental_Systems/links/57a36cfa08aefe6167a599af/An-Approach-to-the-Preliminary-Analysis-of-Environmental-Systems.pdf
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4 Current process in the use cases 

 
In this section, the current process used for the identification of relevant parameters is described for the 
two use cases. The current procedure for identification is purely based on the knowledge of experts. The 
description will be used later to evaluate the generic identification process to be developed here. 

 
4.1 Current identification process - UUV 
 
The first step is to identify the components that are available as physical counterparts. The physical 
parameters of these components can be directly mapped from the real system to the DT. Depending on 
how accurate the DTs need to be, a high-fidelity simulation based on physical models is necessary. 
Should it be more important to provide higher execution efficiency, lumped parameters, that approximate 
the behavior instead of the physics, can also be used for a computationally less intensive model. 
 
Vehicle dynamics models are very mature and therefore the important parameters are already well 
established in the automotive industry. As the goal of the UUV use case is to identify relevant variations 
of traffic scenarios, this section will focus on the parameter identification for the scenario generation. 
 
A traffic scenario as defined in OpenSCENARIO and OpenDRIVE, which are part of the ASAM OpenX 
Standards [30], can be divided into two main parameter blocks. The dynamic part of the scenario 
describes the behavior and interaction of traffic participants. The static part describes elements, such as 
road network, buildings, road signs, etc. 
 
The parameters that will be varied by the Reinforcement Learning agent will modify the static part to find 
critical scenarios that challenge the controlling system. In our case, this includes for example the density 
of trees on the roadside, positioning of parked cars, time of day, etc., which can be seen as control input 
𝑢  and are derived by expert knowledge or plain common sense. These parameters provide the possibility 
to identify the influence of changes in the 3D environment on the vehicles' perception and behavior in a 
given dynamic traffic scenario. 
Time of day as well as the density of trees on the roadside both have a direct impact on the perception 

system of the UUV consisting of LiDAR and camera sensors. Parked vehicles reduce the visibility of road 

markings and other traffic participants such as pedestrians and are therefore important to induce critical 

inputs for the vehicles' decision making. 

 
The dynamic scenario definitions were created based on conventional NCAP scenarios for safety ADAS 
testing [31]. This contains a set of typical critical traffic scenarios, that are used for assessing the safety 
of autonomous driving functions. 
To describe these dynamic scenarios for the UUV use case, the ASAM OpenX Standards are used. They 
provide a large set of parameters to define vehicles' trajectories, initial positions and speeds, as well as 
actions that trigger interactions between traffic participants. As these parameters will not be changed 
during simulation, they can be seen as system parameters 𝑐. 
 
A limited number of parameters can therefore already be used to recreate a typical traffic situation. At the 
start of the traffic scenario, the ego vehicle’s position on a given road network, as well as its orientation 
needs to be defined. Using global coordinates in combination with a continuous heading value is not 
suitable, due to the fact that valid positions are referred to the roads according to the ASAM Standards. 
Instead, meta information from the road network can be used to place the vehicle directly on a valid piece 
of road. This can be achieved by using the individual road and lane IDs, as well as a value s and t, which 
define the longitudinal and lateral offset from the start of this road segment in local coordinates relative 
to the reference line of the lane. An overview can be seen in Figure 6. 



D2.1 
Identification of relevant parameters modelled in DT 

Non-Confidential 
 

 
 

    

Version Status Date Page 
Version 2.0 Public 2024.05.01 20/62 

 

 
Figure 6 Elements of ASAM OpenDRIVE [32] 

 
A vehicle's initial orientation can be directly linked to the allowed direction of the respective road segment. 
Additionally, the starting velocity needs to be defined. This needs to be done for all dynamic traffic 
participants. 
 
The route of every vehicle can be either defined by trajectories, that describe the exact path, or it can be 
defined by selecting waypoints, the vehicle automatically navigates to. 
 
With these parameters in place, the ego vehicle can move through the environment in a well-defined 
manner. Critical traffic situations often require interaction with other traffic participants. Such traffic 
situations can include other vehicles, motorcycles, cyclists, pedestrians, etc. The type of these traffic 
participants needs to be defined in a parameter according to ASAM OpenSCENARIO. Furthermore, these 
traffic participants need their routes defined as well. This can be done in a way similar to the ego vehicle. 
 
To align the movement of other traffic participants to the ego vehicle, actions are used. Actions are 
conditional elements, that measure some value and trigger an instance to do something, when activated.  
Actions are typically activated when reaching a certain relative distance to an object, position or speed to 
induce critical scenarios. The resulting action can include multiple elements, such as a lane or speed 
change. An example would be a scenario where the ego vehicle drives along the street. As soon as it 
reaches a predefined position, it triggers a pedestrian to move on the street which creates a critical 
situation. 
 
 
4.2 Current identification process – STEM 
 

This section describes the parameters for the DT of an electron microscope (EM), which is mainly based 
on the domain expert knowledge. During the ASIMOV project, we may identify that more parameters 
must be considered in our DT to sufficiently represent the physical system for the application of interest. 
On the other hand, we might conclude that some of the parameters can be removed without significant 
consequence for the accuracy of the results.  
 
The DT of an EM consists of several models, each representing a part of a physical EM. This includes 
models for electron source, electron beam condenser system, projection system, camera, and interaction 
of the electron beam with a specimen. Each model includes several parameters. However, to decide 
which parameters are relevant for the DT, an application/goal should first be defined. Depending on the 
application, a few models are selected and combined. Afterwards, the relevant parameters can be 
identified. 
 

The application selected for the ASIMOV project is the aberration correction in a transmission electron 

microscope (TEM) system. Achieving the highest resolution in an electron microscope requires correcting 

aberration of the optical system. The initial focus of the ASIMOV use case is the 1st order aberrations, 

namely, 2-fold astigmatism and defocus (Although we have started with including 2nd order aberrations 

as well in later stages of the project). These aberrations drift very rapidly over time and, therefore, they 
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need to be corrected, for almost every image taken. 2-fold astigmatism and defocus are the control 

parameters for the initial DT of TEM (noted by u in Figure 1).  

 

Additionally, higher order aberrations with small values are added to the simulated data to represent the 

effect of uncertainties in current available aberration correction methods. In other words, when data from 

a physical TEM is collected small values of higher order aberrations, possibly even unclear to the human 

eyes, may be presented, and in response to that the simulated data should also include these variations 

so that the reinforcement learning agent learns about them. Another example of disturbances are camera 

noise and effects of temperature fluctuations in atomic structure of the specimen. These are considered 

as disturbance parameters (noted by d in Figure 1). 

 

In addition to the aberration coefficients, the properties of an electron beam, such as beam energy and 

beam-limiting convergence angle determine the status of the system. We consider these as system 

parameters (noted by c in Figure 1). These parameters largely affect the appearance of the Ronchigram 

images (a type of EM image based on a diffraction pattern, which we use for the aberration estimation), 

while being constant during the time scale of a particular measurement. The difference to the control 

parameters (u) arises from the application, as we are aiming at changing and controlling aberrations (u 

parameters) but not parameters like the beam energy (c parameters) for the chosen application.  

 

Gradually, more computational methods will be added to the DT in order to make it more complete and 

thus more realistic. In each step, depending on the available models in the DT, a set of parameters for 

the numerical algorithms will also be present. However, these parameters do not necessarily have 

physical equivalent in the electron microscope and are considered as internal configuration parameters 

of the DT. We will not target this type of parameter in the identification process of this document. 
 

Figure 7 shows some of the most important parameters of the current EM DT. This green box shows the 
control parameters for the first use case within ASIMOV. 
 

 
Figure 7 Most important parameters of the current EM DT  
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5 Parameter identification process 

This chapter aims to understand where in the entire process of the ASIMOV solution, the identification of 
relevant parameters is done.  
 
5.1 Parameter identification in the context of ASIMOV 
We locate the goals of this task at the beginning of the ASIMOV process. Here, a DT is modeled on the 
basis of a typical system. The purpose is to build a model that can simulate the behavior of the real 
system so that the RL agent can train to react sufficiently correctly to a real system later on after its 
training. In addition, within the DT development process, the identification of parameters is one of the first 
things to be considered. However, due to the iterative process of modelling, topics of T2.1 appear multiple 
times during the process.  
 
One differentiation that needs to be highlighted is with respect to T4.1. While on first sight task T4.1 deals 

with the twinning (see [33]), in other words, finding the correct parameter so that the DT and the system 

are in line with each other, T4.1 evolves more around a continuous validation of the DT during the 

operational phase where the model is not altered in its nature anymore. T2.1 takes place at the beginning 

of the ASIMOV solution where a model is first implemented. 

 

Models are always purpose-built. Thus, the fulfillment of the requirements derived from this purpose is 

crucial (see [34]). Requirements can be categorized in multiple “quality characteristics” as described in 

ISO/IEC 25010 which is concerned with system and software quality models. Due to the nature of the 

system of training an RL agent using a DT, two quality characteristics stand out to be of high importance: 

"Functional Suitability” and “Performance efficiency” and especially their corresponding subcategories 

“Functional Correctness” and “Resource Utilization”. Despite the standardized naming, we adopt the 

wording of [35] naming them “Accuracy” and “Execution efficiency” respectively.  

We define them as follows: 
- Execution efficiency: Given a fixed computer system resource and two models with comparable 

outcomes, the one whose simulation finishes in a smaller amount of time has higher execution 

efficiency. 

- Accuracy: A model with high accuracy possesses little deviation of its output compared to the 

real system with equal inputs. 

Without achieving both execution efficiency and accuracy, the model is not suitable for its purpose of 

providing training data to the RL agent. Interestingly, they possess a fundamental and intuitive trade-off. 

In order to improve accuracy, generally speaking, one needs to do more calculations which decreases 

the execution efficiency. 

 

We acknowledge that the development of a DT consists of multiple parts (data storage, twinning 

infrastructure, …) (see WG architecture [36]) but in the phase prior to the training we locate the task, we 

deal with a “digital model” (see [37]). A digital model is nothing more than a classical model of some 

system with no inherent initial constraints with respect to its execution efficiency capabilities. In classical 

models, securing the accuracy of the model is part of the validation process that is abundantly researched 

already and will be addressed by task 2.5. In the ASIMOV approach, due to the importance of being able 

to train the AI with a reasonable number of resources and the fact that the digital model only needs to be 

so accurate that the RL can find good solutions in the real world, performance is more highly valued than 

in a classical modelling approach. We argue that one cannot model the digital model in a classical way 

focusing on accuracy and assume that they produce a model that fulfils the requirements of quality 

characteristics given by the ASIMOV approach. Methods need to be applied which consider both quality 

characteristics. We cannot assume that execution efficiency is checked during Verification and Validation 

as they evolve around the accuracy of the model w.r.t. the real system according to the literature. 

Oberkampf and Trucano [38] state “Verification and validation (V&V) are the primary means to assess 

the accuracy and reliability of computational simulations.” [35] identifies that “Verification, validation, 

testing, accreditation, certification and credibility assessment activities primarily deal with the 

measurement and assessment of accuracy of models and simulations (M&S). Also [39] notices that “A 
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model is considered valid for a set of experimental conditions if the model’s accuracy is within its 

acceptable range, which is the amount of accuracy required for the model’s intended purpose”. 

This does not mean that methods for evaluating and improving execution efficiency do not exist. In fact, 

a selection of such methods will be shown later in this document as the aim of the task is to collect them 

and test them for the ASIMOV solution over the course of the project as they should be an integral part 

of the development process of the DT.  

 

5.2 Parameter identification during a generic DT development process  
In this task we aim to find methods that can find the best trade-off between the two quality characteristics 

introduced above. Also, the methods applied in the parameter identification process can be divided into 

two fields. We distinguish between Parameter identification and Optimization: 

- Optimization: These methods support the maximization of overlap between the set of candidate 

parameters and the actual relevant parameters (see Figure 2). Simply, by reducing the number 

of input parameters or setting a variable parameter constant, a simplification of the model 

happens since the parameter space is reduced as well as fewer interconnections within the model 

need to be calculated. 

- Parameter identification: These methods support the determination of the value of the given 

parameters. Here we assert the concrete value as the system parameters c and/or the range the 

control inputs u and disturbances d can have. Again, with a tighter range of possible values the 

parameter space is reduced. In addition, when system parameters influence the accuracy and/or 

execution efficiency (e.g. 3D model mesh size), selecting the correct value is paramount. 

 
Similar to the accuracy characteristic, the execution efficiency should be improved and evaluated in 

multiple stages of the DT development process. In order to identify when such methods are applied, a 

flow chart has been developed as a first iteration of realizing a “relevant parameter identification process” 

which can be seen in Figure 8 and includes the major considerations one needs to take while modelling 

a CPS on DT. This implies that the diagram omits some steps of a normal development process while 

adding additional iterations for the optimization with respect to execution efficiency. Therefore, the DT 

developing process can differ from the one of conventional modelling. The use cases showed that not 

every DT’s model is created from the ground up but could also be an existing model, adapted to the 

requirements the DT concept imposes on it. Thus, the first question that may be asked is whether planning 

and modelling can be omitted and the model can be directly tested to see whether it meets the 

requirements. 

If no model exists, the next question is whether sufficient data about the system’s behavior is available. 

If not, first-principle are the only option. First-principle models are based the formalization of internal 

workings of the to-be-modelled artefact and are sometimes also called physics-based models. However, 

if sufficient data is at hand, it is still possible that the system is numerically intractable and cannot be 

expressed via a “simple” input-output function. An example of this is the UUV Use Case where the UUV’s 

reaction within the simulated environment to a given scenario is complex, stochastic and cannot be 

expressed in e.g., differential equations. Here first-principle models are mandatory (or at least need to be 

decomposed into subsystems). Finally, if there is enough data and one is sure that the system is 

numerically intractable, one could prefer and choose to use a hybrid modelling approach instead of a fully 

data driven model. Reasons could be increased explainability and accuracy as it combines the 

advantages of first-principle and data-driven approaches. Both options produce a model where relevant 

parameters and their values can be extracted from data. 

 With the models specified, either built on existing models or using data-driven/first-principle, the DT 

development proceeds within a validation and optimization loop. The validation asks two questions: (I) 

“Is the model accurate enough?” and (II) “Is the model fast enough?” If both questions can be answered 

positively, the development for the DT’s model is done. 

If the model is not performant enough, it can be optimized. Here one can apply methods again which are 

concerned with “finding relevant parameters”. On one hand, the model can be tweaked by applying 

methods like sensitivity analysis to find parameters that have small impact on the variance of the output. 

On the other hand, methods for creating surrogate models of the existing model can be applied.  
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After the model optimization, it has to be checked whether the model is still accurate enough. This 

assumes that optimization is always a trade-off between the accuracy of the model and the time of 

simulation. If the model is not accurate enough there are three options: either the optimization is redone, 

the discrepancy between the model and the actual system is modelled, or the entire model needs to be 

reassessed. If the model is accurate enough, the developer would then go on to check if it is as performant 

as needed, and the cycle continues. 

 

 
 

Figure 8 Process diagram for developing a DT highlighting the steps where relevant parameters are determined. 

 

In Figure 8 we have primarily identified two stages of the development process where methods of “finding 

relevant parameters” can be applied. On one hand, the first stage is the application of methods that can 

be done during the modelling prior to integration. In this case, the methods are applied and estimate the 

execution efficiency, thus shaping modelling decisions. The second stage is after the model or sub-
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model(s) is implemented. Here methods are applied that are capable of identifying points of improvement. 

This is summarized in Figure 9. 

 

 
Figure 9 Condensed diagram of phases for finding relevant parameters (Based on DoD (1996) in [35]) 

 

 

The flow chart in Figure 8 highlights those methods that need to be considered for all three natures of 

models, physics-based, data-driven and hybrid models and also shows that there is an iterative process 

between operational validation and optimization or modelling. As explained above, validation is checking 

whether the model meets the quality characteristics for its intended use while optimization and the 

modelling improve accuracy and execution efficiency. 

  

Since the work in this task revolves around the definition of “relevant” which is tightly linked to the validity 

of the DT, the final “parameter identification process” must be aligned with the validation process. Thus, 

close cooperation with T2.5 will be necessary. Central will be how and when the methods to improve 

execution efficiency can be applied and how and when they are evaluated. In addition, existing and 

possibly new methods to improve a DT’s execution efficiency will be tested. A selection of these methods 

from the State of the Art can be found in the following sections. 
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5.3 Adaptation Model 
The parameter identification process also requires a deep understanding of how certain parameters of 
the model can be estimated beforehand and which parameters might require data from a real system to 
be sufficiently selected. This is especially true for hybrid models, where parts of the model are designed 
with a first-principal model in mind, while others are then refined by using real datasets. 

 
Figure 10 Adaptation Model 

 
The idea of the adaptation model has been introduced in [2]. It is depicted in Figure 10 In short, the idea 
is that this adaptation model is the main differentiating factor between a digital model and a digital twin. 
It allows the DT to adapt its behavior, based on inputs of the physical twin. The adaptation model is 
hereby only the part of the model, that actually changes depending on physical twin feedback. The 
remaining model then only describes behavior that is not affected by physical twin feedback. 
 
This leads to the fact that two main categories of parameters can be distinguished. 

- Parameters that have a constant value 
- Parameters that change value depending on PT feedback. 

 
When building a model, it is important to identify these categories for each parameter. Parameters that 
depend on PT feedback are not completely free to choose by the adaptation model, however. It might be 
that a certain plausible range or distribution for values can be provided. 
 
Examples for parameters that have a constant value are generally the ones that can be easily measured 
beforehand. Such parameters could be the suspension geometry or the wheelbase of a vehicle. 
Parameters that could be subject to value changes during operation might be the mass of the vehicle. 
There might be a typical range for that, but each specific vehicle will, also depending on the number and 
weight of passengers and/or luggage, have a different mass. 
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6 Use cases specific 

This section addresses topic-specific aspects for the STEM and UUV use cases. 
 
6.1 STEM 
This section covers topics related to the STEM use case. The “Parameter Tuning” section explains how 
to determine the optimal configurations of various parameters. The “Parameter Identifiability Problem” 
section addresses the difficulties that can occur during parameter identification. 

6.1.1 Parameter tunning 

The TEM use case aims at aberration correction using electron diffraction patterns (CBED, a.k.a. 
Ronchigram). Naturally, the control parameters are aberrations, but in addition there are system 
parameters, such as electron energy and aperture size which remain relatively fixed during an 
experiment. 
Figure 11 demonstrates a high-level view of the connections between the digital twin (DT) and the real 
system. The requested input parameters by a TEM user (either directly or through an application of 
interest) are not necessarily the inputs that can be directly used in the real physical system or in the DT 
models. Therefore, there is a translation layer in between. The translated input parameters then are 
passed to both the real system and the DT. 
Although the digital twin core consists only of physics-based models, in order to build an operational 
digital twin the post processing, optimization and control blocks (all blue blocks in Figure 11) are also 
crucial. The output of both DT and the real system are passed to the post-processing block where a 
model, which can vary in complexity, performs a type of feature reduction, e.g., generating a scaler. 
Subsequently, the optimization model uses the post-processed outputs to find the closest set of 
parameters in DT which resemble the real system. Once the DT output is sufficiently close to the real 
system output a control model will change the input parameters. An example of the control model is a 
trained reinforcement learning model as it is used in the ASIMOV approach. 

 

 
Figure 11 The connections between a real system and it digital twin 
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The optimization step is also known as DT parameter tunning. This step is necessary as the observed 
image (CBED pattern in our use case) has a strong dependency to some of the system or disturbance 
parameters. For example, changing the integration time of acquiring an image on camera affects the 
amplitude of Fourier transform (FT) of the CBED. In DT, there is an equivalent parameter for the expected 
number of electrons per pixels which is incorporated into a camera model. This parameter can be tuned 
to represent the correct integration time in the real system. Figure 12 shows such a relation for the 
measured data on real TEM. The elongation of the ellipse-like shape in FT is an indication of changes in 
the control parameters, i.e., the aberrations, defocus and 2-fold astigmatism. However, a similar effect is 
observed due to different levels of integration time. Therefore, it is important to calibrate the DT camera 
model for this parameter. The parameter tuning can be extended to more parameters and can become 
automated which is also currently under development.  
  

 
Figure 12 Sensitivity of the observed image to integration time. Data from a real TEM. 

6.1.2 Parameter identifiability problem 

 
A model has identifiable parameters if, given infinite number of observations, it is possible to obtain the 
value of its parameters. In other words, in a model with identifiable parameters it should be theoretically 
possible to solve the inverse problem. If the observations of a model are the same for more than one set 
of parameters, then the parameters are not unique and thus the unique parameters cannot be identified. 
To handle this problem one could use a subset of parameters, a smaller range of parameters, or use a 
different observation which does not cause this problem.  
  
In case of TEM aberrations, we face the problem with parameter identifiability. This means that the CBED 
(and its FT) for different set of control parameters can be almost identical. Figure 13 describes this 
problem. In Figure 13.b and Figure 13.c the images on the grid are generated using different aberration 
settings (i.e., defocus and astigmatism). The FT of CBED is very similar for multiple sets of parameters 
as seen in Figure 13.c. in yellow and boxes. This originates from the aberration function definition of the 
wave that propagates through the optical column of the microscope (Figure 13.b and Figure 13.a). In 
Figure 13.c also the green boxes, although not theoretically identical, are very similar to the level that it 
can be impossible to distinguish them in presence of noise in data. Therefore, given one observation 
(CBED or its FT) finding the unique parameter set is a difficult problem whether it is for classical inverse 
problem or a deep learning model.  
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Figure 13 The parameter identifiability problem observed in FT of CBED and its origin in aberrated wave. 13a, 

modified from [40] 

 
The solution to the intrinsic problem of the parameters is handled in the control/AI part of the work. Here, 
we provide a summary of two approaches that were investigated toward this goal. One solution is to 
change the observation, by including additional information to re-establish the Markov property. Through 
this approach, the identification problem is reduced, albeit not entirely eliminated. Another approach 
involves simplifying the identification problem to only finding the location with least aberrations (the middle 
image in Figure 13.c) by calculating a quantity which reflects a notion of “better”, and subsequently, given 
this new objective, a classical optimization solver can be applied to find location with the minimum value.  
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6.2 UUV 
 
This section is dedicated to the UUV use case. It is divided into three subsections, each addressing a key 
aspect of UUV development and application. First, the influence of the level of detail of objects in the 3D 
environment on the criticality metric is analyzed. Finally, the application of the parameter identification 
process from Chapter 5 is demonstrated through two examples. The first example shows the 
development of a sensor and the challenges involved. The second example uses a LiDAR validation case 
study to illustrate the practical application of the process. 

6.2.1 Level of detail in the environment model 

6.2.1.1 Introduction 

A DT is a virtual copy of a physical object or system that reflects its behaviour. An essential part of this 
concept is the environment model that defines the environment with which the digital twin interacts. The 
trade-off between detail and execution efficiency of the environment model is a key challenge. 
 
One performs Scenario-based Testing (SBT) for a purpose: to validate the correct functioning of a specific 
system. The functioning of the system is assessed in "test cases" by combining a concrete scenario, 
(criticality) metrics which are selected based on the System under Test (SuT) specific requirements [see 
e.g. [41]] and associating a pass-or-fail criteria to it in order to have a test measure. The simulator’s only 
purpose is to reproduce the value of this metric in such a way that the resulting pass-or-fail criteria is 
indistinguishable whether calculated in a real world or corresponding virtual scenario. This is the central 
assumption of the proposed idea. 
 
A DT relies on a realistic environment model tailored to its intended functions. This can include, for 
example, the appearance or physical behaviour of objects. An environment model defines the context 
and boundaries. Through simulation within this environment model, different scenarios and conditions 
can be explored. The goal is to provide the digital twin with all relevant data and contextual information 
from its environment that are necessary for a successful simulation. The higher the accuracy of the 
environment model, the more accurate the simulation results will be. 
 
The state-of-the-art simulators (i.e. CARLA, Hexagon VTD, IPG CarMaker, ...) usually used for such 
simulations provide with ongoing updates an ever-increasing level of fidelity in every aspect ranging from 
highly-complex physics models to photo-realistic model assets [e.g., [42]]. Naturally, the pursuit of high-
fidelity visual models in every aspect of the simulators, while justifiable as they aim for general-purpose, 
entails increased computational costs and necessitates additional resources, even though such precision 
may not be essential when testing only specific functionalities or taking sensor limitations into account. 
 
It is likely that models with a lower level of detail require fewer resources, such as computing power and 
memory, which means that faster simulation runs can be performed. This is particularly advantageous for 
the many iterations required in reinforcement learning. Furthermore, simple models can be created faster 
and require less data to create. For large environments, it may also be useful not to represent all objects 
at a high resolution to achieve an acceptable simulation time. 
 
However, there are two uncertainties: First, how much does it affect the measured criticality metric? And 
secondly, it is unclear whether changing the accuracy of the 3D assets within the simulation makes a 
difference in terms of execution efficiency. The goal of this analysis is to determine what influence the 
level of detail of certain objects has on the criticality matrix for certain scenarios. 
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6.2.1.2 On validation and credibility in the automotive context  

Central to the utilization of virtual SBT is the simulator’s credibility, as without it, the undertaking lacks 
purpose since not trust in the system can be generated. Liu et al. [43] defines credibility of a model or 
simulation as "an expression of the degree to which one is convinced that a particular model or simulation 
are suitable for an intended purpose." Validation as seen also by Sargent [39] and Oberkampf and 
Trucano [38] refers to "the process of determining the degree to which a model or a simulation is an 
accurate representation of the real world from the perspective of the intended uses of the M&S 
[Modelling&Simulation]" [44]. The evaluation of validity is not the only contributing factor to credibility, it 
is sure the most significant metric [43]. According to these definitions, credibility is fundamentally an 
informed judgment derived from multiple factors, whereas validation is a (but not exclusively [39]) 
objective assessment based collected data on predefined metrics. 
 
In the automotive domain, scholars have been researching the credibility or validity of simulators for virtual 
SBT. For example, Riedmaier et al. [45] present a process that combines model validation and safety 
assessment for automated vehicles. Stadler et al. [46] introduces an empirical way of assessing the 
credibility of an automotive simulator by proposing several metrics. Both approaches propose statistical 
means for a data-driven validation approach by comparing the simulators output at different stages of the 
simulation chain given a certain scenario to the same scenario measured in reality as the ground-truth. A 
primary requirement of the system resulting from the proposed work is an optimized simulator and models 
shall still be credible (therefore the methods can be applied) and ideally "just credible enough".  
 
The initial motivation comes from the fact that numerous studies [47], [48] have been performed to assess 
the impact of fidelity levels in human driving simulators by taking the highest-fidelity simulation as a 
reference and compare lower-fidelity variants empirically using participants behaviour for a data-driven 
evaluation. The research shows that human behaviour directly correlates with the presented fidelity level 
[49] but beyond a certain point improving the fidelity of models appears to be negligible [50]. Studies like 
Zhao and Sarasua [51] assess the minimal required visual fidelity of driving simulators based on the 
perceptual capabilities of humans. However, no similar studies have been done on the impact visual 
fidelity of simulators for virtual SBT where the human driver is substituted by a highly-automated driving 
function. Here, the perception algorithms might also have restrictions in its sensory means (e.g., image 
resolution, maximum range, etc.). Thus, the potential of exploiting different fidelities in virtual SBT is 
unexplored and analogies could be exploited. 

6.2.1.3 Experimental setup 

In the following, we outline the parameters relevant to perform Sensitivity Analysis (SA) for the simulation 
of UUV use case as well as the experimental setup. Note that the sensitivity analysis in this case in not 
only performed on the levels of fidelities but also on other parameters which are changeable by the RLA. 
The inputs to the SA’s system under test (namely, the entire UUV UC toolchain) can be listed as action 
and level of fidelity combined. The goal is to analyse the sensitivity of the reward to these inputs. 
 
The input of the environment simulation consists of the parameters listed in Table 1. They are assumed 
to be discrete/continuous uniformly distributed variables (the schematic representation for placing the 
objects in simulation environment is introduced in [52]). The following three object classes were identified 
for the study: Lanterns, cars and trees. These classes are in close distance of the ego vehicle during the 
simulation. As shown in Figure 14, the level of detail for these object classes can be changed in three 
levels. The number of polygons varies in the different levels of detail, but this does not necessarily lead 
to a visual change. However, a low number of polygons results in lower memory usage and shorter 
loading times, which could lead to a faster simulation run. In addition to the levels of detail already 
mentioned, there are also different models for some object classes. Six car models from different 
manufacturers are available. There is one model for lanterns that was modelled after a Berlin lantern. 
Three different types of trees are also available as models for the study. 
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Table 1 List of parameters used for the sensitivity analysis 

Type of parameter  Parameter Range 

Action parameter 
(control input) 

Visibility of the road markings   0 to 1 

Number of the road patches 
(e.g. manhole covers or tire tracks)  

0 to 1 

Type of the tree   0,1,2 

Number of the trees   0 to 1 

Type of the car parked along the road 0,1,2,3,4,5 

Longitudinal positioning of parked car 0 to 1 

Lateral positioning of parked car 0 to 1 

Orientation of parked car 0 to 1 

Simulation parameter Fidelity level of the model of parked car  1,2,3 

Fidelity level of the model of trees 1,2,3 

 

 
Figure 14 Different level of detail for different object classes 

 
Figure 15 shows examples of three different 3D environments in which the objects have different levels 
of detail. On the left-hand side, all objects have a low level of detail, in the middle they have a medium 
level of detail, and on the right-hand side all objects show the highest possible level of detail. The level 
of detail of the object classes can be changed individually and does not have to be changed uniformly as 
shown in the image. Different combinations in the level of detail of the object classes are examined during 
the investigation. 
 

 
Figure 15 Different level of detail in the environment model (left low, middle medium, right high) 

 
The level of detail is examined based on the process loop that was developed specifically for the UUV 
use case. The structure of this process loop is shown in Figure 16 above. To train the RL-agent, the 
following steps are executed each time the loop is run: 
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1. The RL-agent generates variation parameters that characterize a specific 3D environment and 
passes them to the scenario generator. 

2. The scenario generator creates a detailed 3D environment based on the variation parameters. 
3. In the Sensor/Environment Simulations block, the 3D environment is loaded and the ego vehicle 

with its sensors is created. The simulation is then executed. 
4. The result of the simulation is then analysed in Feature Engineering and the values for the 

criticality metrics are determined. 
5. Once the analysis is complete, the RL agent receives the parameters for state and reward, after 

which the cycle starts again. This process is repeated until the RL agent is fully trained. 
 
In order to analyze the influence of the parameters on the criticality metrics, a modified version of the 
process loop of the UUV use case is used, which is shown in Figure 16. The RL-agent is removed from 
the loop and replaced by code that passes variation parameters and fidelity parameters to the scenario 
generator. 
 

 
Figure 16 Process loops. Above original toolchain for RL training. Below adapted loop for Sensitivity analysis 

A subset of the variation parameters is no longer changed at each iteration but remains constant across 
all iterations of the investigation. This parameter set is selected so that it has a particularly high influence 
on the criticality metric to be able to recognize changes more easily. 
In addition to the variation parameters, a new set of parameters is used that are not present in the original 
process loop, namely the fidelity levels. This parameter set changes the level of detail of objects in the 
3D environment and is referred to as the fidelity parameter in the image. The level of detail can be set 
individually for each object class. 
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The following steps are performed for each iteration: 
 

1. The iteration is started by passing the variation parameters and the fidelity parameters to the 
scenario generator. 

2. The scenario generator creates a 3D environment based on the two parameter sets. 
3. In the Sensor/Environment Simulations block, the 3D environment is loaded and the ego vehicle 

with its sensors is created. The simulation is then executed. 
4. The result of the simulation is then analyzed in the Feature Engineering block and the influence 

on the criticality metric is logged. 

6.2.1.4 Experimental execution and results 

SA aims to address questions such as the followings [53]. 
▪ What inputs cause the largest variation in the output?  
▪ Is there any parameter whose variability has a negligible effect on the output?  
▪ Are there interactions that increase or decrease the variability induced by individual parameters? 

  
In order to select an appropriate SA method to answer these questions, we first explore the purposes of 
SA for the DEV test bed. The general purposes are distinguished in three groups according to [12]. 
 

• Ranking aims at generating the ranking of the inputs according to their relative contribution to the 
output variability. 

• Screening aims at identifying the inputs that have a small influence on the output variability. 

• Mapping aims at determining the region of the input variability space that produces significant, 
e.g. extreme, output values. 

  
To explore influence of above-mentioned parameters, we first focus on the first purpose, i.e. ranking. The 
methods like One-At-a-Time (OAT) aim at analysing the output variation induced by each input, assuming 
that the inputs are independent. Instead, we want to explore the interactions between inputs too. 
Therefore, we should design the SA experiments to extract all plausible impacts of inputs not only on the 
output but also on the other inputs as well. 
In a full factorial sampling, each parameter is treated as discrete, and we consider two or more intervals 
of its values. If the number of intervals is the same across all the parameters, the number of generated 
samples for iterating the simulation is estimated by (number of intervals) ^ (number of parameters).   
On the other hand, if we can assume that higher-order interactions are negligible, the most significant 
effects in lower-order interactions can be analysed using a fraction of the full factorial design. Fractional 
factorial sampling can significantly reduce the number of simulations. 
 
Variance-based method like Sobol sensitivity analysis [12] can identify relevant parameters and helps us 
select the input variations for the simulation. Typically, Sobol uses a sampling method such as Monte 
Carlo to generate a set of sample points within the input parameter space. These sample points are often 
generated using a quasi-random sequence. Within a probabilistic framework, Sobol decomposes the total 
variance of the model output into contributions from individual input parameters or combinations of 
parameters. This decomposition provides information about the relative importance of input parameters. 
Sobol indices (numerical measures) are calculated to quantify the contribution of the individual input 
parameters or parameter combinations to the total variance of the output. There are different types of 
indices for the further analyses. For instance, the first-order indices measure the contribution of individual 
parameters and total-order indices measure the contribution of individual parameters plus their 
interactions with other parameters. The calculated value of indices is used to identify the most influential 
input parameters. Higher value indices indicate parameters with significant influence on the output 
variability, while low indices indicate parameters with less influence. 
 
For 10 dimensions (see Table 1) the Sobol sensitivity analysis was performed including 50 iterations per 
combination resulting in 1100 simulation runs. The results can be seen in Figure 17. 
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Figure 17 Results of the variance-based sensitivity analysis for 10 selected parameters showcasing first-order indices 
(S1) and total-effect indices (ST). 

6.2.1.5 Discussion 

When analysing Figure 17, one needs to acknowledge the broad 95%-confidence intervals on all 
parameters. This is mainly due to still too low number of samples but could also result of some emergent 
behaviour. However, the results can still serve as an indicator and trends can be inferred. 
 
Regarding the fidelity, we see that the fidelity of the parked car and tree models on their own have little 
to no impact on the simulation and only marginally contribute to a change in the simulation’s outcome in 
conjunction with other parameter changes. Thus, any fidelity type could be selected.  
 
Similarly, number of patches on the street as well as the tree model type do not influence the scenario, 
thus they may be fixed or omitted entirely. The visibility of the road markings and the parked car 
orientation and the parked car model type on their own may have no influence on the outcome but may 
be relevant in conjunction to other parameter variation. Interestingly, the number of trees have a relatively 
high influence on the reward variance but does not influence the variance of other parameters that much. 
 
The most influential object in the scenario is the parked car, more specifically its position. This is intuitive 
as the car can be placed to overlap the markings right before the intersection, making it harder for the 
ego vehicle to make it across. Interestingly, the longitudinal positioning has a higher impact on the results 
than the lateral. 
 
On a meta-level, the experiment showed that due to the necessity of N*(2D+1) runs (in this case D=10 
dimensions and N=50 iterations per combination), this approach is highly computationally expensive and 
scales linearly with both the parameters to be investigated (D) and the complexity of the system (required 
N). As already stated, N=50 iterations were in this particular situation not enough to narrow the confidence 
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intervals to a reasonable amount. As in total the model has 30 possible parameters, an expert-based 
reduction prior to the parameter selection for the sensitivity analysis is unavoidable. 

6.2.1.6 Conclusion 

In conclusion, we can say that a sensitivity analysis as performed here is only adequate for a small subset 
of all available parameters which was preselected by experts. It was shown that the model fidelity of the 
parked car and the trees in this scenario have very little impact on the outcome of the scenario and may 
be set to their lowest value to improve execution efficiency. The most influential parameters are the ones 
describing the parked vehicle. Other parameters such as the road markings do have some influence on 
the outcome by increasing or decreasing the variability induced by other parameters and should not be 
left out entirely without careful consideration. However, the number of patches and tree type as well as 
the model fidelities can be fixed which reduces the space of relevant parameters significantly.  
 

6.2.2 DT Development of a sensor in light of the process 

For the prototypical generation of a DT and its integration into the developed tool chain for training the 

optimization-RLA, a small-scale vehicle-in-a-loop setup was developed. We acknowledge that the DEV-

bed's sensor stimulation and vehicle dynamics do not accurately replicate the real RC-car on a street or any 

real environment. However, we consider it as the “ground-truth”. While some parts of the real system are 

also virtual such as the virtual environment and the software like the driving function on the vehicle’s ECU 

(see Figure 18), other such as the camera system and the actuators contain physical interactions and 

phenomena between components. As shown in Figure 18, for this prototype we concentrate on the 

camera system and its interaction with a screen and intend to replicate the changes to the virtual camera 

footage coming from the virtual environment. In the following the development process of finding the 

relevant parameters and design choices are shown following the process from Figure 8. 

 

Planning  

Following the path in Figure 8, there was no model available and therefore a new one needed to be made 

from scratch. As total access to the setup was given, there was no restriction on data and the system is 

not numerically inexpressible. Thus, now there was the question of whether to use a fully data-driven or 

a hybrid approach. It was not reasonable to explain the phenomena in detail on a first-principle basis 

using measuring data like the distance and angle between the camera and the monitor as these 

measurements cannot be automated in an easy way. Thus, we intended to measure and mimic the 

specific phenomena which can be identified. This can be seen as a model-driven approach while we input 

knowledge from the underlying phenomena to make design considerations of the algorithms. 
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Figure 18 Information flow through the DEV-bed highlighting the two instances where components are not virtual 

and which part shall be twinned. 
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Modelling  

To identify static phenomena, a test picture (see Figure 19) is displayed on the monitor and a frame of 

the camera feed is taken for comparison (see Figure 20). In the following the identified phenomena and 

their quantization is explained. 

 
 

 
Figure 19 Original test picture 

 
Figure 20 Sample frame taken from the camera feed 

Perspective correction is needed which is caused by imperfect camera-to-monitor alignment, including 
shifts, scaling, and warping effects. To correct these, the method involves identifying the four corners of 
the monitor by finding the closest pixel to each corner in the test frame. A perspective warp function, 
specifically warpPerspective() in OpenCV, is then applied to the test picture to replicate the observed 
perspective phenomena. However, the method has limitations, such as sensitivity to accurately locating 
the right pixels representing the corners and the assumption that there is no barrel or pincushion 
distortion, which hasn't been observed in the test frame. 
 
Brightness shifts are observed in the test picture (Figure 20) due to monitor polarization, resulting in an 
increasing brightness shift from top to bottom and a less pronounced shift from left to right. To align the 
test picture's brightness with that of a reference frame, the image is vertically sliced along the grid of grey 
boxes. Within each slice, the brightness of the topmost and undermost boxes is measured. Linear 
interpolation is then applied to adjust the brightness for each pixel row in the test picture, based on the 
known true brightness from the reference frame. This method aims to correct the polarization-induced 
brightness distortions in the test picture. 
 
Blur can be seen being induced by imperfections in both the monitor and the camera. While direct 

measurement of blur is not feasible, using a method based on the variance of the picture's Laplacian is 

possible, which is inversely related to blur. A higher Laplacian value indicates sharper edges and lower 

blur. To establish a reliable metric, a lookup table is created by iteratively blurring the original test picture 

with increasing levels of Gaussian blur (represented by sigma). The corresponding sigma-sharpness data 

points are recorded. To apply this to the test picture, a reverse process involves "reverse-warping" the 
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test frame (adjusting for perspective changes), measuring sharpness, and using the lookup function to 

calculate and apply the appropriate sigma to mitigate blur in the test picture. This method aims to 

compensate for blur induced by monitor and camera imperfections. 

 

Delay affects the driving function of a virtual vehicle in the ViL-setup. Motion blur is not observed during 

camera footage recordings, but a noticeable delay influences the driving function's performance. The 

delay results from various components, including the monitor, webcam, driving function, and network 

communication. The total delay is a sum of these individual delays, but their specific contributions are 

unknown due to unsynchronized clocks across the RC car and simulation workstation. To model the 

delay, the entire process—from a change in the environment's state to an altered control command—is 

considered. The delay is measured by positioning the RC car without forward movement, instantly rotating 

the virtual vehicle by 5°, and measuring the time between this event and a step change in the steering 

command. This measurement is repeated five times and averaged to accommodate fluctuations. The 

goal is to model the delay as a queue, given the virtual RC car's processing frequency remains at 30 fps. 

 

Additional potential parameters that were identified but intentionally left out was the color saturation. While 

this is visibly a phenomenon (compare Figure 19 and Figure 20), it was not considered as the driving 

function is insensible to it. During its image processing, the incoming footage is converted to grey-scale 

and lines for the lane-keep assistant are identified by converting the image further to black and white with 

a fixed threshold. While brightness influences the identification of lanes significantly, the color saturation 

does not. 

 

Validation I 

During the first validation cycle, the first question of validation in figure 8: “Is the model accurate enough 
for the intended use?” was answered using face validation comparing the output from the sensor model 
(see Figure 21) given the test image (see Figure 19) the image from the camera (see Figure 20). On first 
sight, the image seemed to subjectively similar. 
 

  
Figure 21 Adjusted test picture 

Next, the sensor was integrated in a loop which can be seen as the DT of the test setup as it had the 

same environment simulation and driving function as the vehicle. Again using face validation, it was easy 

to see that the virtual vehicle did not follow the lane as the real vehicle. Next, the execution efficiency of 

the sensor model was measured which was on average 300 – 320ms on the simulation workstation used. 

This means that the ~3 frames can be processed per second which made the virtual vehicle too slow in 

reacting to its environment. Thus, it did not pass the “Does the model have enough execution efficiency 

for the intended use?” question (see Figure 8). 
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Optimization I  

As the face validation resulted positive, first code optimization was performed. By eliminating for-loops 

and pre-computation of functions, the execution efficiency tripled to 106ms or ~10fps. 

 

Validation II 

Again, the sensor model/DT of the camera is integrated in the virtual version of the test setup. Results 

pending. 

 

6.2.3 LiDAR Validation as an example for parameter identification 

To show the usability of the parameter identification process described in Chapter 5, a simple practical 
example is given where the steps of Figure 8 are followed for a LiDAR validation experiment. The goal is 
to set up a digital twin of a LiDAR and environment that provides good enough sensor data for an object 
perception algorithm to identify relevant objects, e.g. for an autonomous driving function of a vehicle.  
The general setup is depicted in Figure 22. A LiDAR roadside unit (RSU) scans the environment, an 
autonomous shuttle propagates along a precisely predefined path. The perception algorithm is fed with 
the raw data from the LiDAR, detects the shuttle and includes it in an object list with relevant parameters. 
(The used perception algorithm can be adapted with slight changes for the application in vehicles.) One 
parameter is the position, which is used for validation of the traced position in the physical system against 
ground truth and of the traced position in the digital system against ground truth. For the latter the digital 
twin is created. A more detailed description of the experiment is given in [52] of Asimov.  

  
Figure 22 Setup of the Physical System of the LiDAR validation experiment. 

To create a sufficient model for the digital twin we follow the model described in Chapter 5, see Figure 
23. First, we evaluate if there is already a platform for a model available. The answer is yes. The Sofware 
Carla, which is used throughout Asimov for the UUV use case, can create typical environments and 
comes with the ability to model LiDAR-sensors and create LiDAR-sensor-data. Also, Carla is open source 
and therefore freely available. A major advantage when the resources for a project are limited.  
However, is the possible model accuracy enough for the intended use or do the platform limitations not 
allow for a sufficient model? This of course highly depends on the use case. Here we want to generate 
good enough data for a perception algorithm connected to a driving function to identify relevant traffic 
objects with comparable reliability as in the physical system for most traffic scenarios.    
To gather LiDAR-sensor-data Carla uses a raycasting-routine to determine which environmental objects 
are in the field of view of the sensor and reflect the laser back to it. In contrast to raytracing, multiple 
reflections cannot be considered. A possible major limitation, especially in environments with many 
reflective surfaces, such as environments with heavy rain or fog.  
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Also, the exact modeling of perturbations will need many resources. Especially vibrations can disturb 
LiDAR (if not solid state). For a precise modeling the roughness of the road, the suspension of the vehicle, 
the stiffness of its frame and many more parameters need to be known and modeled. 
In other words, a simulation in Carla will not match reality in every aspect and getting close will already 
consume many resources.  
Is another platform and model needed? Or will a more detailed examination of relevant parameters save 
the model? 

 
Figure 23 Scheme for creating a sufficient digital twin model for LiDAR validation. 

In Figure 23 we have followed the red path to “Is the model accurate enough for the intended use” in the 
“Validation” box and keep following the path to “Use methods for parameter relevancy identification for 
model adjustment” in the “Optimization” box.  
We first evaluate the noise issue. Figure 24 shows a LiDAR-lab-measurement of a target plate in the 
physical system (right) and in Carla (left). For the measurement within the digital system, 0.05 per cent 
of noise was added to the result. However, the points in the point-grid representing the plate are still 
relatively equidistant to each other and barely change in intensity. The points representing the plate in 
the physical system show a relatively strong perturbation along the scan line of the LiDAR, especially in 
the upper part of the plate.  
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Figure 24 LiDAR Measurement of a target plate in Carla (left) and overlayed with the measurement in the physical 

system (right). 

The representation in the digital system is therefore not very good at point level. However, the plate is 
represented by a large number of points and is defined by the shape of the point-group. On this level the 
discrepancies are relatively small.  
  

  
Figure 25 LiDAR 3D Point cloud of an Autobahn scene. The scene was analyzed by a perception software. 

Identified objects have been marked with bounding boxes, which have been annotated with additional information 
(class, e.g. car, and speed). 

Additionally, the number of perturbations in the lab environment is small. The noise level of data taken in 
real world environments is quite different. Due to a multitude of influences (road, roughness, suspension, 
speed…) the pattern appears rather random than distinctive, in point distance as well as in intensity. See 
Figure 25 for an example. The pattern also changes from frame to frame adding to the random 
appearance. 
In conclusion, the perception of objects does not depend on a perfect representation on point level but 
depends on the shapes on object level. Small discrepancies on point level will not influence the 
performance. Especially since the object perception algorithm is confronted and can handle random noise 
patterns, which appear in practice. Such patterns can be easily added in Carla. (Additionally, the 
environment in Carla does not need to be modelled to the highest fidelity) 
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The high and random noise level seen in Figure 25 also limits the influence of multiple reflections, which 
usually contribute order(s) of magnitude less to the intensity of a LiDAR point than direct reflections. 
  
Therefore, except for corner cases (strong fog, rain, distant objects represented only by a low number of 
points, -> scenarios where also the physical system LiDAR and the perception algorithm itself will run into 
limitations) a simplified model as Carla provides it with random noise and raycasting to determine the 
sensor input will suffice. 
In the scheme in Figure 23 we therefore follow the red path back to “Is the model accurate enough for 
the intended use” in the “Validation” box, answer with “yes” and follow the green path to “Does the model 
have enough execution efficiency for the intended use?”. The answer here is also “yes”. Due to the limited 
use of resources in the simplified model, the digital system can run in real time on common hardware, 
just as the counterpart in the physical system. For the given purpose we have found a sufficient model 
and the “DT model development is finished”.      
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7 Conclusion 

This document presents the final status of the development of the identification of relevant parameters 

for the creation of a DT. First in Chapter 2 “Definitions”, explanations were given for key concepts used 

in the context of DT development and an understanding on what a parameter is, was established.  

  

The state of the art was outlined in two fields. The first part includes the state of the art regarding the 

identification of parameters, both qualitatively (identifying which parameters should be considered) and 

quantitatively (identifying which values should be assigned to the parameters). The first type of 

identification is considered as the definition of system boundaries: methods for constructing an initial set 

of parameters based on system characteristics. The second type is covered by parameter identification 

methods, which are a topic in the field of system identification. In describing another type of methods in 

the second part of the literature review, we emphasized the “relevancy” of the identified parameters to 

conduct the accuracy-efficiency trade-off by the DT. Existing approaches to adjust or create accurate. yet 

robust models were reviewed; sensitivity analysis, model reduction and surrogate modeling to name a 

few.  

  

Next, a baseline was created by describing the current process in the UUV and STEM use cases. The 

parameter identification process in the UUV use case is mainly based on expert knowledge and published 

standards such as ASAM OpenX and Euro NCAP. It was the goal to be able to identify parameters that 

define aspects of critical scenarios which are not covered by standards yet. The section regarding the 

STEM use case describes the current candidate parameters for the DT of an electron microscope (EM), 

which is mainly based on the domain expert knowledge. According to the selected application, being the 

aberration correction in an EM, a digital model is used. The parameters of this digital model are 

differentiated to categories of control, system and disturbance parameters.  

  

Following, the development process in the light of parameter identification was shown. It provides the 

motivation for considering finding relevant parameters during the entire development process of the DT 

and differentiates between two fields: parameter identification and optimization. The section also 

describes the steps during the DT-development where finding relevant parameters is performed.   

  

Finally, specific topics for the use cases are presented. The first part addresses the EM use case and 

focuses on the fine-tuning of parameters to increase precision and on problems of parameter 

identifiability. The second part focuses on research related to the UUV use case. First, the influence of 

the level of detail of objects in the 3D environment on the criticality metrics was analyzed. In this example, 

the sensitivity analysis was successfully applied and it was shown that it is a suitable method to identify 

relevant parameters when the parameter space is already small. Furthermore, the parameter 

identification process, which was described in detail in Chapter 5, was successfully applied and evaluated 

on two real-life examples. The first example focuses on the development of a sensor for a DT, while the 

second example is about the validation of a LiDAR. 

  

This document serves as a summary or guideline for the application of different techniques which improve 

how well the DT is suitable for the task of training an AI that can optimize a CPS. This will help practitioners 

to build more efficient and more detailed DTs. It can easily be said that the goal of the task is essential 

for turning the ASIMOV idea into reality. 
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8 Terms, Abbreviations and Definitions 

 
Table 2 - Terms, Abbreviations and Definitions 

ABBREVIATION EXPLANATION 

ADAS Advanced Driver Assistance Systems 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ASAM Association for Standardization of Automation and Measuring Systems 

ASIMOV AI training using Simulated Instruments for Machine Optimization and 

Verification 

CPS Cyber-Physical System 

DoD United States Department of Defense 

DT Digital Twin 

EM Electron Microscopy 

FEA Finite element analysis 

LiDAR Light Detecting and Ranging 

MFM Multi-Fidelity Model 

MFHM Multi-Fidelity Hierarchical Models 

MFSM Multi-Fidelity Surrogate Model 

MIMO Multi-input-multi-output 

MR Model Reduction 

M&S Models and Simulations 

NCAP New Car Assessment Program(me) 

ODE Ordinary differential equations 

PMSM Permanent Magnet Synchronous Motors 

PSO Particle Swarm Optimization 

RL Reinforcement Learning 

RLA Reinforcement Learning Agent 

SA Sensitivity Analysis 

SBT Scenario-based Testing 

SISO Single-input-single-output 

STEM Scanning Transmission Electron Microscopy 

SuT System under Test 

TEM Transmission Electron Microscopy 

UUV Unmanned Utility Vehicle 

V&V Verification and validation 

WP2 Work Package 2 
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A Reference Parameter 

This chapter contains input parameters (u), the output parameters (y) and the disturbance parameters 
(d) determined on the basis of the use cases. 
 
To determine the parameters, the processes of the use cases were roughly sketched and the parameters 
were derived from them. The parameters determined are therefore use case-specific and not determined 
by a generic process. Additional information on how the parameters were determined can be found in 
chapter 3. 
 
The parameters determined here are then to be compared in a later step with the parameters determined 
by the generic parameter identification process. The quality of the generic parameter identification 
process is to be determined by the comparison. 

 
A.1 Use case - Electron Microscopy 
 

A.1.1 General Use Case Information 

Name Electron microscope 

Description The goal is to automatically tune the electron microscope by reducing its 
aberrations 

Company Thermo Fisher Scientific 

 

 
Figure 26 Electron Microscopy parameter overview 
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A.1.2 Parameters available to EM user  

 
Table 3 Details of EM_U_US_001 parameter 

PROPERTY DESCRIPTION 

ID EM_U_US_001 

Name focus (wobble) knob 
Description This control knob is used to change focus 

Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 

Value Range Varying 

 
 

Table 4 Details of EM_U_US_002 parameter 

PROPERTY DESCRIPTION 

ID EM_U_US_002 

Name Condensor stigmator current knob 
Description This control knob is used to change the currents in condensor stigmator lenses 

Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 

Value Range Varying 

 
A.1.3 Internal DT parameters 

 
Table 5 Details of EM_C_IN_001 parameter 

PROPERTY DESCRIPTION 

ID EM_C_IN_001 

Name source energy, high tension 

Description Energy of an electron beam entering the condenser system 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit None 

Value Range Varying 

Preparation An interpreter software will determine the value based on EM user Inputs 

 
Table 6 Details of EM_C_IN_002 parameter 

PROPERTY DESCRIPTION 

ID EM_C_IN_002 

Name spot size 

Description Spot size of an electron beam entering the condenser system 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit None 

Value Range Varying 

Preparation An interpreter software will determine the value based on EM user inputs 
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Table 7 Details of EM_C_IN_003 parameter 

PROPERTY DESCRIPTION 

ID EM_C_IN_003 

Name aperture diameter / aperture position 

Description The diameter and position of apertures (3 apertures for 3 condenser lenses and 
1 aperture for the objective lens) in the optics 

Value Type Discrete / Continuous 
IO Type Input 

Type System parameter: c 
Unit None 

Value Range Varying 

Preparation An interpreter software will determine the value based on EM user inputs 

 
Table 8 Details of EM_U_IN_004 parameter 

PROPERTY DESCRIPTION 

ID EM_U_IN_004 

Name individual lens currents (not in use case 1) 

Description The current of individual lenses, 3 condenser lenses and 1 objective lens 
Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 

Value Range Varying 

Preparation An interpreter software will determine the value based on EM user inputs 

 
Table 9 Details of EM_D_IN_005 parameter 

PROPERTY DESCRIPTION 

ID EM_D_IN_005 

Name sample thickness / sample position / sample randomness 

Description The thickness and the position of the amorphous sample used  
Value Type Discrete / Continuous 

IO Type Input 

Type Disturbance parameter: d 

Unit None 

Value Range Varying 

Preparation An interpreter software will determine the value based on EM user inputs 

 
 

Table 10 Details of EM_D_IN_006 parameter 

PROPERTY DESCRIPTION 

ID EM_D_IN_006 

Name Aberrations 

Description The parameters describing optical aberrations in the system. Including defocus, 
astigmatism, coma and spherical aberration 

Value Type Continuous 

IO Type Output 

Type For aberration of interest: Control parameter: u / for other aberrations: Disturbance 
parameter: d 

Unit None 

Value Range Varying 

How to calculate The raytracing model in DT will calculate the final aberrations in the image. This 
will be the output of DT along with Ronchigram images 
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Table 11 Details of EM_H_IN_007 parameter 

PROPERTY DESCRIPTION 

ID EM_CC_IN_007 

Name Algorithmic parameters (to be detailed out later) 

Description The parameters that are only needed for the algorithms and don’t have physical 
equivalents. Example: slice thickness in a multi slice algorithm 

Value Type Discrete or Continuous 

IO Type Input 

Type Hyperparameters: not relevant for this document 

Unit None 

Value Range Varying 

 

A.2 Use case - Unmanned Utility Vehicles 
 

A.2.1 General Use Case Information 

Name Unmanned Utility Vehicles 

Description The parameters for the use case UUV control the resolution of the scene, the 
level of detail for the environment model and the Adaptive Scenario Generation. 

Company AVL, Liang Dao, Triangraphics 

 
Figure 27 shows an overview of the system and control input parameters for the UUV use case. The 
system parameters are used to initialize the scene of the environmental simulation.  
The control input parameters can be divided into three categories: 

• 3D Scenario Generation, 

• Simulation,  

• Sensor Simulation. 

The 3D scenario generation parameters are used to manipulate the generation of the static 3D model 
and to control the dynamic behavior of objects in the scenes.  
The simulation control parameters are used to manage the simulation environment. They can be used to 
control the simulation time, which indirectly affects the lighting of the scene. 
The control parameters of the Sensor Simulation can be used to manage the positions and orientation of 
the sensors. Furthermore, various sensor properties can be configured. 
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Figure 27 Unmanned Utility Vehicles parameter overview 
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A.2.2 Parameter 

This section gives an overview of the parameters determined at the start of the project and their 
properties. 
 

A.2.2.1 Captured data output 

Table 12 Details of UUV _Y_CA_001 parameter 

PROPERTY DESCRIPTION 

ID UUV _Y_CA_001 

Name LiDAR Stream 

Description The data stream generated by the LiDAR sensor represents the 3D information 
of the scene captured by the LiDAR sensor. The LiDAR stream can be used for 
object detection. 

Value Type Continuous 

IO Type Output 

Type Output: y 
Unit m 

Value Range x and y: Typically, these coordinates can vary within the range of the LiDAR 
system, e.g. from -10,000 to 10,000 meters, depending on the size of the area 
being scanned and the resolution of the device. 

 
Table 13 Details of UUV_Y_CA_002 parameter 

PROPERTY DESCRIPTION 

ID UUV_Y_CA_002 

Name Radar Stream (optional) 
Description Data Stream that is captured by the Radar sensor. 

Value Type Continuous 

IO Type Output 

Type Output: y 
Unit Angular position 

Value Range Distance to target: The distance range can vary from a few meters to several 
hundred meters. For example, a vehicle radar typically only covers a few 
hundred meters. 

 
Table 14 Details of UUV_Y_CA_003 parameter 

PROPERTY DESCRIPTION 

ID UUV_Y_CA_003 

Name Image Stream 

Description The data stream generated by the image sensor represents the visual 
information of the scene captured by the image sensor. The image stream can 
be used for object detection. 

Value Type Continuous 

IO Type Output 

Type Output: y 
Unit Pixel (red, green, blue) 

Value Range Each of the three color channels usually has a range of values from 0 to 255, 
due to the 8-bit color depth often used in digital images. 
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Table 15 Details of UUV_Y_CA_004 parameter 

PROPERTY DESCRIPTION 

ID UUV_Y_CA_004 

Name Segmentation Stream (Ground Truth) 

Description Segmentation information of the captured scene.  
In a segmentation screen, each object class is marked with its own color.  
The segmentation stream can be used for error detection. 

Value Type Continuous 

IO Type Output 

Type Output: y 
Unit Pixel (red, green, blue) 

Value Range Each of the three color channels usually has a range of values from 0 to 255, due 
to the 8-bit color depth often used in digital images. 

 
Table 16 Details of UUV_Y_CA_005 parameter 

PROPERTY DESCRIPTION 

ID UUV_Y_CA_005 

Name Position data (Ground Truth) 

Description Position information of the captured scene and ego vehicle. 

• Road id, s and t position, lane id 

• Ego vehicle, calibration target, sensor 
 

Value Type Continuous 

IO Type Output 

Type Output: y 
Unit m 
Value Range x, y and y: Typically, these coordinates can vary, e.g. from -10,000 to 10,000 

meters, depending on the size of the area. 

 

A.2.2.2 Static 3D Modell 

 
Table 17 Details of UUV_C_ST_001 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_ST_001 

Name Object resolution 

Description This parameter controls the resolution of objects. Depending on the parameter, 
objects with lower resolution are replaced/generated by objects with higher 
resolution and vice versa.  

Value Type Discrete 

IO Type Input 

Type System parameter: c 

Unit ID 
Value Range The value range depends on the number of objects with different resolutions. 

The following range of values results in 5 objects with different resolutions: (1 - 
lowest detail, 5 - highest detail) 
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Table 18 Details of UUV_C_ST_002 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_ST_002 

Name Road sampling 

Description The resolution of the roads is controlled by a sampling rate parameter. The 
higher the sampling rate, the finer the resolution of the road. The higher the 
resolution, the more polygons are used. 

Value Type Discrete 

IO Type Input 

Type System parameter: c (first step), control parameter: u (afterwards, optional) 
Unit Samples per meter 
Value Range (1, Maximum sampling rate) 

 
Table 19 Details of UUV_U_ST_003 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_ST_003 

Name Number/density of object 

Description This parameter controls the number or density of objects. It could be used to 
determine the density of a forest. A low value is used for a low number/density 
and a high value for a high number/density. 

Value Type Discrete 

IO Type Input 

Type Control parameter: u 
Unit None 
Value Range Min – Max distance between objects (0 – object bounding, 10 – 10 x object 

bounding) 

 
Table 20 Details of UUV_C_ST_004 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_ST_004 

Name Texture parameter 

Description • Texture resolution (pixel, real world size) 

• Physical based Rendering (PBR) - glossiness, reflectivity, ... 
 

Value Type Discrete 

IO Type Input 

Type System parameter: c 
Unit Varying 
Value Range • Pixel: 1 - max power of two 

• Real world size: 0.001 - Max  

• PBR: Layer count 
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A.2.2.3 Visual Simulation system 

 
Table 21 Details of UUV_C_VI_001 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_VI_001 

Name Near/Far Clipping Plane 
 

Description In computer graphics, a plane that limits the visible volume across the viewing 
direction is called a clipping plane. Anything closer to the camera than the near 
clipping plane and anything farther away than the far clipping plane will not be 
rendered. This pair of parameters determines the visibility. 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit m 
Value Range 0.0001 - 10000 

 
Table 22 Details of UUV_U_VI_002 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_VI_002 

Name Time of day 
Description Parameter to change the time of day. 

Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit hours 
Value Range 0 – 24 

 
Table 23 Details of UUV_U_VI_003 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_VI_003 

Name Rain density (optional) 

Description Parameter that determines the rain density 
Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 

Value Range 0  – 10 (off - high density) 

 
Table 24 Details of UUV_U_VI_004 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_VI_004 

Name Snow density (optional) 
Description Parameter that determines the snow density. 
Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 
Value Range 0 – 10 (off - high density) 
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Table 25 Details of UUV_U_VI_005 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_VI_005 

Name Fog density (optional) 
Description Parameter that determines the fog density. 

Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 
Value Range 0  – 10 (off - high density) 

 
Table 26 Details of UUV_U_VI_006 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_VI_006 

Name Cloudiness density (optional) 

Description Parameter that determines the cloud density. 

Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit None 
Value Range 0 – 10 (off - high density) 

 
A.2.2.4 Scenario Description 

The Scenario creation is a key element of UUV Sub Use Case 1. With the following parameters we aim 
to create a large variety of possible scenarios with relatively few parameters. 
 

Table 27 Details of UUV_C_SC_001 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_001 

Name Scenario type 

Description It characterizes the choice of template of the driving maneuver. (e.g. 1 => Ego 
following decelerating target, 2 => Pedestrian crosses street, ...) 

Value Type Discrete 

IO Type Input 

Type System parameter: c 

Unit ID 
Value Range The range of values characterizes the choice of driving maneuvers, with each 

numerical value associated with a specific scenario, e.g. 1 for 'Ego follows a 
decelerating target' and 2 for 'Pedestrian crosses the street’. 

 
Table 28 Details of UUV_C_SC_002 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_002 

Name Ego vehicle initial speed 

Description It describes the ego vehicle’s initial speed at the start of the scenario. 
Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit km/h 
Value Range 0 to 30 
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Table 29 Details of UUV_C_SC_003 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_003 

Name Ego vehicle final speed 

Description It describes the ego vehicle’s final target speed that shall be reached. This is 
purely a target speed that is then processed by the driving function. If the vehicle 
e.g. detects objects in front, so it needs to lower the speed, it will temporarily 
overwrite this target speed. 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit km/h 
Value Range 0 to 30 

 
Table 30 Details of UUV_C_SC_004 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_004 

Name Ego vehicle acceleration 

Description It describes the ego vehicle’s acceleration from the initial to the final target 
speed. This acceleration in combination with the initial and final target speed 
implicitly determines the duration of the scenario. 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit m/s² 
Value Range -5 to 5 

Table 31 Details of UUV_C_SC_005 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_005 

Name Traffic Object type 

Description IT characterizes the choice of Traffic Object, the Ego vehicle interacts with. (e.g. 
0=> None 1=> Car, 2=> Bicycle, 3=> Pedestrian, etc.?) The goal is to also be 
able to describe mixed traffic, in which case the Traffic Object type would be a 
vector. 

Value Type Discrete 

IO Type Input 

Type System parameter: c (and partly control parameter: u) 

Unit None 
Value Range 0-3(+) 

 
Table 32 Details of UUV_C_SC_006 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_006 

Name Traffic Object initial speed 

Description It describes the traffic object’s initial speed 
Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit km/h 
Value Range 0 to 30 
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Table 33 Details of UUV_C_SC_007 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_007 

Name Traffic Object final speed 

Description It describes the traffic object’s final speed 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit km/h 
Value Range 0 to 30  

 
Table 34 Details of UUV_C_SC_008 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_008 

Name Traffic Object acceleration 

Description It describes the traffic object’s acceleration 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit m/s² 
Value Range -5 to 5 

 
 

Table 35 Details of UUV_C_SC_009 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_009 

Name Traffic Object start offset 

Description It describes the traffic object’s delayed starting action. This is necessary to 
create different traffic situations, where the traffic object and the ego vehicle 
arrive at the same position with different temporal distance. 

Value Type Continuous 

IO Type Input 

Type System parameter: c 
Unit m 
Value Range 0 to tbd. 

 
Table 36 Details of UUV_C_SC_010 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_010 

Name Traffic Object Road ID 

Description It describes the ID of the road that the traffic object is placed on. Only 
intersecting or same Road ID as Ego vehicle are valid, as this provokes 
interaction between the ego vehicle and traffic object. 

Value Type Discrete 

IO Type Input 

Type System parameter: c 
Unit ID 
Value Range Valid Road IDs 
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Table 37 Details of UUV_C_SC_011 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_011 

Name Traffic Object initial Road position 

Description It describes the traffic object’s initial position s on the road it’s placed on 

Value Type Continuous 

IO Type Input 

Type System parameter: c 

Unit m 
Value Range Valid position s on Road 

 
Table 38 Details of UUV_C_SC_012 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_012 

Name Ego Vehicle initial Road position 
Description It describes the Ego vehicle’s initial position s on the road it’s placed on 

Value Type Continuous 

IO Type Input 

Type System parameter: c 

Unit m 
Value Range Valid position s on Road 

 
Table 39 Details of UUV_C_SC_013 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_013 

Name Maneuver Orientation Ego 

Description It describes the orientation of the Ego vehicle on the road segment 

Value Type Discrete 

IO Type Input 

Type System parameter: c 

Unit None 
Value Range +1, -1 

 
Table 40 Details of UUV_C_SC_014 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SC_014 

Name Maneuver Orientation Traffic Object 
Description It describes the orientation of the traffic object on the road segment 

Value Type Discrete 

IO Type Input 

Type System parameter: c 

Unit None 
Value Range +1, -1 
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A.2.2.5 Sensor 

 
Table 41 Details of UUV_U_SE_001 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_SE_001 

Name Sensor Position/Direction  
Description Positioning and alignment of the sensors on the vehicle. 

Value Type Continuous 

IO Type Input 

Type Control parameter: u 
Unit m/None 

Value Range Position – car local space, Direction - normalized 

 
Table 42 Details of UUV_C_SE_002 parameter 

PROPERTY DESCRIPTION 

ID UUV_C_SE_002 

Name Sensor Properties 

Description • Field of view 

• Sensor specific properties 
o e.g. LiDAR, Radar: Number of rays 

Value Type Continuous/Discrete 

IO Type Input 

Type System parameter: c 
Unit Degree/None 
Value Range Field of View: 

• Typically, from 0° to 360°, depending on the sensor technology and 
application. 

Number of beams: 

• LiDAR: Can range from hundreds to over a thousand beams. 

• Radar: Tends to use scan ranges, phased array types can also have 
hundreds to thousands of steerable elements. 

 
Table 43 Details of UUV_U_SE_003 parameter 

PROPERTY DESCRIPTION 

ID UUV_U_SE_003 

Name Calibration and synchronization parameters 
Description Parameters that determine the position of the sensors both to each other and 

relative to the vehicle coordinate system 

Value Type Discrete 

IO Type Input 

Type Control parameter: u 

Unit m/degree 

Value Range Translation: From -2 meters to +2 meters in any direction relative to the center of 
the vehicle. 
Rotation: From 0 to 360 degrees for a complete rotation, allowing flexible 
alignment of the sensors. 
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