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Abstract 
WP3 is concerned with the development of a technical approach and a reference architecture for DT-
supported AI-based system optimisation. System optimisation can be performed by connecting AI to both 
the physical system and its DT. By allowing the AI to take control over the DT, a learning cycle based on 
reward and punishment can be constructed to validate its actions. In order to establish a baseline for 
improvements, the state-of-the-art for existing solutions in AI-based system optimisation is reviewed. A 
framework for a cost-benefit analysis to compare methods will be constructed. The outcome of this task, 
combined with the state-of-the-art and prior requirements, is to produce a technical approach and a 
reference architecture for supporting DT-supported AI-based system optimisation suitable for use in 
industry use cases.    
 
This report describes the state-of-the-art in reinforcement learning and digital twin-based learning, their 
application in the ASIMOV use cases, as well as a reference architecture to construct and build DT-
supported AI. A low-threshold introduction to reinforcement learning and Q-learning is followed by an 
extensive and well-structured literature overview. The initial ideas about which techniques and 
approaches to use and how to apply them in the use cases are then described. Afterwards, the report 
deals with practical challenges by concentrating on the application to specific use cases. It puts the 
findings in the perspective of the developed reference architecture, and it summarizes the challenges and 
way forward towards the end goals: apply it to the real system, make it extendable and scalable, provide 
the details of the technical approach, reference architecture and tools and technology that may support 
the building of a practical application. 
 
Chapter 4 concentrates on two use cases for UUV. The first use case addresses creating optimal test 
plans for testing vehicles on a test bed: improve data quality by adapting the test plan in a way that every 
tested scenario contains as much valuable new information as possible. The second use case addresses 
sensor optimization: how to tune sensor and perception parameters in a way that the vehicle can perceive 
its environment in the most accurate way. 
 
Chapter 5 concentrates on the TEM use case. The use case addresses part of the parameter settings of 
the microscope that influence the quality of the final image by reducing the aberrations caused by electron 
beam deviations: astigmatism, spherical aberration, coma, etc. The research starts from the rich literature 
on DRL and the findings in D3.2 and moves to development of a prototype AI agent that may be linked 
to an actual TEM system. Several techniques have been investigated, implemented and tested. The 
results form the basis for (1) testing the solution in the real world of an electron microscope, (b) a step 
towards further improvement of the case and extension to other aspects of the microscope and (c) a more 
formal description of the technological approach and reference architecture. 
 
Chapter 6 introduces an overarching view of AI implementations, referred to as the AI architecture. The 
chapter includes a reference architecture for AI implementations, containing generic elements, aspects 
and best practices. The content is aligned with the DT architecture discussed in WP2 and the full system 
architecture discussed in WP4. 
 
This document ends by drawing overall conclusions on DT-supported AI-based training and system 
optimization.   
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1 Introduction 

Performing tests and optimizations on physical systems is often time consuming and may require 
extensive domain knowledge. Using digital twins (DT) combined with state-of-the-art artificial intelligence 
(AI) systems instead is promising, as it may help to significantly reduce the costs and effort of these tasks. 
In the ASIMOV project [84], we design and create a DT-based AI solution suitable for different industrial 
use cases as a proof of concept. 
A DT, as a surrogate system, can enable extensive system-level trials, model tunings, and adaptations. 
With a DT as basis, many repetitions and scenarios can be gone through effectively in a virtual 
environment. Next to that it is possible to exploit the higher speed, it ensures repeatability, and it offers a 
large potential for investigating the addition of noise, the impact of access to internal states, the use of 
abstractions instead of detailed parameters, and many other variations and rare cases. Due to these 
options, it is important to thoroughly understand if there are differences in training and operational phases 
required.  
In this context, the basic formulation of the reinforcement learning (RL) as a promising AI technology, is 
that the model learns in an unsupervised way from rewards when taking actions in a virtual environment. 
The couplings between digital twins and reinforcement learning are fully justified by the intrinsic nature of 
both methodologies. Thus, the considered training requirements are given for reinforcement learning, but 
can be generalized for other methodologies also.  
 
This document serves as a part of the Asimov documentation and is the deliverable for task 3.2 of the 
project. It focuses on the design and creation of a technical approach and a reference architecture for 
training DT-based AIs. In the next sections, we lay the foundation for the proposed reference architecture 
by reviewing the state-of-the-art of DT-based AI-training. First, we explore the general challenges of AI 
modelling based on data of DTs compared to training based on data of physical systems. Next, we provide 
an introduction to reinforcement learning and Q-learning. Thereafter, we will give an extensive look into 
state-of-the-art general training strategies and methodologies, and their applied usage combined with the 
DTs. In that section, the methodological perspective of reinforcement learning is emphasized. Finally, we 
describe our initial ideas regarding the use-cases of the project, the results of earlier tasks and the 
appointed requirements to the models with respect to reinforcement learning. 
  
Erikstad [51] investigated the differences between creating a digital twin from physics-based (structural) 
models and from machine-learning models. He summarized his findings in a table, shown in Table 1.  
 

Table 1 Pros and cons of creating digital twins in two distinct ways. Reproduced from [51]. 
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The table gives inspiration on the aspects to judge possible approaches. It may not be universally true 
for all applications as [51] has a certain application area in mind. Another axis on which to characterize 
approaches can be driven by observational data vs driven by domain knowledge. This partially 
coincides with the columns of Error! Reference source not found. but not exactly: 

• Physics-based is an example of using domain knowledge; modeling a supply chain context is 
another example. Also, in some applications physics knowledge may be as simple as a 
mathematical equation, or otherwise be computationally un-intensive because the model is 
obtained without requiring significant computation. 

• Data may be generated in different ways; an important distinction is between observational and 
experimental. The latter allows for a combined approach of using domain knowledge and then 
switching to a data-driven view. A computationally intensive model can be replaced by an 
approximating “compact model” by a one-time effort. For this, the digital twin’s input space is 
carefully considered (vector of parameters, constraints on these) and a list of computer 
experiments is created (Design of Computer Experiments, DoCE). The computationally intensive 
digital twin is evaluated on each of these experiments; from there it is relatively straightforward 
to build a model that predicts the DT’s outputs from inputs using statistics and/or machine 
learning. Papers describing this approach are [56], [57], [58], [59]. This approach has different 
pros and cons than the two columns in Table 1. 

 
As a general good practice, it may be beneficial to include domain knowledge in modelling / DT building 
whenever possible. There are several approaches for this including hybrid forms of using observational 
data, simulation, approximating models for which in a wider scope of application domains there are 
examples. 
 
Generic best practices for establishing a good practical training strategy can be found in many 
publications. In [52] several important steps are listed:  
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• Establish a budget for training data. Determine type and amount of data to be used, if retraining 
is necessary, if labeling of data is needed, maintenance, etc. This is important for justification of 
the investments in the business case.  

• Appropriate data. Select the right data and label it for the specific purpose.  

• Ensure data quality. Accuracy and consistency of labeled, as well as timeliness, and correctness 
of (real-time) behavioral data.  

• Be aware of and mitigate data biases. These biases come from blind spots or unconscious 
preferences in the project team or training data. Diversity in the team or assessment by 
independent external experts may counter this problem.  

• When necessary, implement data security safeguards. Security and confidentiality may pose 
important restrictions on your system setup and training. Be aware of government regulations 
and company policies.  

• Select appropriate technology. The tooling for capturing and managing data should fit the 
requirements on volume, speed and scale and flexibility of annotation.  

These generic best practices also hold for the Asimov cases of digital twin-based AI training, so we should 
carefully address all of these topics in detail.  
 
1.1 A brief introduction to reinforcement learning 
 
Before diving into the topic of reinforcement learning (RL), RL is put into perspective with respect to other 
learning techniques [54]:  

• Supervised Learning: Supervised learning uses a set of input data with known responses to the 
data (output) to generate a model of the perceived reality, with the aim to then generate 
reasonable predictions as a response to new data 

• Unsupervised Learning: Unsupervised learning is a process of finding hidden patterns or 
intrinsic structures in data, and establishing a model based on inferences drawn from datasets 
consisting of input data without labeled responses  

• Reinforcement Learning: Reinforcement learning is a goal-oriented learning strategy. It 
consists of iterative cycles of observing – taking action – being rewarded or punished. Agents 
gradually optimize actions in an environment, to maximize the rewards 

  
Reinforcement learning (RL) solves a particular type of problem, where decision-making is 
sequential, and the final goal is typically optimizing the total (discounted) rewards over a longer period.  In 
particular, RL problems are often modeled formally as a Markov Decision Process (MDP). An MDP 
comprises of a state S, an action A, a probabilistic transition diagram T and a reward R. Many practical 
problems can be modeled in this framework including computer games, robotics or supply chain logistics. 
RL aims to learn good strategies from experimental trials and relatively simple feedback from the 
environment.  Ultimately, the learned strategy should lead to behavior that maximizes the future rewards 
in an environment.  
What sets RL apart from other algorithm families such as optimal control or simulated annealing-like 
approaches is its ability to learn and make predictions without any requiring an explicit model (T) at all. 
To instead learn from simple feedback alone.  
 
Slightly formalizing the RL concepts and terms: 

• An RL agent acts in an environment. This environment must be provided and can simply be the 
game of chess, or an entire flight simulator.  

• An agent takes sequential actions. What actions an agent may take is determined by the 
environment. In chess, the action space is comprised of all the legally available chess moves. 

• Once an action is taken, the environment delivers a reward as feedback. Very often this reward 
is simple, such as the remaining distance to a target for example. For chess, it requires a more 
complicated function to evaluate the current state of the game.  

• The principal goal of an agent is the maximize the sum of discounted future rewards. We will 
touch on discounting later, but for now, just imagine that short-term goals need to be balanced 
with an end goal. Driving from A to B (long term) whilst not hitting cyclists (short term.) 

• Each action in the environment leads to a new state. In each state, the environment delivers a 
reward. In general, learning updates are only done at the end of an episode. For example, playing 
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a single game of chess is an episode. After a win or lose, the rewards are collected and used for 
learning.   

• An episode over T steps can take on the following form:  
State(1)Action(1)-Reward(2)State(2)Action(2)-Reward(3)State(3)Action(3)...Reward(T)State(T) 

 

 
Figure 1 The basic elements of a reinforcement learning setup. 

 
Before diving deeper, we will touch on a number of important issues that surround reinforcement learning 

in general. These are: 

• The exploration-exploitation dilemma. 

• The data inefficiency 

• General performance of RL 

• Reward function design 

• Stability and repeatability 

  

1.1.1 The exploration-exploitation dilemma 

An agent learning in an environment has a bit of a dilemma in that sense that it must maximize rewards 

and learn based on what it currently knows. In chess openings for example, this may lead an agent to 

select a move that is not disastrous, yet far from optimal. To learn better moves, an agent needs to take 

a jump into the unknown from time to time, to explore if there are other moves that might be better. 

Exploitation is selecting the move you think currently best, exploration is trying new things. This dilemma 

is captured by what is known as “Bayes Bandits”.  

  

Imagine a casino with multiple slot machines (the one-armed bandits). Each has a fixed but unknown 

probability of winning and an unknown reward.  The reinforcement learning task is then to find the best 

strategy to achieve the maximum reward from these slot machines.  

  

If the agent selects the first slot machine and only plays this machine, it will reap its rewards and learn its 

distribution, i.e. the probability of winning. That obviously leaves the possibility that there are many other 

machines in the building that have higher rewards or higher probabilities of winning.  

  

Obviously, dropping the proverbial Monte Carlo hammer and trying all machines is not feasible. But this 

means an agent must learn a strategy for exploration. A relatively simple solution is to give the agent a 

probability parameter. In 95% of the cases, it selects the slot machine it has learned to be best, and with 

a small 5% change, it selects a completely random one.  This strategy is known as “epsilon greedy”. 
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Figure 2 Data requirements for various RL algorithms [88]. The 100 percent mark on the y-axis denotes the human 

performance level. The x-axis shows the number of required training frames. 

1.1.2 Data inefficiency 

RL algorithms such as Q-learning, match and surpass human performance for Atari computer games like 

Pong. This is a landmark achievement for an algorithm that has no baked-in knowledge on what Pong is, 

or how to play it. From simple feedback it learns and learns to play it well, discovering typical human-like 

cheats and power-moves along the way.  The downside of learning from simple feedback is the shear 

amount of data it requires. The current state-of-the-art algorithm requires 18 million frames to reach 

human performance [88] (Figure 2). That is 83 hours of equivalent gameplay. Mind you, this is a huge 

improvement over the first algorithm. That required 70 million frames to surpass human players.. 

1.1.3 Performance 

RL is a relatively new field, and this means that currently domain specific algorithms still tend to 

outperform RL within their domain. Atari games for example, can be solved better by more traditional 

Monte Carlo Tree Search algorithms. There are exceptions, most notable Deepmind’s Alpha(GO)Zero 

and MuZero.   

1.1.4 Reward function design 

Designing a reward function that will instill correct or the desired behavior in an agent is non-trivial and a 

somewhat empirical exercise. In particular, it is hard to design reward functions such that an agent solves 

a problem well, and not just barely. An example of this can be seen in the ‘half cheetah’ environment. 

Here the virtual animal has to get to a tile on the right. The reward function gives increasingly larger 

rewards as the cheetah gets closer to this tile. This is in itself not enough for an agent to learn how to 
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move its legs efficiently. And indeed, this environment produces disan endless number of creatures that 

hop upside down, crawl and do other weird and wonderful things.  

  
 

 
Figure 3 Example of a reward function. 

In Figure 3 an example reward function is shown. Here the agent needs to stack blocks on top of each 

other. Height is not sufficient as a reward function. If height is the only criteria, the agent never stacks 

any blocks, but simply places each of them on their side.  

  

1.1.5 Stability 

Agents specialize in solving a certain task in a particular environment. This means that overfitting is not 

really an issue. The problem that does arise is that trained agents are specialized, and their learning 

doesn’t transfer to other environments. This goes so far that identical agents may learn completely 

different strategies in identical environments if started from different random seeds. 

  

Unlike computer vision tasks, the bottleneck in RL is not feature representation. Lessons learned from 

super-vised learning in those domains don’t apply to RL. Neither is there an ImageNet pre-training 

equivalent in RL.  

  

Lastly, RL algorithms suffer from (massive) instability while training. Much more than, for example, image-

based generative models. Hyperparameter (a parameter whose value is used to control the learning 

process) tuning and thus getting reproducibility is incredibly difficult. Doing research is hard when your 

algorithm is both sample inefficient and unstable. 

 
 

 
Figure 4 Taxonomy of reinforcement learning strategies. 

 
Q-learning from zero 
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The world of RL may broadly be divided into model-free and model-based approaches. Remember, an 

environment provides an agent with a reward for the state the agent entered, next to the available actions 

that might be taken. The model denotes the agent's understanding of the universe it operates in. An 

example of a model-based approach is playing chess, where the agent is fully aware of the rules of the 

game. The initial AlphaZero release used traditional tree search to map out potential game moves, 

something that is only possible if you know the model (the rules of the game), next to neural networks to 

evaluate actions and states.  

  

Conversely, model-free approaches assume nothing, and learn from reward alone. They are split into 

policy optimization methods and so-called Q-learning. We will use a Q-learning example to introduce this 

type of RL in a slightly more formal way. 

Base concepts 
1. The Return: G(t): Also known as future reward. It is the total sum of discounted rewards R through 

time. 
2. The Value-function: V(s). Table or function telling you how good being in a certain state is.  
3. The Q-function: Q(s, a). An imaginary score table telling you how good a certain action a in a 

certain state s is.  As this table can be infinitely large for anything but simple toy examples, this 
is often a (trained) neural net. 

4. The Advantage-function A(s, a) defined as Q(s, a) – V(s). This may seem a bit redundant, but it 
indicates that certain actions in a state are significantly better than the average.  

5. The policy: π(a|s) is the distribution defining what action an agent should take, giving a state. 
Normally this is learned, but implicit in this q-learning example. 

 
More formally, the return G is defined as:  

 
Note the discounting factor gamma. It is between 0 and 1 and balances future rewards as they may not 

have immediate benefits and might be more uncertain. There is no discounting for the first term! This will 

allow us to later reformulate and split G in terms of the immediate reward, and the discounted (estimated) 

future. 

  

The value function V(s): 

 
Here π denotes a policy, which governs agent behavior. The E function denotes the calculation of the 

expectation value. Again informally: the state-value is the expected final return given the fact that the 

agent is in state s at time t. 

 

The Q-function Q(s, a): 

 

 

 

Informally: the expected final return if the agent takes action a in state s at time t 

In Q-learning, the agent learns this Q(s, a) function. For toy-like problems, it is a table: 
 

 
For every state and every action, it has a certain Q value. The higher the value, the better that particular 

action for that particular state is. A trained agent simply looks up the state he is in, and then selects the 

maximum Q-value action. Again, this approach is model-free because there is no extra a priori knowledge 

in this table about the environment or its rules. 
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Now learning this Q-function might seem very straightforward. The optimal policy is simply to always take 
the best action in a state, and these state-action pairs are stored in the Q-table or provided by the Q-
function: 

 
 
 
 

 
Figure 5 Monte Carlo epsilon greedy Q learning. 

 

After an episode is complete, you update the Q-values accordingly with all the discounted rewards that 

were collected for the actions you took and states you were in. And then normalize. To ensure exploration 

in the learning, you can use the epsilon-greedy approach. With a small probability the agent may also 

choose a random action in a state, and not the action with the maximum Q-value. 

  

There are several significant downsides to this approach. Firstly, it needs complete episodes to learn 

from. Secondly, it suffers from high variance and is beyond inefficient. We will therefore introduce two 

more concepts that are central in RL: Temporal Difference Learning and the Replay-Buffer.  

1.1.6 Temporal Difference Learning 

 

Informally, we would like the agent to learn while it interacts with the environment. In the previous 

example, it needed complete episodes before updating the Q-table with the collected rewards. In temporal 

difference learning (TD), the agent learns or updates from rewards collected every action. This means 

that all learning is done from Q and V values at a time t and t+1. A pair of two. Instead of playing an entire 

game of chess from start to finish, the agent takes a (state, action, reward, next-state) pair and performs 

a learning update.  

  

Slightly more formal, TD updates using existing estimates rather than actual rewards and complete 

returns 
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Figure 6 Learning strategy using only two states. 

 
 

 
Figure 7 Setup using a replay buffer. 

1.1.7 Replay-Buffer 

In TD, an agent basically learns from sampled pairs of two. It turns out, that in practice it is much faster 

and better to learn from uncorrelated sampled pairs of states, actions and rewards. This means that if our 

agent learns to play chess, not only does it not learn from complete games. It learns from collected game 

moves, that come from different games and different moments in the game all together.  

 

This brings us the replay-buffer. The replay buffer is simply a place to store collected (state, action, 

reward, next-state) pairs that come from an environment. Initially the agent does nothing but collect these 

pairs. When the buffer is full, the agent samples those pairs, and performs a learning update. 
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2 Literature overview   

2.1 Introduction to the state of the art 
Artificial intelligence (AI) has evolved tremendously in the past decade. In recent years, data has proven 

to be precious as an enabler to enhance many engineering systems through AI. Examples include human 

face and voice recognizers, revenue forecasters for companies, mailing and calendar managers for 

individuals, among many others. Artificial intelligence can be divided into several categories as shown in 

Figure 8, which highlights the most recent trends: Deep Neural Networks, Ensemble Methods and 

Reinforcement Learning (RL).  

In the scope of ASIMOV, while several of these techniques can be used, the focus is expected to be on 

RL, and thus RL will be considered here. This follows from: (i) traditional approaches to control and 

optimization problems that do not rely on simulators/digital twins or actual system data, such as optimal 

control, genetic optimization that have been extensively considered and in the applications at hand and 

their limits are already stretched;  indeed in the applications considered in the ASIMOV project, AI 

techniques can bring significant breakthroughs; (ii) the fact that other forms of learning, and namely 

supervised learning, require a supervisor to label good and poor decisions. Labelling good and bad 

decisions to train a supervised learning algorithm would be impractical in the industrial use cases 

considered in ASIMOV. For example, for electron microscopes or for unmanned utility vehicle, it is very 

hard even for a human expert to access which actions are responsible for good or poor behavior of the 

system. It is rather a policy determining multitudes of actions for multitudes of system states that ultimately 

leads to a good or poor system behavior.  Reinforcement Learning pertains to decision-making problems 

in real-time where decisions are taken based on previous experiences/data, based on very limited 

feedback information namely a reward for the overall behavior of the system, rather than an assessment 

on the usefulness of each action. This reward will most often be limited as it does not label good and bad 

decisions, and hence the problem of finding a policy for actions based on this reward is rather challenging.  

The real-time feature is crucial in the context of the use-cases considered in ASIMOV, e.g., the decisions 

on how to adjust a knob for an electron microscope need to happen while operating it. 
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Figure 8 Machine learning taxonomy. Reproduced from [87].  

 

Reinforcement Learning (RL) can be carried out completely independently from models [3], i.e., the 

learning process for decisions policies just relies on experience/data from a real system. This is perhaps 

the most well-known form of Reinforcement Learning, where one can include algorithms such as Q-

Learning, Temporal Difference, Actor Critic, Policy Gradients among many others. An introduction to 

Reinforcement Learning where these concepts are detailed can be found in Chapter 1 of this document 

– Introduction and more extensively in references [2] and [3]. However, on the one hand, the amount of 

data that is needed to run such algorithms is typically many orders of magnitude larger than what is 

physically/computationally possible, limiting their applicability in real-world scenarios; this is commonly 

known in the literature as the poor sample efficiency of the associated RL methods. On the other hand, 

it seems rather ineffective to ignore the models obtained from years or research following model-based 

approaches, when they often provide acceptable and even close to optimal performance. 

However, there are also many RL approaches that rely both on models (either analytical models or 

simulation-based models) and data, or just on models, which will be surveyed next. As a simple approach 

one can replace the real system with a simulator, apply one of the aforementioned methods (Q-Learning, 

temporal difference, etc.), and transfer the resulting policy to make decisions for the real system. Yet, 

there are many other methods that depart significantly from this, as discussed in the sequel. 

If we interpret a digital twin as a simulator, many of these methods directly apply to digital twins. However, 

thinking of a digital twin as a simulator is often reductive. Digital twins (DT) should be understood as 

‘living’ extensions of models that mimic the behavior of their digital twin based on real-time data. In fact, 
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a DT is a multi-physics & multiscale virtual model of a component, product, system and/or process, which 

is connected to real world by ways of data through its entire lifecycle and can contain closed-loop and 

open-loop block components. Rather than a one directional digital shadow of the process, a digital twin 

is a two-way process: it mimics the process and influences the process. The differences between a digital 

model, a digital shadow and a digital twin are illustrated in Figure 9. 

 
Figure 9 Illustration of the differences between a digital model, a digital shadow and a digital twin. Reproduced from 

[50]. 

More precisely, digital twins integrate physical, software and hardware models to form an up-to-date 

virtual representation of actual cyber-physical systems (CPSs) in operation updated based on data. The 

three main ingredients according to  [1] are 

• a model of the process/system,  

• an evolving set of data relating to the process/system, and  

• a means of dynamically updating or adjusting the model in accordance with the data. 

Reinforcement Learning approaches that rely on (static) models are primarily surveyed in [8], but some 

works that rely on (‘living’ or online) combined online and offline approaches are surveyed in [12] and [13]. 

The reasons for this are twofold. First, the limited number of Reinforcement Learning approaches that 

directly rely on a digital twin but rather on (static) models/simulators; this is also related to the difficulties 

of modeling digital twins. Second, approaches that rely on models/simulators can be adapted to deal with 

digital twins and incorporate their extended features. For instance, if the process being replicated by the 

digital twin changes slowly (compared to the time constants of the system dynamics) one can rely on 

Reinforcement Learning techniques that assume static models/simulators, and furthermore set up an 

adaptation loop to account for the slow process changes. 

In the remainder of the chapter an overview of reinforcement learning approaches and methods is given. 

The literature about Reinforcement Learning is by now very extensive and it is beyond the scope of this 

document to provide a complete survey. Thus, only the references deemed closer to the project are 

surveyed. Then more details on the methods deemed to be closer in spirit to the goals of ASIMOV are 

given, and finally some methods that combine RL and DT are mentioned. 

2.2 Overview of Reinforcement Learning approaches and methods 
It is important to start by mentioning that RL is not a mature field; there are many scattered methods and 

variants, and researchers refer to the same methods by different names. Hence, the perspective and 

highlighted methods provided in this overview might not be consensual, even among experts in the field. 

Here, we follow more closely [2] rather than the perhaps most standard reference [3], although some 

methods from [3] are also highlighted. This choice is motivated by the fact that [2] considers mostly 

simulation-based settings whereas [3] focusses on experimental-based setting. Therefore [2] is closer in 

spirit to the present project ASIMOV. However, there are many other important methods in the literature 

not covered in [2] and for those we rely mostly on the survey paper [21]. Specific methods that use digital 

twins are also discussed.  

In [2], reinforcement learning is divided into several subfields. First, there are approaches that rely on:  
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1. Approximations in value space, where the cost-to-go or value function that encapsulates the 

reward/cost associated with a given action is the main focus. Once the value function is 

determined or approximated, the control policy (specifying actions as function of states) follows 

easily from searching for the decision that optimizes such value function. The approximation 

technique can be based on (deep) neural networks [14] or other forms of parametric 

approximation (an architecture that is off-line fitted based on data), or on-line simulation-based, 

which is especially interesting in the context of ASIMOV. 

2. Approximation in control/policy space, where the control policy (decisions) that lead to best 

performance/reward for the system are directly searched. Policy gradient methods are prime 

examples, typically building on the key policy theorem [4]. Another example is expert learning 

where the system learns from the decisions of a human operator, which can be very interesting 

in the context of ASIMOV (e.g. a system can rely on experience from an operator calibrating an 

electron microscope).  

3. Approximations in value space and in control/policy space, which are combinations of the two 

previous approaches. Actor-critic methods are prime examples. 

Second, there are optimal and approximate methods. For simple (low-dimensional) problems, tabular 

methods can lead to optimal behaviour. However, since for high-dimensional problems, such as the ones 

addressed in ASIMOV, some form of approximation must be carried out due to the curse of 

dimensionality, we shall focus on approximate methods.  

Third, according to [2], one can divide RL into (i) model-based approaches, where at least some form of 

prediction (e.g. in computing expected values if the model is stochastic) uses analytical computations 

based on a model and (ii) model-free approaches, where all forms of prediction rely on data and 

simulators (and not on analytical methods based on models). This is a confusing nomenclature in the 

context of ASIMOV. In the context of ASIMOV, a digital twin can be a simulator and thus methods that 

would rely simply on this simulator and not on analytical models would be considered as model-free 

methods. Moreover, model-free methods do not distinguish from methods that use a virtual 

simulator/digital twin from methods that use real data from system experiments/experiences. Thus, this 

nomenclature will not be used here, I.e., here methods that use digital twins will be referred to a model-

based reinforcement learning methods, rather than model-free methods. 

While [2] sets the groundwork for methods used in Reinforcement Learning and provides several methods 

that rely of simulations of models such as stochastic rollout and Monte-Carlo tree search, it does not 

exhaustively survey the model-based RL approaches. Hence, we rely not only on [2] but also on the 

recent survey paper [21] to provide a short overview of such methods.  This overview is given in Figure 

10 and explained next. For convenience the references provided next will also include the author and 

year information to match with the ones provided in Figure 10.   
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Figure 10 Summary of model-based reinforcement paper considered in the present document. 

 

Model-based reinforcement learning methods are divided as follows in reference [21].  

1) Model known, planning based (denoted by Explicit Planning on Given Transitions in [21]). This term 

pertains to problems where the model is known, and planning methods can be carried out based on this 

model. Especially interesting are planning methods that rely on simulations. Prime examples are games 

where the transitions/model is completely known. Model-based RL methods that have been proposed in 

the literature include the stochastic rollout for TD-Gammon [22, Tesauro, 1995a], also further developed 

in [2, Berstsekas, 2005], Monte-Carlo Tree Search  [9, Browne et al., 2012] used in [24, Silver et al. 

2017a], a famous paper that applies model-based RL for the Alpha-Go game. Also for the Alpha-Go 

game, a method known by Expert Iteration is proposed in [23, Anthony et al., 2017], see also [25, Feng 

et al. 2020]. 

2) Model learned, planning/simulation based (referred to as Explicit Planning on Learned Transitions in 

[21]). When the model is not known it can be learned from data, via system identification techniques. 

Then planning can be applied to obtain control policies. The methods under this class differ from the 

system identification technique. PILCO [6,Deisenroth and Rasmussen, 2011] is a famous method which 

has led to extraordinary results in some common benchmarks control problems such as the inverted 

pendulum. PILCO uses Gaussian processes for (nonlinear) system identification and then relies on policy 

search over a class of parameterized policies with sophisticated tools to compute policy gradients. 

However, Gaussian Processes do not scale to high dimensional systems, and the method is limited to 

applications with low-dimensional state sp    aces. Differently from PILCO, iLQG [26, Tassa et al., 2012] 

uses quadratic approximation of the reward/cost function, linear approximation of the transition function 

(model), and online trajectory optimization, typically based on model-predictive control. Another trajectory 

optimization method is Guided Policy Search (GPS) [27, Levine and Abbeel, 2014]. GPS trains a 

parameterized policy in a supervised way by generating guiding samples with differential dynamic 

programming. Guided Policy Search (GPS) can be seen as a way of transforming the iLQG controller into 

a neural network policy. Stochastic Value Gradients (SVG) [28, Heess, 2015] is a variant which aims at 

reducing learned model inaccuracy by computing value gradients along the real environment trajectories 

instead of planned ones.  Probabilistic Ensembles with trajectory sampling PETS [29, Chua et al., 2018] 

consists of an uncertainty-aware deep network to further model uncertainty in the transition probabilities 

(model), and combining this with sampling-based uncertainty propagation through probabilistic 
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ensembles. For a policy combining some of the ideas mentioned but using video as input to obtain 

decisions, see Visual Foresight [30, Finn and Levine, 2017]. 

3) Model learned, experiments/simulation based (referred to as Explicit Planning on Learned Transitions 

with Hybrid Model-Free/Model-Based Imagination in [21]). Rather than simply learning and using model 

to plan, the model can be used to generate virtual experimental data and combine it with the typically 

reduced already existing experimental data. This leads to a considerable increase of sample efficiency. 

A prime example of this framework is Dyna [12,13, Sutton, 1990, 1991], see Figure 4. Dyna not only uses 

the samples from real experimental to update the policy function but also uses these same real 

experiments to learn a transition model. Model-based imagined “virtual samples” are added to the real 

samples to improve the policy. There are many improvements and variants in the literature. For instance, 

Local Model [31, Gu et al, 2016] merges the backpropagation iLQG approaches with Dyna. Model-based 

value expansion (MVE) [32, Feinberg et al, 2018]  is similar to the algorithm in [31, Gu et al., 2016], but 

controls for uncertainty in the deep model by only allowing imagination to fixed depth. Model-based 

Reinforcement Learning via Meta-Policy Optimization (MP-MPO) [33, Clavera et al., 2018] learns an 

ensemble of dynamics models and then learns a policy that can be adapted quickly to any of the fitted 

dynamics models with one gradient step. GATS [34, Azizzadenesheli et al., 2018] uses generative 

adversarial network in a similar context for obtaining a dynamic model and Model- based Policy 

Optimization (MBPO) uses short predictions with ensembles [35, Janner et al., 2019]. 

 
Figure 11 Dyna-Q, is a simple architecture that integrates models and experience [3].   

 
4) Latent model learned, planning/experiments/simulation based (referred to as Explicit Planning on 

Learned Transitions with Latent Models in [21]). Latent models is a more compact alternative to the 

standard probability transition model. A latent model can simply be a state space representation, and 

their parameters suffice to fully characterize a model, rather than requiring transition probabilities to be 

known for every state.  Latent models can be used for the different functions in a reinforcement learning 

algorithm wherein planning occurs in terms of this latent model. Latent models are important in 

applications where measurements are obtained based on video inputs. A popular application is in the 

Atari games [36, Oh et al., 2015] which was developed further into a more general framework Value 

Prediction Network (VPN) [37, Oh et al., 2017].  SimPLe [38, Kaiser et al. 2019] also uses video input but 

the latent model is formed with a variational autoencoder that is used to deal with the limited horizon of 

past observation frames. In turn, PlaNet [39, Hafner et al. 2018] trains a model-based agent to learn the 

dynamics from images and choose actions through planning in latent space with both deterministic and 

stochastic transition elements. Dream to Control is a concept introduced in [40, Hafner et al., 2019] by 

which world models enable interpolating between past experience, and latent models predict both actions 

and values. Plan2Explore [41, Sekar et al., 2020] is a recent work that aims at leveraging reinforcement 

learning with latent models for transfer learning. 
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5)  Model learned, planning learned (referred to as End-to-end Learning of Planning and Transitions in 

[21]) remarkably aims at learning both the (transition) model and the planning procedure. In other words, 

the neural network represents both the transition model and runs the planning steps. There are several 

recent methods in this direction, see VIN [Tamer et al., 2016], VProp [Nardelli et al., 2018], TreeQN 

[Farquhar et al., 2018], Planning [Guez et al. 2019], I2A [Weber et al. 2017], Predictron [Silver et al. 

2017b], World Model [Ha and Schmidhuber, 2018b], MuZero [Schrittwieser et al., 2019]. Details are 

omitted since these methods are not in the spirit of ASIMOV. 

2.3 Methods of special interest to ASIMOV  
In the scope of ASIMOV the idea is to design first a digital twin of the process (e.g. Electron Microscope) 

and then use learning tools to design policies based on simulations from this digital twin. This description 

fits very well within the methods described above that fall into the second and third categories of model-

based reinforcement learning, i.e.,  model learned, planning/simulation based (referred to as Explicit 

Planning on Learned Transitions in [21]; and model learned, experiments/simulation based (referred to 

as Explicit Planning on Learned Transitions with Hybrid Model-Free/Model-Based Imagination in [21]). 

All the methods described under these categories can be used for ASIMOV.  

Of special interest for models where real data can be combined with synthetic data obtained with the 

digital twin is Dyna-Q, the simple architecture proposed in [12,13] that integrates models and experience 

as summarized in Fig. 11. Experience can both be used to make better models, which can then be used 

to plan decisions, or to apply direct decisions based on experimental data based methods. This is a 

fundamental paradigm useful in the ASIMOV use-cases that have very limited experimental data and can 

leverage this framework for sample efficiency. Another important method is PILCOS [6] for problems with 

low dimension.  In essence, it is a policy gradient method which uses smart approximation to estimate 

the influence of changing the policy in terms of performance through a gradient based numerical method. 

The main bottleneck is the curse of dimensionality. For higher dimensional problems iLQG [Tassa et al., 

2012] and Guided Policy Search (GPS) are very strong options.   

 

While the full model is often not available in the use-cases of ASIMOV, the methods that assume that the 

model is known are still powerful methods such as stochastic rollout and Monte Carlo tree search and 

can either be directly useful or adjusted for the problems at hand. Stochastic rollout [10,11] is an 

approximate method for optimal control problems with stochastic disturbances in which (Monte-Carlo) 

simulations are used to approximate the costs-to-go when a so-called based policy is used. The 

consequence of each action at a given stage is evaluated based on these simulations and best decisions 

are selected. Monte-Carlo tree search methods [7,8,9] operate similarly but consider larger depths or 

lookahead horizons for decisions and prune which decisions to consider based on adaptive sampling 

schemes. 

 

2.4 Digital twin based RL methods 
Compared to model/simulator based RL there are relatively few works that exploit the enhanced features 

of a digital twin. Here a few of these works reviewed.  

The use of digital twins is motivated by the fact that RL methods require large volumes of data. Digital 
twins can be used for accelerating the training phase in RL by creating suitable training datasets. These 
synthetic datasets can be cross-validated with real-world information. In [20] a framework for 
implementing a DT-driven approach for developing ML models is presented for an industrial use case . 
In [19], a similar framework to the one pursued in ASIMOV is applied to complex production and logistic 
systems, see Figure 12. Digital twins have also been used in the aforementioned approach of first 
designing the digital twin, then applying a standard RL method that learns based on the digital twin data, 
and finally applying it to the real system in many contexts. See [16] of such an approach for resource 
allocation policies to maximize the long- term energy efficiency, [17] for a robot arm application, and [15] 
for an application to manufacturing plants. While DT can be obtained from AI methods (see, e.g., the 
survey [18]), this is not the focus of ASIMOV. 
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Figure 12 Reproduced from [19] in which this framework is proposed. 

 
 
An established platform in the field of Digital Twin and AI is Bonsai [85]. It is a semi-automated platform 
for training AI systems using simulators. Bonsai intends to enable non-data scientists/engineers to 
implement industrial AI solutions.  
Although superficially Bonsai tries to address partially similar concepts as ASIMOV, the platform lacks 
transparency and adaptability to address the complex systems we are addressing in ASIMOV and is only 
available on Azure infrastructures. The level of control over the training and the simulators needed for 
ASIMOV is significantly higher than provided by Bonsai. For example, if the Unmanned Utility Vehicle use 
case of AVL acts out of its operational bounds, it may lead to significant damages or even loss of lives. 
This requires control beyond a closed single-vendor system. However, Bonsai may serve as a quick 
prototyping platform for some use cases and as an inspiration for system architecture decisions, as will 
be worked out in WP4. 
 

2.4.1 Functional view 

From an abstract, functional perspective the training process is shown as an optimization process in 
Figure 13 (using the IDEF0 format [55]: input arrows impinging from left into the function box, outputs 
exiting at right, control inputs into the top; arrow from below indicates the system performing the function). 
From this perspective three major functions can be distinguished: the controller function, the modelled 
behaviour function, and the ‘AI-function’. The controller (Optimization Control System) decides how well 
the training proceeds, and if the process should be stopped. The function F1 (performed by the Digital 
Twin) is responsible for creating the (modelled/simulated) system behaviour (expressed as ‘system 
output’). Function F2 is responsible for learning from the behaviour provided to it, and for suggesting new 
settings in order to learn more. This is obviously performed by the AI system. The diagram also indicates 
on the arrows the essential information needed to enable the training. To realize a real solution for 
industrial application, these functions and information streams must be mapped to an implementation, 
see section 2.4.2. 
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Figure 13 Functional diagram of the training process. 

  

2.4.2 Information flow structure 

Reinforcement learning is a cause-and-effect learning using the interaction with the environment. 
Learning by interaction is a fundamental idea in all learning strategies. The objective is how to convert a 
situation into action and to maximize a numerical reward signal. Trial-and-error search and delayed 
reward are two important features of reinforcement learning. At high level, reinforcement learning has the 
following main elements: an agent, an environment, a policy, a reward signal, a value function and 
optionally a model of the environment. 
An agent is both learner and decision maker; it must sense the state of its environment at some level and 
take actions with a goal (objective) to achieve the desired impact on the state. The agent must be able to 
learn from its own experience and make a trade-off between exploration and exploitation. 
The thing an agent interact with is called environment. An agent selects actions and the environment 
responds to it and presents its new situation to the agent. The agent cannot influence/impact the rules of 
the environment. 
A Policy defines the learning behaviour of the agent at a given time. It is kind of stimulus and response 
rules. It can be stochastics i.e., specifying probabilities for each action. 
A Reward signal defines the goals of the reinforcement learning problem. The main goal of the agent is 
to maximize the reward signal in long run.  
A value function, reward signal tells what is good in intermediate terms value functions tells what is good 
in log run. Rewards are primary sense and value is the main goals in long term. Reward is given by 
environment, but value must be estimated and re-estimated from the sequence of actions taken by agent. 
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Figure 14 Information flow in a pipeline. 

  
Digital twin will generate data that will be pre-processed and in labeling step, policy, environment, actions, 
reward, value function and model is defined. Learning happens in training. Later it is used in inference to 
provide input to the digital twin and physical system as well. Digital twin will get the physical system 
response and generate new data for the next iteration.  
In the multiple iterations there can happen three scenarios 1) data drift 2) concept drift 3) either small or 
no change happen in data or concept. In the first case retraining helps and either online training or 
incremental training can be employed. In the second case usually retraining is used to train a new model 
for the new concept. In the third case normally, no training is required, usually post processing is added 
to adjust the output.  
To manage the iteration cycle, Machine Learning (ML) life cycle management is used. That is built on 
machine learning operation formally called MLOps. ML lifecycle management [78] is essential part of 
continues integration and continues testing (CI/CD). ML lifecycle management on public cloud [79] is also 
supported. Azure [79], Amazon SageMaker [80], Google Cloud AI Platform [81], MLflow [82], TensorFlow 
Extended (TFX) [83] is mainly for deployment. 

 
2.5 An initial assessment of strategies 
 
The different Reinforcement Learning algorithms provide benefits and disadvantages when used in 
specific situations. For scenarios which differ from the standard RL testing environments, their 
performance cannot be estimated at the current state of planning. The identified generally suitable 
algorithms can however be used to have a basis of possible algorithms that need to be looked at. As 
more use-case-specific benefits and disadvantages can only be observed when working with these 
algorithms, their applicability inside the ASIMOV solution were. Some properties, like the dimensionality 
of the state and action spaces, as well as information if the actions need to be discrete or continuous will 
determine the usability of each algorithm. Computational efficiency and their robustness to model 
imperfections, like the ones provided by a digital twin, will further determine which algorithms can be used 
for ASIMOV. The choices made in the mentioned respect for the specific use-cases and the results can 
be read in WP1. 
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3 Preliminary Approach 

3.1 Unmanned Utility Vehicle - Sub Use Case 1 
Looking at the first sub use case of the Unmanned Utility Vehicle, the focus lies on creating an efficient 
test plan for vehicles in a given environment. The goal of these test plans can either be identifying critical 
scenarios, in which faulty perception or acting leads to dangerous traffic situations, or it can serve the 
purpose of efficiently gathering data from the vehicle's sensors in different driving situations and 
operational areas. The last goal is also to gain representative data that can be used to efficiently create 
behavioural models or find the parameters for physical models of certain vehicle components. 
 
A test plan will consist of multiple individual test cases, which describe concrete instances of traffic 
scenarios. These traffic scenarios describe the dynamic surroundings of the vehicle under test. Such 
could be the speed of an overtaking car, the moment a pedestrian walks on the street, etc. In addition to 
the definition of these dynamic scenario descriptions, also static properties of the surroundings are 
described in a test case. Such properties can e.g. define the time of day, weather, road pavement, tree 
density at the roadside, etc. 
 
There are endless possible combinations of different parameters to define instances of these test cases 
and since testing time is limited, not every combination can be tested. Hence, a system is needed, that 
systematically suggests test cases, based on the results of already tested combinations. Of course, as 
more measurement data is generated by more test cases, always leading to new data with some kind of 
new information, certain stop requirements need to be implemented. This can either be expressed as 
something like the overall time of testbed usage, or some quality metric of the collected data. 
 
To evaluate the effectiveness of a test plan, the resulting data has to be analysed. Ideally, a non-
redundant data set is acquired. Meaning that every datapoint inside the entire data set inherits information 
which is not included elsewhere in the data set. 
 
To realise such a system, an AI-learning technique is needed, which can optimise the sequence of test 
cases. In the end, the overall generated dataset is most important, while the individual test cases 
themselves play a lesser role. This, as well as the sequential character of the task, makes reinforcement 
learning agents suitable for this task. 
 
In order to make the system robust against variations of the vehicle under test, the training of such an 

agent will use a virtual vehicle and not a real vehicle on a testbed. That way, the training process can be 

sped up and variation of the vehicles under test can be implemented and automated. The use of such a 

virtual vehicle can be seen as the digital twin, which is used to pre-optimize the system, the test plan 

generation in this case, before applying it on the real test system. A direct link between the digital twin 

and the real vehicle is unlikely, as the purpose of the use case lies in testing the vehicle and having a 

digital twin of this exact vehicle before starting is usually not the case. 

 

When it comes to selecting a suitable reinforcement learning algorithm, we need to take the following 

challenges into account: 

• Continuous and discrete action spaces: when creating the variations of test cases, several 

parameters that define such a specific test case are discrete values (e.g. selecting the type of 

Traffic participant, road segments, etc.) while others are continuous (ego vehicles initial speed, 

time of day, etc.) 

• High dimensional action spaces: The description of a test case requires a lot of variables. The 

RL agent shall be able to cope with the resulting high dimensional action space. 

 
Unmanned Utility Vehicle - Sub Use Case 2 
The second sub use case focuses on the optimization of a sensor's perception, which is essential for the 
vehicle's safe operation. To measure the quality of the perception, the sensor’s output has to be compared 
with the actual surroundings of the vehicle, while it moves through an environment.  
In the training and operational phase, the environment of the vehicle will be virtual, which makes the 
segmentation process very effective. 
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During the actual optimization process, the results from the comparison of these segmentation images, 
serve as input for the reinforcement learning agent, which proposes new internal parameters for the 
sensor, as well as varies the positioning and orientation of the sensor on the vehicle. As especially the 
repositioning of the sensor on the real vehicle cannot be done easily, the optimization is initially done on 
a digital twin of the vehicle and afterwards transferred and tested on the real vehicle. 
 
3.2 Electron Microscope 
Properly setting up electron microscopes is a labour intensive and repetitive job. It is also a continuous 
process, depending on a whole host of factors, from the microscope itself, to its operating environment, 
or simply the time it has been in operation. Short of human intuition there isn’t a fixed recipe to tune 
microscopes. Operators do commonly look at the acquired images to infer clues on the current state of 
the microscope, one of these being the so called Ronchigrams. 
 
In short there are three components in play. Firstly, there must be a form of feature extraction that takes 
microscope images and maps or transforms them into parameters. Secondly, these parameters can then 
be used as input for a reinforcement learning algorithm. Lastly, this means that a digital twin also needs 
to be able to generate synthetic images that adhere to the same (unknown) distribution as the real images.  
 
Currently the only digital twin (model) we have deployed is a surrogate simulator that generates synthetic 
Ronchigram images according to pre-set aberration parameters. We also have a trained regressor that 
can blindly ascertain the original aberration parameters from a single synthetic image. Given that there is 
no complete digital twin as of yet, and the fact that the simulator is governed by known equations, we 
currently see a number of ways forward.  
 

3.2.1 Offline reinforcement learning 

Looking solely at the (S)TEM use case, the current Thermo Fisher Scientific simulators are not nearly 

real-time. They can, however, deliver sufficient amounts of data covering a wide range of settings or 

parameter-space suitable for machine learning.  

Offline reinforcement learning seeks to find policies without any live interaction with an environment. 

Instead, it has to learn from previously logged transactions. Obviously, this is very promising for RL 

systems that will be deployed and for which a learning environment doesn’t exist. 

However, prior collected training data will naturally never cover the complete state-space of the 

environment almost by definition. This means that agents need to learn how to deal with new unseen 

state-action pairs. Often this means that agents should not drift into unknown states and avoid actions 

whose rewards or consequences can’t be predicted from the logged transactions. Common problems 

include agents being overly optimistic for new unseen actions, resulting in poor policies. This is countered 

by balancing the need to learn policies that maximize the return, whilst making sure they remain close to 

the support of the logged transactions. [60,61,62,63]. 

As the environment (or digital twin) has yet to be built, training RL algorithms on existing static datasets 

could be a good first step.  

3.2.2 Physics (informed) Machine learning 

Recently there have been developments where machine learning algorithms either completely replace 

traditional partial differential equation (PDE) solvers [8] or incorporate (differentiable) physical models in 

their architecture or loss function [9].   

Purely data driven supervised ML models that replace solvers, for example for solving Navier-Stokes 

equations have been shown to generalize surprisingly well [64, 65, 66, 67]. Their other immediate 

advantage is that once trained, they are significantly more computationally efficient.  

Backpropagation may also be used to find solutions for physical models by defining a network that 

explicitly encodes the differential equations [68]. Other options are to use an existing physical model in 
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the loss function, during training. This gives the ML algorithm a priori information and ensures the solution 

space gets restricted in certain locations. Work from [69] leveraged a neural network next to an iterative 

PDE solver to correct its numerical errors.  

Although novel, this subfield is promising for Thermo Fisher Scientific cases. It currently uses traditional 

physics-based models to simulate certain parts of the (S)TEM. Potentially, both the RL agent that learns 

from the digital twin, next to the digital twin itself, may profit from the interplay between ML and a known 

physics model. This also means that the border between the twin and the agent gets blurred.  

3.2.3 Distribution mismatch 

Currently, there is a significant gap between real microscope images and those from the Thermo Fisher 

Scientific simulators. We expect this to remain the case for the foreseeable future. Currently research is 

underway to close this gap. The following avenues are currently explored: 

• Generative models 

• Metric learning 

• Semi-supervised learning 

Generative and in particular generative adversarial nets (GAN) based models [74] may be trained to 

generate image-to-image transformations [73], whilst keeping certain aspects intact. The primary 

challenge here is that TEM images are measurements of real physical phenomena. These properties 

must remain intact, irrespective if the image looks ‘real’ to a casual observer. Work from [72] added such 

constraints and is an avenue that will be explored. This is however a relatively novel field with little 

published work. 

Metric learning aims to ascertain embeddings where certain feature vectors are close. Here this would 

mean finding embeddings that are dependent on lens aberrations alone, and less on the visual 

discrepancies between real and synthetic data.  

Lastly, the family of recently developed semi-supervised methods offers a possibility to combine real and 

synthetic data. In particular as this data doesn’t need to be labelled for the most part, and due to the fact 

that it is much easier to generate enormous amounts of such data with a twin or simulator.  Robust 

features might be learned from siam-network alike approaches such as SimCLR [75] or its descendants 

[76]. Lastly there might be lessons learned from the progress in language modelling, in particular BERT, 

for attention-based unsupervised learning of features [77]. Ideally this will lead to a situation where the 

bulk of the feature learning can be done from synthetic data and a pretext task. 

 
3.3 Input from WP1: commonalities  
The use cases, as described in the WP1 document IR1.1 [86] are: STEM (calibration to get good image), 
UUV.1 (test generation), UUV.2 (sensor placement). The TEM and UUV.2 use cases have more in 
common as the simpler versions of the use case have low dimensionality of inputs; and as intermediate 
output an image with likely a small vector describing the various aspects of image quality (STEM) or 
deviation from ground truth (UUV.2. For TEM and UUV.2, the DT-trained AI is used to optimize the 
physical system. Use case UUV.1 is more elusive: the AI is optimizing the DT and the ability to create 
good test plans. 
 
A commonality aspect not explicitly mentioned in the document is whether the DT is modelled as having 
inherent randomness, or not. This was touched upon in some Asimov internal meetings, and also by the 
fleet aspect and sensitivity of an uncontrollable physical environment in 4.1.2 in the WP1 doc. Also, 4.4.2 
mentions for TEM hysteresis, drift, pollution in the DT and dynamic environment based on limited nr of 
pars for UUV, which from the AI’s perspective could be considered as random or an unknown state. 
Possibly, simpler versions of the use cases have no randomness, in which case simpler techniques can 
be considered. However, there could many reasons why calibration of a different microscope in different 
settings may give different results and the "internal state" or machine properties could be viewed and 
modelled as random. For the UUV use cases, the scenario could be fixed on a higher level (number of 
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pedestrians, type of weather) and details could be random (exact path over time, exact density of rain 
droplets and wind gusts). Parameters governing the randomness (e.g. standard deviation, correlation 
matrices) may be part of the DT input vector. This randomness could perhaps be viewed as an unknown 
state. 
 
The use cases have in common that efficient computation times are needed (4.3.1), however this seems 
slightly contradicted by the later statements; TEM is applied over and over in operation and speed is a 
low priority (not much slower than a human); the UUV’s speed is called high priority, and it is applied 
during development (“deployment for a specific domain of operation by small companies”) in 4.2.2. The 
documents mentions that different control parameters play together towards an outcome (“control 
parameters are dependent”) which likely means the presence of interaction effects; i.e., the effect of x1 
on an outcome depends on the values of x2, x3,… 
 
The output of a DT and reward system are complex in STEM (image based) and UUV.1 (what constitutes 
new, valuable information) for which a reward function must be constructed. “Good output” for UUV.2 will 
be more straightforward: a comparison of sensor measurement versus ground truth. 
 
The consequences for the architecture of learning / system are that:  

- The DT needs to have efficient computation time 
- The DT quite possibly are non-linear in the inputs 
- Reward system for uses cases TEM and UUV.2 need considerable effort 

- Role of “inherent randomness”, and whether it needs to be part of a DT, and to what extent it can 

be handled by RL. 

- Real time decisions are needed as the use cases deal with dynamical systems  

There is limited information about the environment, it is sequential in nature and there is no supervisor 
available 
  
The final DT+ AI solutions will be judged on the following generic characteristics:  

- The amount of training data needed to achieve acceptable results (data efficiency) 
- The speed of learning (convergence speed) 
- The stability/instability of the learning and subsequent operational behavior 
- The success rate of finding an optimum as such (robustness) 
- The scalability with respect to computational resources / distributed training & merging  

 

 
3.4 Suitability of different learning algorithms 
 

3.4.1 The Markov Decision Process as starting point 

Reinforcement learning problems are often modeled formally as a Markov Decision Process (MDP). An 

MDP comprises state S, action A, transition T and reward R; policy and value are other important 

concepts of the MDP. The definitions of these concepts can be found in the introductory part of the 

chapter. MDPs can be described as model-based and model-free solution approaches. 

The goal of reinforcement learning is to find the optimal policy, which is the function that provides the best 

action a given a state s ∈ S. The policy contains the actions of the answer to a sequential decision 

problem: a step-by-step prescription of which action must be taken in which state, in order to maximize 

reward for any given state. In deep learning the policy is determined by the parameters (or weights) of a 

neural network. This policy can be found directly—model-free—or with the help of a transition model—

model-based. 

To find the policy by planning, models for T and R must be known. When they are not known, an 

environment is assumed to be present for the agent to query in order to get the necessary reinforcing 

information. The samples can be used to build the model of T and R (model-based reinforcement learning) 

or they can be used to find the policy without first building the model (direct or model-free reinforcement 

learning).  
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3.4.2 The learning and the planning problems 

3.4.2.1 The learning problem 

Capturing the probabilistic transitions T from state S and action A to state S’ of the environment of choice 

is a natural way of capturing the core of the environment dynamics (model). Therefore in model-free RL, 

there is no learning problem, and all algorithms known to model-free RL are typically solving the optimal 

policy. 

In the use case for ASIMOV, the learning part could comprise the T and R functions of the Digital Twin of 

the TEM or UUV, or the relevant processes within them. In the literature, a digital Twin is mostly a digital 

behaving copy of a real device, system or machine with an online data feeding connection to the real 

twin. 

When a good transition model of the environment of interest is captured, model-based RL is much more 

sample efficient than its counterpart model-free RL, because we are explicitly capturing rules of interest, 

human knowledge, physics rules etc. When working with a faulty or incomplete model of the environment 

of choice, the RL will not succeed at the task of finding a solution of the given model/DT. 

How to solve the learning problem is naturally not easy, there are many methods available to construct 

these functions at different levels of knowledge and abstraction. In the case of RL, building a transition 

model of (parts of) the Digital Twin can comprise many approaches of which we will cover a few in this 

document. 

If we assume that we want to work model-free (without the agent knowing from the transition or reward 

models) as just described, then the environment will just be sampled and the next paragraphs can be 

ignored. Note that the samples here will be used just as the environment generates them and afterwards 

‘thrown away’. 

But if there is any value in trying to be data efficient while having confidence in the fact that a model can 

be given or built for the T and R functions (which can be complex), then the following approaches can be 

considered: 

- Given transitions: T and R functions are known. The transition rules can be derived from the 

problem directly. Those rules are documented and ready to be used. 

- Learned transitions: the environment can be sampled to build the T and R models. 

Combined approaches lead to use the environment and the model samples to train the policy function. 

(Hybrid model-free/model-based imagination). 

 

3.4.2.2 The planning problem 

Solving the planning problem can be done by a computational process that uses a model to create or 

improve a policy. In this process the optimization is usually based on state-space planning or plan-space 

planning. The planning problem, thus, in a sense solves the same problem as model-free RL, but as 

models are used to generate the samples (totally or partially), different methods are used than in model-

free RL. 

Note: Some approaches integrate the learning and planning into an end-to-end approach. While no 

further explanation is provided at this stage about the workings on this procedure more information can 

be found at [2]. In the next section some approaches in this category will be mentioned too. 

3.4.3 Which approaches should we try and why? 

As can be observed, both model-free RL and model-based RL have proven to be useful in solving a 

variety of problems. A model-free RL approach is attractive as the model building for the use cases can 
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be complex and introduce too many errors. A model-based RL approach has the advantage of the 

promise of a cleaner policy given the sample efficiency. 

As the TEM case has components of stochasticity and determinism, and it is not clear which component 

is the primitive it is worth trying an algorithm within each model-free approach. 

From the model-free RL perspective, the approaches that can be tried are as follows: 

• For stochastic problems, often policy optimization algorithms work best à Try PPO or similar 

• For deterministic problems, often value optimization methods work best. à Try DQN or similar. 

• Combinations of both are also possible. à Try SAC or similar. 

From the model-based perspective, a table is provided with multiple approaches, from which the most 

promising should be selected depending on the use case of interest.  

In the TEM use case, given transitions and rewards functions can be considered very unlikely, as far as  

the knowledge today dictates. So approaches based on learned transitions are considered more likely, 

and maybe in the future, end-to-end approaches deserve a try, but should surely be seen as less likely 

given the knowledge build up it requires. 

 

Table 2 Learned transition explicit planning approaches. 

 

Table 3 End-to-end model-based RL approaches. 

 

 

There is another category of learning in RL algorithms that was not mentioned but that can be of use in 

the currently treated use cases. This approach is an imitation approach, in which an agent learns by 

imitating the human expert. In the future months this option should be looked at and considered too. 
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Figure 15 A taxonomy of reinforcement learning algorithms. 
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4 UUV Use Case   

4.1 General Introduction  

4.1.1 Sub Use Case UUV.1: Scenario Generation/Optimization  

Usually, for testing vehicles on a testbed, a test plan has to be created to reflect the needs of the 
function/component under test. The resulting test data gathered often contains many datapoints with little 
new information. The UUV.1 use case aims to improve data quality by adapting the test plan in a way 
that every tested scenario contains as much information as possible. To achieve this higher information 
density, certain elements of the scenario, like the time of day, placement of cars on the roadside or density 
of trees are varied automatically to create a scenario that fulfils the requirements. The two main 
ingredients for evaluating the data are novelty and criticality. Ideally, the gathered data should be as novel 
and therefore as dissimilar to already seen data as possible, while also containing a traffic situation that 
is quantified as critical, by a combination of safety Key-Performance-Indicators (KPIs).  
The optimization will be done using a Reinforcement Learning (RL) agent that proposes modifications to 
a basic scenario as actions and receives an estimate of the novelty value as well as the criticality of the 
modified scenario as a reward. An adaptation to also include comfort KPIs regarding the driving function 
besides criticality KPIs is possible. The basic structure of this use case can be seen in Figure 16.   
  

  
Figure 16 Simplified overview of the UUV.1 use case, that features a Reinforcement Learning-based Automatic 

Scenario Variation to find critical versions of a Scenario 

  
As the character of the state and action vector, the transfer of learned techniques to propose the wanted 
scenarios, and the amount of generated data highly influence the ideal RL algorithm to solve this 
optimization problem, T3.3 shall be used to develop concepts which fit the use case.  
To further elaborate on the use case, the following section will expand the view on the way the RL agent 
shall interact with its environment.  

4.1.2 Action, State and Reward  

The action, being the modifications to the scenario the agent wants to take, is the input for the 
configuration of the environment simulation, which can be coupled with the Digital Twin (DT) or the real 
Cyber-Physical System (CPS). The configuration settings for the environment can be divided into 
dynamic parameters, that define the movement of the traffic participants (cars, pedestrians, etc.) and into 
static parameters that define stationary objects like parked cars, trees or other assets that do not 
contribute directly to the driving scenario itself. The dynamic parts of the scenario shall be considered 
fixed and will not be changed by the RL agent, as there are already methods available to identify critical 
values for these parameters. To limit the changes the agent can propose, initially only a few selected 
static parameters of the environment are changed. These are parked cars on the roadside, the density of 
trees in predefined areas, as well as the time of day. Later in the course of the project, additional 
parameters will be controlled by the agent. Further expansions could be the road surface or even parts 
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of the dynamic parts of the scenario like the velocity of the ego vehicle, as well as the velocity of other 
traffic participants.  
These parameters will be written into a JSON formatted file, which is used to parameterize the simulation. 
Some of the parameters are discrete, others of a continuous type. This has to be taken into account when 
choosing the appropriate algorithm. Additionally, if the number of parked cars is one discrete parameter, 
for instance, this parameter affects the number of additionally needed parameters for positioning the cars. 
These hierarchical parameters are only optional, however, as there are alternatives with conventional 
fixed length action vectors possible, by only considering a fixed number of cars.  
The reward is partially calculated based on criticality metrics. A detailed description of the reward and 
postprocessing in general can be found in the ASIMOV Deliverable D2.2. In short, the criticality part of 
the reward calculation is based on the metrics listed in [A1], where multiple suitable KPIs were selected, 
normalized and combined in a weighted sum. The novelty detection part of the reward is also described 
in D2.2. It is an autoencoder neural network which tries to replicate its input data as output, while going 
through multiple compression and decompression steps. This principle leads to the neural net learning 
the relations between its input. Therefore, the reconstruction error of the network can be seen as a 
quantification of the dissimilarity of the current input compared to the training data of the autoencoder. A 
low reconstruction error represents low novelty of the data and vice versa. By continuously retraining the 
autoencoder, the basis of training data is expanded, and new information can be incorporated in the 
neural network. The anomaly value is then combined with the criticality KPI via multiplication.  
The state provides the basis of information for choosing the next action. In our case, it is represented by 
multiple intermediate results for the KPI calculation as well as the anomaly value of individual data 
channels. That way, it is possible to pinpoint which modifications need to be made in order to improve 
the test plan.  
The objective of sub-use case UUV.1 is to create efficient test plans for vehicles under test in a given 
environment, i.e., to optimize the set of test scenarios for a test plan with respect to the degree of 
challenging the UUV with safety and comfort, e.g., smooth ACC speed change.  
In the first iteration of the sub-use case, we create scenarios that are as (safety-)critical as possible, while 
the next iterations will yield scenarios that are as (safety-)critical as possible and have the maximum 
dissimilarity.  
The RL framework for UUV.1 is an episodic RL task that is using a model-free approach. Within one 
episode, the characteristics of the vehicle do not change. From episode to episode, vehicle characteristics 
are modified slightly for obtaining a robust RL agent (see Section 4.2.2). However, we stay inside the 
vehicle’s operational design domain (ODD). We apply a model-free approach, meaning that we do not 
assume to know the states' transition probability, which provides the estimate of the next state given the 
actual state and action. This environment model could be learned through experience. However, this is 
generally too difficult to achieve in practice, especially for complex systems. 

4.1.3 Sub Use Case UUV.2: Sensor Optimization  

The tuning of sensor and perception parameters in a way that the vehicle can perceive its surroundings 
most accurately is no easy task. To automate this parameter tuning for calibration of sensors, sub-use 
case UUV.2 uses the test plan created in UUV.1 to run a series of tests, in which the ground truth position 
and orientation is used as a reference for comparison with the perceived object positions and orientations. 
As the environment can be virtual even when paired with a real sensor setup, information about the 
ground truth of all objects is available. The goal in sub-use case UUV.2 is to tune the parameters in a 
way that the perceived objects match the ground-truth objects as well as possible, i.e., to optimize the 
sensor’s perception.  
For comparison of the perception results, the resulting segmentation images could be compared. 
However, as the UUV.2 case is dependent on results from sub-use case UUV.1, we proceed in a 
sequential way, and hence a detailed description of input and output datatypes has not yet been created.  

4.1.4 Overall Structure  

For a better understanding of the applied RL approach, we first introduce a mapping of both use cases 
to the ASIMOV reference architecture, developed by the Working Group. This architecture comprises a 
mapping of the UUV.1 and UUV.2 use cases and is shown in Figure 17.  
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Figure 17 Architecture for the UUV use case (following the ASIMOV reference architecture). Boxes denote 

components, arrows denote data flow. Details of the artefacts most relevant to RL are provided in the text below. 

   
A thorough explanation of the detailed architecture is covered in the ASIMOV Reference Architecture. In 
the following section, we extract only the relevant components for the environment consisting of the DT 
and optimization which is realized in the RL and control parts. The individual components of the detailed 
architecture are categorized in three different groups.  

• The Reinforcement Learning (RL) category includes the RL agent, and it is the 
component where the optimization happens. The RL agent takes reward and observation as 
input from the Environment to generate a corresponding action, which goes back into the 
Environment.   
• The Control (CTRL) category includes orchestration and user interface. To have control 
over the RL agent, e.g. to start, stop or track its optimization progress, it is connected to the 
control block. It also controls the training process, switches between operational and training 
mode, and receives diagnostic information. The control user interface (CTRL_UI) processes 
the interaction with the user, e.g. start or stop requests, or switch from training mode to 
operational mode. The control orchestration (CTRL_ORCH) plays a crucial role in controlling 
the entire process. First, it receives diagnostic information from the Digital Twin (DT) and the 
Cyber Physical System (CPS). This can be used to save the CPS from severe damage, when 
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its condition changes or unexpected behaviour is detected. If such an event occurs, the 
CTRL_ORCH needs to interact directly with the physical system to bring it into a safe state. 
In this case, it bypasses the actions provided by the RL agent via the Emergency Control 
arrow. User output in the form of visualized data is also a possibility. The orchestration also 
controls the signal flow of the RL agent together with the selector and merger blocks. 
Depending on the selected phase (training or operational phase), the actions proposed by 
the agent are either input for the CPS or for the DT (or both). Depending on the selected 
phase, the variation of DT is also controlled. Information about the current state of the 
optimization, as well as the general control of the RL agent is also processed by the 
orchestration.   
• The Environment (ENV) element denotes the surroundings that the RL agent interacts 
with. Variation (ENV_VAR) is used to create variations in the DT during the training phase, 
to train a robust RL agent. In the UUV case this would reflect slightly different vehicles that 
could be tested. Selector (ENV_SEL) sends the signals it receives to one or multiple blocks. 
These can be (combinations of) the DT and the CPS depending on being in the operational 
or training phase. Digital Twin (ENV_DT) is the virtual representation of the CPS. Its key 
external interfaces, i.e., its controllable inputs and outputs, are identical to those of the CPS. 
The DT has additional interfaces that are used to change the inner parameters of the DT to 
adapt its system behaviour. Such an interface is used by the Variation during the training 
phase. The DT may consist of many different DT Components that interact with each other. 
In the UUV case this could be a vehicle dynamics model interacting with a sensor model, a 
model of a driving function and with the virtual campus environment. Cyber Physical System 
(ENV_CPS) represents the physical system. For safety purposes, it can also be controlled 
directly via the Emergency Control arrow, to bring it into a safe state. 
Synchronization/Validation (ENV_SYNC) block takes the data generated by the DT and CPS 
and compares these. This ensures that the DT is always up to date and that its outputs are 
comparable to those of the CPS. Measurement data post processing (ENV_POST) 
processes the outputs of the DT or the CPS so that they can serve as input for the RL Agent. 
The outputs of this block are observation and reward.   

 
4.2 System Optimization Using RL Approaches  
The purpose of the training phase of the ASIMOV solution is to train optimization sub-systems using the 
DT driven data. The trained optimization AI thereafter constructs the CPS control in the operational and 
fine-tunning phase. In the following, we sketch approaches from related work which serve our RL 
approach as adequate starting points, along with their respective advantages and limitations. 
Subsequently, we outline our RL approach for the UUV use case.  

4.2.1 RL Approaches with Simulated Environment  

 A deep RL-designed magnetic controller for tokamak plasma (nuclear fusion technology) is recently 
introduced by [A2], which is learned by interacting with a simulated environment and subsequently applied 
to the physical system of the tokamak in a zero-shot fashion (see Figure 18). The approach comprises 
an actor-critic framework to learn appropriate voltage control commands, based on the current plasma 
state and control targets.   
The authors propose three main phases for their zero-shot approach, i.e. (i) objective/target design: a 
designer specifies objectives for the experiment, potentially with time-varying control targets (purple 
boxes), (ii) deep RL training on the simulator: a deep RL algorithm interacts with the tokamak simulator 
(green box) to find a near-optimal control policy (red box) to meet the specified goals, and (iii) application 
to hardware: after training, the control policy is run directly on the tokamak HW in real time without further 
tuning of the weights of the control policy network (zero shot).   
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Figure 18 Representation of controller design architecture in [A2]. a) Depiction of learning loop. b) Environment 

interaction loop, consisting of models, parameter variation, and reward computation. c) Control policy represented 

by a multi-layer perceptron (MLP). 

  
While this approach has some limitations w.r.t. applicability in the UUV use case (see below), it is still 
very interesting for our work. In the following, we list the most relevant aspects with regard to our 
approach:   

• Using an asymmetric actor-critic framework with large recurrent critic neural network (NN) 
to compensate for the non-Markovian properties of the environment and relatively small 
feedforward actor NN;   
• Learning loops for episodic RL, using a distributed architecture with a single learner 
instance and several actors (in [A2]: 5,000 instances) each running an independent instance 
of the simulator;   
• Applying the Maximum a Posteriori Policy Optimization (MPO) algorithm by Abdolmaleki 
et al. [A3] as RL approach, and possibly combining this with relative entropy regularized 
policy iteration [A4]. However, as we consider a hybrid RL problem in the UUV UC, we need 
to adopt MPO by an extension for hybrid RL, e.g. as suggested by Neunert et al. [A5]; 
• Targeted parameter variation through analysis of experiment data, possibly combined 
with learned-region avoidance to avoid regimes where the dynamics are known to be poorly 
represented by the digital model through the use of rewards and termination conditions.   

 
Limitations of the approach suggested by Degrave et al. to the UUV use case (hence to be tackled) 
comprise:  

• Transferability of training results from virtual model to real system: In the above-outlined 
work, this can be assumed to be given due to the simulation model being a numerical solver 
for a set of partial differential equations that govern the plasma’s dynamics. Here, the bridging 
of the ‘real-sim gap’ seems sufficiently accomplished without further fine-tuning after 
application of the trained RL controller to the real system. This, however, requires further 
consideration in the UUV use case.  
• Fairly simple network of the control policy: The control objectives for the tokamak could 
apparently be reached with a fairly simple and small network architecture. In the UUV UC, 
the question remains whether we can achieve our system configuration/optimization 
objectives with a similarly simple network, or if we will need a more sophisticated 
architecture.    
• Learned-region avoidance: In contrast to [A2], we do not have knowledge about regions 
where the digital model represents the PS poorly at hand. Hence, we would have to learn 
these and feed them back into the training process if we choose to apply learned-region 
avoidance. This is a task to be investigated in the course of developing the Control (CTRL) 
component (see Figure 17).  

The deep RL algorithm QR-SAC (quantile regression soft actor-critic) is applied in [A6] to train an RL-
agent that can play against the world’s best human e-sports drivers and win. In order to find the solution 
for the multi-objective optimization problem, two different types of rewards are defined to give quick 
positive feedback to staying on track and driving fast, and to make the agent win the race instead of just 
driving on the track. The latter reward aiming to make the agent overtake others is calculated as 
proportional to the improved distance relative to the opponents. Furthermore, using a mixed scenario 
training with noisy selections of the critical situations provided the possibility to let the agent learn rare 
skills.    
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The application of RL for the UUV use case requires dealing with both discrete and continuous state 
spaces and action spaces (hybrid RL). While there are a large number of state-of-the-art RL approaches 
to handle either discrete or continuous spaces, only very few of them can handle both simultaneously, 
e.g., the policy gradient methods. One solution is to homogenize the spaces and transform them in order 
to have a single paradigm; either by discretizing the continuous variables, or by approximating the 
discrete ones with continuous variables/probability distributions. The main drawback of such approaches 
is the limitation caused by changing the problem structure on the effectiveness and accuracy of applicable 
solution methods. For the UUV use case converting the discrete actions to continuous would rather 
promote more (unnecessary) complications, while discretizing the continuous actions would produce a 
huge action space.   
Another approach to address the tasks with hybrid space is to split the actions among continuous and 
discrete components and train two different RL agents. Parameterized Action Space Markov Decision 
Processes (PAMDP) [A7] is one of the subcategories in hybrid RL that look at hybrid tasks as a 
hierarchical problem. The RL agent starts with selecting an action from one of the paradigms, either 
discrete or continuous, and continues with the other paradigm for the next step. For instance, [A7] first 
selects an action from a discrete set and goes through the continuous space to select a continuous set 
of parameters for that action. A different approach is taken by [A8] where the RL agent selects continuous 
actions and weights them by the discrete choices.   
In order to address the task with hybrid dynamics and action space in their native form, a hybrid approach 
is proposed by Neunert et al. [A5]. They developed a model-free algorithm that optimizes for discrete and 

continuous actions simultaneously, by using a hybrid parametric policy πθ, which is a state dependent 

distribution that jointly models discrete and continuous random variables. The hybrid policy optimization 
is based on the state-of-the-art Maximum a Posteriori Policy Optimization (MPO) algorithm, introduced 
by [A3] and [A4]. MPO is a two-step approach for off-policy policy optimization. In the first step, an 
approximation to the Q-function is learned from experience (policy evaluation). This is done by minimizing 

a squared loss which is dependent on a behavioral policy b(s,a) (off-policy). Here, b(s,a) corresponds to 

the action probabilities of the actions carried out at that point in time and stored in the replay buffer. The 
second step (policy update), in turn, is divided into two sub-steps (E-step: estimation, M-step: 

maximization). (i) E-step: first, a non-parametric improved policy q is constructed and updated in an 

iteration procedure by maximizing the approximated Q-function for the states from a replay buffer, while 
ensuring to stay close to the current policy. The replay buffer stores the transitions and log probabilities 
of actions that resulted from interacting with the environment through the sampled discrete and 
continuous actions. (ii) M-step: The second step is to fit a parametric policy to the improved policy 

calculated in the first step using supervised learning. The fitting of the next policy parameter θi+1 is done 

by solving a weighted maximum likelihood problem while requiring the policy change from one iteration 
to the next is constrained. In this step, the hybrid policy is optimized in a decoupled form for its discrete 
and continuous parts separately.  
The adaptation of hybrid policy optimization using the actor-critic framework for the UUV use case is 
depicted in Figure 19.    
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Figure 19 Architecture for the hybrid RL approach (actor-critic) in the UUV use case, inspired by [A2] and [A5]. 
Boxes denote components, arrows depict data flow. The layers on the right represent a set of distributed actor 

instances. 

In each iteration step, the actor instances (stack of layers) comprising the RL agent gather experience in 
episodes of a fixed length (number of steps) through interacting with the respectively instantiated version 

of the environment (= DT; see Section 4.2.2) while following the current policy πθi constructed by the 

learner. At each layer, the discrete and continuous actions, i.e., scenario parameters, are fed into the DT 
simultaneously by the RL agent and based on the current state of the DT. The experience data 
(trajectories of selected actions and their log probabilities, and transitions, i.e., successor states and 
obtained rewards) from all actor instances are stored into the replay buffer and fed to the learner. Then, 
after some stopping criterion is fulfilled, the learner updates the policy based on the gathered experience 
data according to the above-described procedure.   
In the distributed actor framework ACME (see [A9]) also applied by Degrave et al. [A2], it is designated 
that the actors gain experience by interacting with their own instance of the environment (=DT) in parallel 
and pull policy parameter updates from the learner asynchronously to accelerate the data generation 
process. In addition, this distributed architecture allows for the learning process to proceed as quickly as 
possible regardless of the speed of data gathering. However, to start in a simple, less error-prone way, 
we aim to set up the learning architecture first with a single actor instance and consider extending this to 
a distributed actor setup at a later point in time.  

4.2.2 Bridging the Gap Between Synthetic and Real Data   

First, we assume that in UUV.1 sub-UC the DT delivers quite valid outputs (state, reward) compared to 
the physical system. Hence, for the first iteration of the use case we propose to combine zero-shot 
approach and variation during training as described in the following.  
The zero-shot approach trains the RL agent on the DT only, and applies the learned policy to the physical 
system without a feedback loop to the RL agent (as in [A2]). This approach requires (i) a sufficiently valid 
DT w.r.t. interaction with the RL agent, that is, for the same test case parameters, we obtain very similar 
states [cumulated anomaly values, cumulated criticality values, basic vehicle configurations] and rewards 
[weighted sum of measured criticality/anomaly values], (ii) very close input distributions to the DT and 
physical system.   
In the UUV UC, we may overcome possible deviations between simulated and real system behaviour by 
varying across many vehicle parameters during training to widen the range of examples the agent has 
seen. Some DT components of the UUV are already in good shape, regarding the alignment between 
simulated and measured data. However, as there is always some kind of mismatch between these two, 
it is important that the agent can bridge the gap when confronted with real data and trained with simulated 
data. To achieve this robustness, we plan to vary some aspects of the vehicle's responses during the 
training phase by changing the configuration parameters from episode to episode. These could be 
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parameters that define the driving function, some physical parameters like weight and power, which 
influence the behaviour of the vehicle dynamics and, finally, parameters that affect the virtual sensor 
model and therefore lead to varying perception results.  
If we can ensure that the range of variation during the training phase is larger than the uncertainty of the 
model of the vehicle to be tested, the RL agent should be able to cope with the resulting differences in 
behaviour.  
The variation will be subtle and will be applied between episodes in training. No variation will be done 
during the episode itself, as the results of scenario simulations with the same vehicle parameters shall 
lead to consistent results. Furthermore, the agent's actions depend on the state defined by their 
predecessor action.  
With this kind of variation, the training phase can be adapted to the knowledge-level of the vehicle under 
test. A well-known vehicle with multiple parameters being certain, the parameters to be varied are fewer 
compared to a lesser-known vehicle, which has more uncertainties. Expert knowledge in the form of 
typical parameter ranges for certain vehicle parameters can also be incorporated into the training process 
by restricting the variation to these ranges. In variation distribution: We first vary the parameters purely 
randomly, that is, choosing one single variant of the DT drawn from some given probability distribution 
(e.g., uniformly on the set of feasible DT parameters), running one single episode with that variant and 
re-setting/changing this for every new episode. Later, a more targeted variation adapting the RL agent 
results might be considered.  
If the DT-RL stack does not deliver realistic and near-optimal scenario test sets (e.g., only uncritical 
scenarios and/or with low pairwise dissimilarity), we have to take further approaches into account, such 
as Transfer learning/domain adaptation approaches: (i) Inductive transfer learning: Reasoning from 
observed training cases to general rules, which are then applied to the test cases (traditional supervised 
learning). However, in sub-UC UUV.1 we do not have labelled data/ground truth data at hand to compare 
with. Applying transfer learning would need some sort of labelled data which we would first have to 
produce by running a set of certain training scenarios (to be defined) with the physical system, i.e., with 
the real UUV in the test bed. (ii) Transductive transfer learning: Reasoning from observed, specific training 
cases to specific test cases (see e.g. [Af10]).  
The transfer learning in RL concerns speeding up the learning process [A11], e.g., to avoid letting the RL 
agent spend many episodes before reaching a reasonable Q-function. A number of promoting transfer 
learning methods to the UUV UC are listed here. Within all approaches, the main task addresses the 
optimization of the CPS, and the so-called source task corresponds to the optimization of the DT, the 
individual components that are interacting inside it, and different variations of the DT. Depending on the 
DT and the RL agent that are developed for the UUV.1 use case, we can use and adapt these methods 
in further stages, for instance for the UUV.2 use case which is subsequent to the results from UUV.1. The 
other potential application is to first develop the RL agent to optimize the scenarios with respect to 
challenging the UUV with safety, and further transfer the learning to develop the scenarios for the comfort 
objectives.  
The starting point methods set the learned knowledge from a source task in form of initial solution into 
the main task. The starting-point methods can begin the RL process at a point close to a (good) solution. 
In general, the RL algorithm in the main task is not changed. They require a mapping of features and 
actions between the tasks (see for example [A12] for a brief introduction).  
The hierarchical methods view the source task as a subtask of the main task, and use the solution as a 
building block in learning. One approach is to use the temporal concatenations of several tasks with less 
complexity and compose the main task solution by combining them. The option framework [A13], which 
includes temporally extended or abstracted actions, can also be adapted to a hierarchical method. In this 
way, the entire or part of the learned policy from the first task is introduced as an option to the main task 
(see [A14]).   
Alteration methods make changes in the RL framework of the main task according to the existing source 
task, e.g. by altering state or action spaces or reward function. The option-based framework [A13] 
provides an approach to change the action space by involving temporal abstraction or temporal extended 
actions. The option promotes the advantage of the simplicities and efficiencies sometimes available at 
higher levels of temporal abstraction.   

• Altering the state space can happen by two means in the main task; state abstraction 
such to have comparable set of states with the first task, and state expansion by adding new 
states (see [A15], [A16]).   
• Minifying the action space is another approach to decrease the complexity of the value 
function.  
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• Reward shaping is an example of altering for the reward methods. The RL agent learns 
to augment its reward structures by learning what sensory patterns predict reward across 
episodes or tasks (see [A17]). Reward shaping is a design technique in RL that speeds up 
the learning by finding immediate rewards that are more indicative of cumulative rewards. In 
automatic reward shaping, the agent learns to predict rewards and use them to create a 
shaped reward function in the unseen task. The agent uses the information as a shaping 
function that provides a first estimate for the value of newly discovered states when learning 
a value function for a new task. The agent experiences a sequence of environments 
generated by the same underlying generative environment model.   

Additionally, a temporal-difference algorithm in which value functions are influenced by observations of 
expert agents is proposed by [A18]. The algorithm uses a variant of the value-function update that 
includes an expert’s experience, weighted by the agent’s confidence in itself and in the expert. A 
knowledge-based kernel regression (KBKR) that allows transfer via advice-taking, is introduced by [A19]. 
The “advice” in this algorithm is a rule telling the agent which action to prefer in a set of states described 
by a conjunct of predicates. KBKR approximates the Q-function with a support vector machine and 
includes advice as a soft constraint. The relearned Q-function in batches using temporal-difference 
updates trades off between matching the agent’s experience and matching the advice.   
 
4.3 Application and Integration 

4.3.1 Integration and verification 

The above-mentioned algorithm has been implemented into the toolchain and tested. A step-by-step 
implementation of MPO can be found in D1.3.1. In short, as shown in the diagram 20, the training gets 
initiated, and first trajectories/episodes are sampled. Each step in the episode corresponds to a loop in 
the toolchain. If a predetermined number of episodes has been gathered and stored in an experience 
buffer, then the critic and actor are updated using samples from that buffer. Samples can be re-used 
multiple times. However, over-fitting can become an issue here. In continuation, the sampling and 
updating is repeated. 
 

 
Figure 20 Process diagram of the RLA’s training 

To ensure the algorithm's accurate performance and isolate any errors caused by the environment (e.g., 
other components in the pipeline), rather than from the RL algorithm’s implementation, it's essential to 
first conduct tests during early development in a controlled and well-understood setting. This is especially 
important as the training environment in this use case is extensive and feedback data is expensive. To 
achieve this, we employed the standard [A20] to validate the training process. However, since this library 
doesn't offer an environment capable of handling both discrete and continuous actions simultaneously as 
required by the use case, we utilized a superposition of a discrete and continuous environment as it can 
be seen in Figure 21. Specifically, we employed the "LunarLander" environment, which has both discrete 
and continuous action versions. 
In this hybrid setup, we concatenated observations, while actions were separated based on their affiliation 
to the discrete or continuous environment. The reward from the two environments was added together. 
Initially, we used default values as a baseline. Nevertheless, we also explored variations in the training 
process and adjustments to the actor's neural network. 
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Figure 21 Visualization of the adapted LunarLander gym environment for early algorithm verification and the actor 

network controlling the environments as well as receiving the environment’s state. 

 
 
The tests encompassed 20,000 training iterations and the algorithm appeared to converge to the 
maximum achievable reward after 1,000 runs. Thus, learning of the algorithm’s implementation could be 
verified. As shown in Figure 22, we repeated this process with diverse training strategies and actor 
modifications. The outcomes of these training variations demonstrated that maximizing the reuse of 
sampled data is highly effective, while expanding the size of the actor's neural network in this context 
proves unnecessary and detrimental to the training process.  Commented [v(72]: Can we create a figure to summarize 
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Figure 22 Results over the first 1000 training runs for different network configurations. 

 
Interestingly, the resulting policy of the lunar lander was to hover over the landing site in both 
environments as this appeared to be the best option due to the rudimentary reward design. The suspected 
cause of this behavior is that while one environment could achieve a successful landing, if the other lunar 
lander would fail, the reward would still be negative even though in the first environment achieved a 
successful landing. 
To be capable of easily switching between the use case and the gym environment and potentially other 
applications we re-used the architecture of the gym’s environment class as a wrapper for a “standardized” 
interface between reinforcement learning agent and the tool chain. This also enables the usage of off-
the-shelf agents using different algorithms which often are implemented to work with the gym package 
as a running example. Here, we have the standard interaction functions such as reset and step. In our 
case, the RLA only interacts with that wrapper’s methods using vectors for action, state and reward, the 
wrapper writes it into files and triggers the other docker containers of the tool chain. 

4.3.2 Experiment tracking 

The next application topic is the assessment of learning tracking software, more specifically [A21]. MLflow 
is an open-source platform that claims to streamline the end-to-end machine learning lifecycle. It offers 
tools for experiment tracking, project packaging, model management, and deployment. Data scientists 
and machine learning engineers use MLflow to log and compare experiments, package code into 
reusable projects, manage machine learning models, and transition from development to deployment. Of 
interest in the use case is the capability of managing experiments (i.e., training runs) and attach the 
resulting actor and critic models to it. Its server-client-structure enables tracking across machines 
including remote hosting of databases.  
Implementation-wise, a new experiment is initialized at the tracking server by posting training parameters 
during at the start of each training, as shown in Figure 23. Each experiment possesses a unique id which 
is attached to posts of values of interest (loss, return, etc.) to the tracking server during the training. The 
tracking server stores the parameter and values in SQL storage as well as files in an artifact store if 
desired. Examples of files of interest would be the weights of the trained NNs. In the UUV UC, the storage 
databases are in the cloud for better sharing of experimental results between consortium partners. 
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Figure 23 Use-case agnostic Overview diagram of the MLFlow components. 

4.3.3 State design 

The process of post-processing in the UUV.1 use case involves two key components: anomaly detection 

and criticality metrics. An autoencoder neural network is employed for anomaly detection, measuring 

information gain in simulated scenarios. The autoencoder's goal is to reconstruct input data with minimal 

error, and it achieves this by compressing the data and extracting relevant features. The compression 

results in a loss of information, making it suitable for detecting anomalies in data it has encountered 

before (see e.g., Chen et al. 2018 [A22]). High reconstruction error signifies high information value and 

contributes to the reward function. To enhance the network's performance, it is periodically retrained with 

new data which is then considered not new anymore. However, a challenge was identified because the 

anomaly detection process depends on previously seen states which are embedded into the weights of 

the auto encoder’s network. This situation would violate the Markov property, creating difficulties in 

reinforcement learning. A solution would be to account for this in the state by keeping track of all of the 

previous datapoints it has encountered so far. As a result, a significant state vector to store the history of 

previously evaluated scenarios would be required, which is not feasible due to the already extensive state 

space. For now, the anomaly detection component has been removed from the reinforcement learning 

loop. Instead, it is employed as a standalone tool for data analysis, not directly influencing the reward 

calculation. This decision helps maintain the Markov property in the reinforcement learning process.  

To solve this issue, it could be tested whether techniques as seen in large-language models can be used. 

These models are capable of keeping track of long conversations. A suggested scenario can be seen 

analogously to an entry to the conversation. However, this will not be pursued within the ASIMOV project. 
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4.4 Conclusions 
 
The UUV.1 use case involves the automatic adaptation of traffic scenarios in a 3D environment based on 
vehicle interaction. The aim is to create critical and novel scenarios for automated test plans that are 
tailored to individual characteristics of the tested vehicle. 
The selected RL framework for this use case is a model-free approach that works episodically. The 
algorithm keeps the vehicle characteristics consistent within the episodes, but modifies them slightly 
between episodes to develop a robust RL agent. This is done within the vehicle's ODD by using a model-
free approach that does not require knowledge of the state transition probabilities. Due to the mixture of 
discrete and continuous state and action spaces, hybrid RL is required for this use case.  
To this end, we have applied a hybrid approach that optimises for discrete and continuous actions 
simultaneously using a hybrid parametric policy that models both types of random variables together. 
This hybrid policy optimisation is based on MPO algorithm, a two-stage approach for optimising off-policy 
policies. The algorithm was implemented in the toolchain, where the implementation process includes the 
initiation of training, the sampling of trajectories/episodes, the updating of the critic and actor using 
samples from an experience buffer. 
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5 Scanning Transmission Electron Microscopy Use Case  

5.1 General introduction  
(S)TEM plays a vital role in many fields from material sciences, physics, chemistry to biology. It can 
visualize nearly everything ranging from micro-meter to angstrom scale (atomic resolution). We will briefly 
summarize some technical challenges to imaging with electrons, in particular the optics, as this is the 
ASIMOV focus [B1, B2, B3].   
Electrons may be described by the wave-particle duality. Unlike for example, light, the wavelength of an 
electron is a function of its speed. Increasing the accelerator voltage of a TEM microscope will decrease 
the wavelength of the electrons and thus increase the resolving power. As they are charged, electrons 
can be focused by electromagnetic lenses. Images are formed by propagating a beam on a sample. The 
waves will interact with the sample via scattering, which is sample specific. Afterwards a series of lenses 
form the final image.  
Electrons need to be spatially and temporally coherent. The first means that all electrons need to come 
from the same direction as they hit the sample. If this is not the case, the resulting image will blur. 
Secondly, all electrons need to have the same energy. If not, the lens corrections will differ. In short, 
electrons need to have the same wavelength and phase, and originate from a single spot.  
Broadly speaking electromagnetic lenses are affected by three types of aberrations. Spherical aberration, 
chromatic aberration and astigmatism. Spherical aberrations are caused by the fact that an electron going 
through the centre of an electromagnetic field of a lens, will be subjected to a weaker force, than one 
passing closer to the coils. Chromatic aberration is caused by temporal incoherence. High energy 
electrons are influenced less by lens current than their slower counterparts. Lastly, astigmatism is caused 
by a lens not being equal in strength over the x and y axis.   
  
5.2 Ronchigrams  
A ronchigram is the diffraction pattern of a convergent beam that is focused on an amorphous sample. 
Diffraction refers to all phenomena that occur when a wave hits an obstacle or an opening. This opening, 
or aperture, effectively becomes a second source of the propagating wave.   
Imagine an optical lens focusing light with a convergent beam. It will appear as a uniform bright disc. If 
you however insert a grating pattern with light and dark stripes spaced about 100 times the length of the 
used wavelength, the resulting interference patterns will contain clues on the imperfections of the used 
lens. [B3]  
In similar jest, an amorphous sample has an atomic structure with a random assortment of potentials. It 
thus serves as a noisy random grating for the electron beam of a microscope. And just as its optical 
cousin, the resulting image with interference patterns gives clues to the present lens aberrations.[B3]  
Examples of ronchigram images from a microscope are shown in Figure 40 and 41. Each row has different 
lens aberrations, whereas the columns show the effect of moving the beam from under focus, to in focus 
and finally over focus.   
  
  

 
Figure 24 Initial TFS ASIMOV architecture. 

5.3 General Architecture  
As shown in Figure 24, the general ASIMOV TFS goal is as follows. We wish to deduce lens aberration 
parameters from Ronchigram images and deploy an agent that not only interprets these images, but also 
learns how to calibrate the microscope, much like a human operator. To train all these components, TFS 
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will develop a digital twin of the microscope, which will serve as the environment in which agents are 
trained prior to deployment to the real machine.   
  
5.4 Image based inference  
There are several necessary basic steppingstones that need be researched and built which we will 
address first. As imaging is such a huge component of the agent, we will address feature learning 
separately. In particular:  

• Base parameter inference on simulated data  
• Base parameter inference on real data  
• Challenges in bridging the gap between real and synthetic data  

5.4.1 Base inference  

 

 
Figure 25 Base supervised parameter inference for Ronchigram images. 

The current digital twin is an inhouse-developed Ronchigram simulator. Examples can be seen in Figure 
29. A basic requirement that needs to be met, is answering the question can lens aberration parameters 
be learned from Ronchigram images in a supervised manor. 
A basic supervised architecture, seen in Figures 24 and 25 was developed. It consists of a stem, 
backbone and regressor head. The stem is used to multiply the number of channels from 1 to 3. The 
backbone can be anything, but in practice is Resnet18 [B4]. Lastly the regressor head is a stack of Affine 
layers without any output layers.   
There are several interesting differences from traditional computer vision training such as seen with 
imagenet classification [B5]:  

• As the frequency content of the Ronchigram contains vital clues, standard data 
augmentations such as cropping or scaling should not be used. The same applies to 
horizontal and vertical flipping. Changing the frequency content pushes images to a 
different labels space.  
• Any type of activation in the regressor head destroys performance.   
• Training was significantly more sensitive to hyper-parameter tuning. In particular to the 
learning rate schedular of the optimizer.   
• The loss function was a scaled combination of the L1 and L2 loss. The first is important 
because we need the network to be able to learn that some regressors might be (near) 
zero.   
• There was no benefit from pre-training.  
• There was no benefit from using larger networks, such as R50.   
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5.4.2 Results  

Figure 28 shows the validation loss on our synthetic and real datasets, whereas Figure 26 shows the 
spread of the estimated parameters against the ground truth. As expected, the network struggles more 
with learning higher order aberrations  
Figure 27 shows that the network managed to estimate the parameters up to a combined L1-L2 loss of 
0.02nm. The problem with this result is two-fold.   
Firstly, this performance surpasses human ability. This means the network is picking up high (frequency) 
detail to learn from.   
Secondly, the validation data is also provided by the simulator. Therefor it has the exact same (though 
unknown) distribution as the training-set. Consequently, this network may be overtrained without the 
validation error going up. In essence, the network has learned to invert the simulator. And this is a 
problem, as the goal of the digital twin is to allow training systems that generalize to real data.   
The latter is further illustrated by Figure 28. This shows training and validation where the initial data used 
is synthetic before switching over to real data. The sudden jump in loss shows there is no benefit to (pre) 
training the network on synthetic data, prior to switching to real data for fine-tuning.  
In conclusion, we need an architecture that can learn domain invariant features, that are only indicative 
of present lens aberrations.  
  
  

 
Figure 26 Parameter inference for synthetic data. Shown are the estimated aberrations versus the ground truth. As 
expected, the network has more difficulty estimating higher-order parameters, resulting in a larger spread. 

 
Figure 27 L1-L2 validation loss for synthetic data (left) and real data (right) 
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Figure 28 Training (left) and validation (right) on synthetic data, followed by real data. The jump in the loss curves, 
the moment the data source changes, shows there is no benefit to pre-training a network on synthetic data, prior to 

learning on real data. 

5.5 Domain mismatch  
As illustrated in Figure 29, there is a visual mis-match between the images originating from the simulator 
and those from a real microscope. Short of development of a new simulator, we will explore two data 
driven methods in this chapter to close this gap. Self Supervised Learning (SSL) and Domain adaptation 
(DA).  
 

 
Figure 29 Domain mismatch example. The two left images are real Ronchigrams, the others are synthetic. 

5.5.1 Self (Semi) Supervised Learning  

Given a task and enough high-quality data, supervised learning can achieve fantastic results. Collecting 
labels, however, is both expensive and error prone. SSL aims to learn without labels by formulating a so-
called pretext task. This task or learning objective is defined based on the data itself, thus omitting the 
need for labels. The pretext task is not the final goal. Rather, ones hopes that it will allow a network to 
learn representations that will be useful for other final downstream tasks.  
A simple example would be to take an image, and a rotated copy, and have the network learn that these 
are in fact the same image by predicting the rotation [B6]. This image does not need a label. Furthermore, 
we are not interested in the actual rotation, but hope that the network learns a useful latent representation 
that may be deployed elsewhere. Other approaches extracted multiple patches in random order from an 
image, and then let the model infer their relative positions [B7].  
A subset of SSL is formed by contrastive representation learning. These methods aim to learn some 
embedding space in which similar pairs of images are close, and dissimilar ones are far away. Early 
examples of this approach are contrastive [B10] and triplet loss. [B11] These methods have several 
similar components. Firstly, they need a notion of matching or positive pairs, and non-matching or 
negative pairs. Most rely on heavy data augmentation to create noisy versions of a data sample for the 
formation of the positive pairs. Secondly, most algorithms need huge batch sizes to function. This is 
needed to give the loss function enough diverse (negative) examples to learn from. Lastly, hard negative 
mining is used. This means that one explicitly collects negative pairs that erroneously have close 
embedding features to force the network to learn. [B11, B12]  
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5.5.2 SSL in the ASIMOV context  

We seek (learned) image features, from Ronchigrams, that are indicative of any lens aberration present 
in the image, irrespective of the image source. Be it from the digital twin, or an actual microscope. As 
such we are investigating and modifying two contrastive SSL methods: SimCLR [B13] and BYOL. [B14]  

 
Figure 30 The original SIMCLR [B13] backbone training and supervised fine-tuning. 

Figure 30 shows the original SimCLR architecture for the representation learning phase using the pre-
text task, and the final supervised stage.  The backbone f is trained by presenting the network with positive 
image pairs, consisting of an image and a heavily modified copy, next to negative pairs, formed by 
different images al together. BYOL not only surpassed SimCLR in performance, but also does not need 
contrastive learning: there is no need for negative pairs. 
As shown in Figure 31 we are adapting these architectures in a number of ways:  

 
Figure 31 Adapted semi supervised learning architectures. SIMCLR [B13] and BYOL [B14]. 
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Figure 32 Difference between transfer learning and domain adaptation. Adapted from [B16]. 

We use a SimCLR architecture where similar and dissimilar synthetic ronchigram images are fed through 
the network. The mayor challenge is to find data augmentation techniques that will force the network to 
learn representations that will prove useful for the ultimate downstream task: predicting the aberrations. 
Experiments so far have shown that taking the augmentations as used for example on the CIFAR10 
dataset, do not work on Ronchigram images. 
We are training SimCLR/BYOL derived architectures, where the positive pairs are formed by a synthetic 
and a real Ronchigram images, but with identical aberrations. The negative pairs are formed by images 
that differ in their aberrations. The two major challenges with this approach are the fact that the 
aberration parameters are not an exact match. For the simulator they are known, whereas for the real 
images they need to be estimated. And since this approach requires the labels, it is in fact, fully 
supervised.   
Other avenues that are currently underway are modifying the backbones to use ADA-in [B16] or to 
combine batch-normalization (BN) with instance-normalization (IN). Again, the goal is to eliminate 
appearance variance, while maintaining feature discrimination. Informally, BN preserves discrimination 
between samples, whereas IN eliminates individual contrast, yet diminishes useful information at the 
same time.   
  
5.6 Domain Adaptation   
Domain adaptation refers to the family of methods where the training data comes from a similar but 
different distribution than the test data [B15]. Figure 32 showcases the difference between transfer 
learning and domain adaptation. There are various flavours of this idea, but in the ASIMOV context we 
are focusing on the situation in which the labels for the source domain are available and those from the 
target domain are not. This matches our situation in which the source domain is formed by data generated 
from the digital twin, and thus the labels are known, and the target domain is formed by real microscope 
data with unknown aberrations.  

 

 
Figure 33 Optimal transport example for remapping (colour) values in images. Adapted from [B21]. 
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Figure 34 Initial domain adaption architecture next to the training and validation results. 

An initial architecture where both source and target labels are available is shown in Figure 34. This 
network is tasked with classifying the A1 aberration parameter next to the defocus label. It has an extra 
head that needs to find out if the image pair it was fed, came from an identical domain (be it synthetic or 
real) or from different domains. These gradients are fed back to the network, thus forcing it to find features 
that are domain invariant.  There are two disadvantages to this approach. Firstly, it still requires the 
source–and the target dataset at the same time. The added head to discover if the domain matches 
between the pairs is regrettably not the vital component.  

 
Figure 35 Left: domain adversarial training of neural networks [B14]. The source data is the labelled synthetic data. 
The target data is the real data. On the right the classification accuracy is shown using the target data labels (red) 

and without any labels (grey). Classification performance drops to 40 percent, showing that bridging the gap 
between labelled synthetic data and unlabeled real data remains a significant challenge. 

 
Figure 36 Real and synthetic windowed low-pass-filtered power spectra from real and synthetic images with 

identical lens aberrations. 
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Currently, the following methods are under consideration for the ASIMOV applications. Domain-
adversarial neural networks (DANN) [B14]. Its architecture and initial results are showcased in Figure 35. 
The main idea driving this architecture, is the fact that the classification head should not be able to 
distinguish if the features from the backbone originate from the source or target distribution. The features 
should only carry information of their class label, not their originating domain. To achieve this, an 
adversarial component is added to the network. This adversarial net tries to estimate the originating 
domain from the features. If it achieves this task, it punishes the backbone via an inverted gradient. Work 
from [B19] (CDAN) expanded this approach. The authors claim that methods such as [B14] are prone to 
under-matching and propose further conditioning of the adversarial component by forcing alignment of 
the multimodal distributions. They observe that when the joint distributions of the features and classes 
are non-identical across domains, adapting only the feature distribution might be insufficient. More so 
when this feature representation is also multi-modal. The authors propose to condition the generative 
component with the available label information, next to deploying a multilinear map [B20] based on the 
cross product from embedded feature and class label vectors. 
A third family of potential useful methods is based on optimal transport using the Wasserstein distance 
[B21]. Optimal transport can itself be used to match the RGB or grayscale histograms between two 
dissimilar images, independent of the semantic content. An example of this is shown in Figure 33. As a 
pre-processing step, however, we did not find this helpful. In [B22] the Wasserstein distance is used in 
the domain critic network to distinguish between features originating from different domains after passing 
through the backbone. They claim superior results over DANN [B14], using the Maximum Mean 
Discrepancy (MMD) [B23] deployed in [B25, B26] and the so-called metric or deep correlation aligment 
(CORAL) [B24].   
To test viability, a proof-of-concept implementation was built, based on DANN [B14]. Its architecture and 
initial results are shown in Figure 35. When labels are available for both domains, performance is 
excellent. However, the ultimate ASIMOV goal is to only use labels from the digital twin. In this case, our 
networks performance drops to 48% classification performance over 8 classes. Given the significant 
difference between our current digital twin and the actual microscope, this result is quite promising, 
though insufficient at this time. Future work will explore and implement the ideas of the here mentioned 
literature.   
  
   
5.7 Intermediate Conclusions and Future directions  
We aim to distil visual clues from Ronchigram images to estimate lens aberrations. Currently this is 
perfectly possible for both the synthetic data from our digital twin and for real microscope data. This 
section focused on current and future endeavours to learn a feature that may be used across domains 
without using any real microscope data that is labelled. In the next section, we will divert to a hand-crafted 
feature that generalized to show-case and investigate the design of a digital twin trained reinforcement 
agent.  
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5.8 Reinforcement learning  

5.8.1 Introduction  

This section will introduce the current proof-of-concept of a digital twin trained agent. Firstly, we will 
introduce the hand-crafted feature the agent uses from the digital twin. Secondly, we will survey literature 
in order to gather the necessary components needed to build upon this initial prototype.   

 

 
Figure 37 Real and synthetic images with identical lens aberrations shown next to their auto-correlation function 

image (ACF). 

5.8.2 Hand crafting a feature  

In order to train an agent on synthetic data from a digital twin and then deploy that agent on an actual 
microscope, we need a feature that is domain invariant yet contains sufficient information to be able to 
infer lens aberrations.   
Traditional computer vision features are all to a certain extend depended on chosen parameters and 
therefore not completely invariant to scale and lighting changes. We therefore looked at basic signal 
processing methods that use all available information and do not require a priory set parameters. We 
investigated using the Auto Correlation Function (ACF) and the Fourier based power spectrum.   
An ACF example of synthetic and real images with identical parameters is shown in Figure 37. A similar 
example but with a windowed low-pass filter spectrum, is show in Figure 36.   
For both the ACF and the FFT spectra methods and data from both the real and the synthetic domain, it 
is possible to infer lower order lens aberrations (A1, defocus) via traditional supervised learning as shown 
in the previous section. An example is shown in Figure 38. The fact however remains, that even with 
aggressive low pass filtering over the power-spectra, differences remain between spectra originating from 
the digital twin and those from real data. Supervised learning methods remain sensitive to these 
differences, even when pro-processing methods like ZCA whitening or Instance-norm (IN) are deployed.   
The final feature we decided to use, which bridges the gap between data domains is known as the 
eccentricity. In effect, we will treat the power spectra as realizations of a two-dimensional bivariate normal 
distribution from which we can derive the 2x2 covariance matrix and thus also the two eigenvectors. The 
extracted feature is simply the proportion between these two axis. It indicates how circular or how much 
of an ellipse the shape is, though lacks angle information. An example is shown in Figure 39. 
  

5.8.3 Basic Agent Design  

Figure 40 and 41 showcase a set of Ronchigrams for both real and synthetic data. Here each row has a 
distinct A1 lens aberration, whereas the columns are the so-called defocus stack. That is, the image is 
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under-focused on the left, and then as you progress to the right, the images come in focus and finally 
over-focused. The first row has zero lens aberration and is optimal in that sense. This checkerboard 
illustrates several important things.   

• For a human observer it is not possible to ascertain the A1 lens aberration from single 
ronchigram alone. 

• A human operator will therefor look at the images as the microscope is taken from under 
focus to over focus. 

• The focus stack should therefore be used by an agent to infer the A1 lens parameter.  
The real and synthetic environment are therefore defined based on the power spectra illustrated in Figure 
42 and 43.   

 

 
Figure 38 A1 lens aberration estimation using supervised learning based on the power spectra of synthetic data. 

 

 

Figure 39 Differences between a synthetic and real image based power spectra for identical lens aberrations. 

The reward function is based directly on the eccentricity values. They are shown in Figure 44 and clearly 
close to convex. To be able to have a reward function for combinations of A1 and defocus values that are 
not present in our dataset, they are simply interpolated via a Gaussian radial basis function. The final 
architecture is shown in Figure 45. This particular reward is an example of a so-called shaping reward. 

5.8.4 Results  

The proof-of-concept agent is based on (double) Q-learning with a separate target network. [B27, B28] 
The environment is formed by the dataset of available Ronchigrams, the reward function is based on the 
inverted interpolated eccentricity values. Each turn the agent my turn either the A1 or defocus knob up or 
down. The goal state is the zero-zero state. In the checkerboard images, this is simply the central column 
in the first row.   
As the input is a single scalar, this agent is a tiny multilinear perceptron (MLP) network and therefore fast 
and easy to train.  
The agent is trained on the digital twin, and then deployed on the real data. Results can be seen in Figures 
46 and 47.   
  
Although successful, there are a few caveats with this initial model:  

• Reinforcement learning is plagued by high variance in the learning process, and this 
agent is no exception.  
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• Results on the real data are not stable. It currently manages to reach the goal state in 
about 1/3 of the runs.   
• The dataset is currently quite small.  
• The reward function is a shaping reward. One of the drawbacks of such a reward, in 
contrast to simply assigning a -1 and 1 to a loss and a win respectively, is that any time you 
introduce shaping, there is a probability for learning a non-optimal policy that optimizes the 
wrong objective. [B40, B41]. Secondly, if the reward must be shaped, it should be such that 
there is little delay between action and consequence. The faster the feedback mechanism, 
the easier it will be to learn a path to the high reward.  
• Although the agent deploys to real data, it’s still deployed to an environment which 
knows the goal state. To deploy to an actual microscope, the agent will have to learn how 
to stop by itself.  

 

 
Figure 40 Real Ronchigrams with different defocus and aberrations. Each row represents a so-called focus stack, 
where focus was changed from under, in, to over focus. The top row has zero A1 aberrations, the bottom row the 

worst. Note that these are estimations done with a separate tool. The real microscope has no fixed state, all 
corrections are relative. Hence there is no real way to state that a lens is causing a certain known aberration. 
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Figure 41 Synthetic Ronchigrams with different defocus and aberrations. Each row represents a so-called focus 
stack, where focus was changed from under, in, to over focus. The top row has zero A1 aberrations, the bottom 

row the worst. 

 
Figure 42 FFT spectra of real Ronchigrams with different defocus and aberrations. Each row represents a so-called 

focus stack, where focus was changed from under, in, to over focus. The top row has zero A1 aberrations, the 
bottom row the worst. 
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Figure 43 FFT spectra of synthetic Ronchigrams with different defocus and aberrations. Each row represents a so-
called focus stack, where focus was changed from under, in, to over focus. The top row has zero A1 aberrations, 

the bottom row the worst. 

 
Figure 44 Raw and fitted eccentricity values for synthetic and real data. The fitted surfaces will form the reward 

function for any A1x and defocus knob value. 
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Figure 45 Digital twin-based agent training, where the reward function is based on the eccentricity value of the 

smoothed Ronchigram power spectrum. 

 
Figure 46 Example learning episodes of a Q-learning agent. The white path is superimposed over the reward 

landscape. The goal state is (0,0). 
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Figure 47 Deployment of a digital twin-trained Q-learning agent of real data. The agent has never seen this data 

before. 

 
Figure 48 Ronchigram focus series data, raw (top) and FFT (bottom) 

5.9 Image based RL 
The next step towards automatic microscope calibration is to forgo the handcrafted features and have an 
RL agent learn explicitly from input images alone. [B27] Convolutional neural networks have proven 
themselves to be excellent in this regard, be it at a computational cost. In the initial proof of concept 
architecture, the agent is fed 120x120 pixel Ronchigram images. Similar to the previous design, these 
images are pre-processed by taking a windowed Fourier transform, followed by a low pass filter. This pre-
processing introduces human knowledge, making the feature extraction for the Neural Network simpler. 
Initially the pre-processing was not performed to be able to compare baseline results.  
  
Also, in this scenario we aim at training the RL agent with synthetic data and deploying the results on real 
data.  
For this set of experiments one-dimensional datasets of focus series datasets were used. In future steps 
this will be extended to multiple dimensional data. This simple setup was chosen, as before, to get a 
better grip on the behaviour of the agent, to understand the reliability and behaviour variations, and to 
experiment with RL algorithms. It is also very much desired to achieve a small success with RL agents in 
an environment and circumstances that are both understandable and explainable before moving on to a 
more complex problem.  
Another important variation on this set of experiments is given by the reward function variations. The 
environment can choose to return intermediate step rewards (e.g. by reaching some improvement but 
not yet being at the goal), or we can decide that the environment only returns rewards when the goal is 
reached. In RL both approaches are used depending on the circumstances.  

5.9.1 Results  

One of the primary causes of the agent results were driven by reward engineering, which is a known 
challenge for RL practitioners [B62]. As such, simple empirical experiments were done to measure what 
methods works best in the current environment. In this case four different reward functions were tested:  

• With mid-step rewards:  
  

1. +1 if |focus_current|<|focus_old| (v0)  
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2. [1,…,max,…,1] if |focus_current|<|focus_old| (v2)  

3. 1 – penalty; penalty = steps/buffer_length (v3)   

• End reward  
1. +1 when done (v4)  

  
The focus series comprises 81 images, the middle one being the one in focus, and varying from [-200, 
200] from left to right. The starting position for the agent is random at any position of the series. The agent 
can choose to go left [0] or to go right [1] in every discrete time step. Figure 49 shows an image of the 
Ronchigram series: synthetic Ronchigram on top and synthetic FFT Ronchigram on the  bottom.  
In the specific A1 case, a +1 value was rewarded, any time that the agent was progressing in the right 
direction. This is made possible via access to the metadata. Of course, in the end it is undesirable to 
access metadata.  

 

 
Figure 49 Ronchigram focus series data, raw (top) and FFT (bottom) 

 
In case A2, the same approach is followed as in A1, except that the gains while approaching the focus 
are exponential (starting by 1 at the extreme and doubling at each step). How the gains are distributed 
also influences the outcomes.  

 

 
Figure 50 Example of training data with DQN 20 000 timesteps and reward function A1. 

In A3 another approach is tried, trying to minimize the steps used by the agent to reach its goal. Every 
extra step taken trying to reach the goal adds less reward as in the expression seen above. Of interest is 
noting that when the penalty increases too fast or too slow, the performance also is reduced. There is 
thus also a sweet point in this approach.  
The approach in B1 is different and well known in RL as well, rewarding the agent with a +1 only when 
reaching its goal, with no more intermittent clues.   
  
In running the experiments, a series of steps are taken. The training step needs to be defined by 
choosing an algorithm and passing it the desired hyperparameters (which is not a trivial task either, and 
needs many trials to become satisficing). The only universal metrics to monitor if the training is running 
successfully are the reward against a defined time metric (epochs, timesteps). Yet no hard conclusions 
can be drawn from this kind of data. Many other outputs can be expected from a given algorithm, all 
those other output parameters in general have little to make with performance monitoring and mostly to 
make with algorithm internal functioning; these kinds of parameters might be useful when debugging or 
changing implementations within the algorithm itself.  
After training, the behaviour of the agent can be tested by measuring performance with a battery of 
experiments. For example, inferring the model on 100, 1000 or 10000 tests. Only extracting the averages 
on these tests is not enough to draw conclusions, and taking a look at the distributions (e.g. histogram), 
and having an idea of the expectations on the results gives an approximate idea on what is going on.  
Especially depending on the reward function different behaviours are to be expected. Let us see a few 
examples in the graphs below:  
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Figure 51 Reward function evaluation with A2C, PPO and DQN model training 20000 steps and 1000 inferences. 
Episode length against episode reward on right graphs and histogram on rewards right graphs. Reward function 

A1. 

 
Figure 52 Reward function evaluation with A2C, PPO, and DQN model training 20 000 steps and 1 000 inferences. 

Episode length against episode reward on right graphs and histogram on rewards right graphs. Reward function 
A2. 
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The most important learning from the graphs above is that in the brown regions a policy-hack can be 
observed. A policy hack is an undesired behaviour of the agent with respect to what the desired behaviour 
is defined by the human programmer and reflected as well as possible by the reward function. 
The agent should be finishing its exercise within 40 steps taking into account that its needs to discover 
the correct direction first. What happens in the brown steps, is that the agents learns to maximize rewards, 
pivoting left and right until reaching the maximum allowed number of steps (which is also defined in 
configurations). This happens for DQN and PPO.  
For DQN we also can observe that in a number of occasions the end was not reached within the desired 
number of steps. Sometimes it is hard to interpret if what we are observing is unwanted behaviour or just 
failure of training.   
Of course, this behaviour hack could not happen by only reaching the goal at the end. So certainly defining 
the reward function is key in problem design. And it is one of the most difficult steps in the process, 
especially when the problem takes on complexity.  
The behaviour hack becomes increasingly worse, as training progresses.  

 
Figure 53 Inference 100 repetitions after model training with 20 000 steps. Performance in DQN, PPO, A2C is 

comparable on synthetic data. 

If now the reward function A2 is taken and the same experiment is repeated the results observed are a 
little bit different.  

 
Figure 54 Transfer of model to real data. Performance drops to an average of 20-30%. 

The distribution on the histograms gets more spread, but still some of the unwanted behaviour can be 
observed.  
What can also be noted from the previous experiments is that the success rate varied from experiment 
to experiment. Before going into the performance numbers, the right reward function needs to be defined. 
In the previous cases we observed unwanted behaviour. Let the focus be on the direct reward only when 
reaching the goal; reward function B1.  
  
Performance in this scenario improved, after a series of inferences of 100 runs, the performance is a little 
bit above 50% of successful runs. When trying to use the same model with real data, the performance 
drops badly.  

  
This means that the gap between the synthetic and the real data is still big, and we cannot speak of 
generalization.  
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Another important fact to note is that when training on real data, the model performs much better even 
only after the same 20000 steps, achieving close to 100% success rate. This should raise a lot of 
questions about the existing simulated data.  
–What about when using the FFT images? The training data gets better, and the inference performance 
gets slightly better. The most important fact is that the transfer to real data when using FFT images works. 
Introducing this human knowledge allows for much better transfer, and that is a promising result.  

  
Figure 55 Training and inference on FFT images (top) and transfer to real FFT data (bottom) with DQN. 

  
The tools in RL are young and not utterly developed, meaning that bugs can be found in open-source 
libraries and the programmer also needs to cope with limited functionalities. From design to experiment 
completion many parameters need to be repeatedly changed, and thus all experiments should then be 
rerun with exactly those parameters. This process takes time, and automation needs to be in place. For 
example, in the experiments mentioned along the way, the number of allowed maximum steps was limited 
first to steps=200 and then to the series length steps=81. This was done to avoid policy hacks. All changes 
should be kept on track carefully. This is just an example to illustrate the myriad of possibilities present 
from the start. Other changes along the experiments included stepping from ‘MlpPolicy’ to ‘CnnPolicy’, 
changing a few hyperparameters of the algorithms used just for practical reasons (e.g., memory capacity) 
as would be the case of the DQN buffer length. No focused hyperparameter tuning towards performance 
was carried out and this is one of the next steps.  
  

5.9.2 Summary  

• Training losses can’t be used to draw any conclusions about the desired behaviour, but it 
serves as a surrogate to monitor performance.  

• Reward engineering is a hard problem in RL, even for straightforward problems.  
o Undesired behaviours result from policy reward maximization problem (policy 

hacks).   
o Mid-term rewards are a doubled-edged weapon (introducing knowledge with risk of 

undesired behaviours), commonly used in more complex environments (e.g. 
robotics).  

o Evaluating environments with mid-term goals makes it harder to evaluate goal 
reaching. 

o If only a goal reaching reward is given, less knowledge is introduced, making it 
harder to reach this goal, but the risk of policy hacking is greatly reduced.  

o Constrained MDPs can provide a solution [B63]  
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• Different reward functions will potentially cause different outcomes, in behaviour and 
performance.  

• Loggings and statistics are the only tool to monitor agent behaviour, and even then:  
o Variability in evaluation performance can have a wide range.   

• Ronchigram training results in poor generalization to real data.  

• FFT image as input offers equivalent results with synthetic data (slightly better).  

• When adding more training steps FFT improves better than Ronchigram data.  

• FFT images offer good generalization to real data.  

• Introducing human knowledge, when possible, makes the problem more tractable, 
especially in places with no risk of reward behaviour changing.  

o Reducing steps of freedom by introducing knowledge when possible.  
o Middle step rewards are a dangerous tool to use, easing convergence but 

potentially adding lots of reward engineering and undesired behaviour from the 
agent side.  

• Real data training works remarkably well (vs synthetic data)  

• Choice of algorithm:  
o Choose max 2 potentially good algorithms and concentrate on optimizing the 

workings.  
o Hyperparameter tuning is key.  
o Understanding of internal working of algorithms of interest to be able to build and 

improve code when it needs personalization.  
In the image-based RL setting, the points above are interesting first results in researching the self-
calibration problem. As RL is a young field with immature tools, the road to making the desired 
software operational and reliable will be beset with questions and challenges like the ones mentioned 
already. On top of that, other problems independent of the RL setting still need to be further improved 
(as the gap from synthetic to real data) to reach the desired performance.  

  
5.10 Future directions in Reinforcement learning  
In this section will we survey the literature where relevant to build upon our initial reinforcement learning 
prototype. We will cover the following themes:  

• Meta RL  

• Model-free based RL for dynamical models  

• Policy based reinforcement learning  

• Memory augmented models for vision problems  

• Use of experience replay  

• Reward strategies:   
o Objectives specified as individual rewards components and as simple as possible.  

• Data sampling strategies:  
o Environment based automatic domain randomization  

 

5.10.1 Meta Reinforcement learning  

A huge drawback of scores of RL algorithms is the fact that they are intimately tied to the environment 
they are trained and tested in. The upside is that you may overfit an algorithm to do well for a single task, 
such as an Atari game. But the consequence is that these agents do not generalize at all to slightly 
different tasks. This goes so far, that agents learn different behaviours pending the random seed in an 
otherwise identical environment [B30].   
Meta RL tries the seemingly impossible, namely, to train agents that generalize to different environments 
that have never been seen during training. This is accomplished with a limited amount of finetuning, 
where a meta model adapts its internal configuration to the new environment.   
Early work from [B31] uses an LSTM cell for adaptation to new Markov Decision Processes (MDP), which 
was further developed in [B32] and [B33]. They train their model over a set of MDP’s. These tasks are 
somewhat different though similar in nature. Such as a robot with slightly different physical parameters, 
or a maze that differs. The main difference to traditional RL is the fact that the policy not only observes 
the state, but also the last reward and the last action. This mechanism is used so that the agent may 
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learn from a history of states, actions and rewards and adjust the dynamics when needed. Key 
components are:  

• Deploying a recurrent model with a memory state. The hidden state is used to 
encapsulate knowledge on the current task. It is updated during roll outs  
• A meta-learning algorithm. In [B32], [B33], this can be gradient descent to update an 
LSTM next to a reset of the hidden state, the moment a new MDP is encountered.   
• A distribution of MDP’s.   

Work from [B34] treats the hyperparameters as learnable parameters: specifically, the discount factor 
and bootstrapping parameter are learned. These are optimized via a second (meta) objective function 
and using cross correlation over a sequence of consecutive episodes.   
As stated earlier, the exploitation versus exploration dilemma is central to RL. Common solutions include 
epsilon-greedy action selection, adding random noise to actions, or using some type of stochastic policy. 
Work from [B36] aims to learn structured action noise by conditioning it on a pre-task (latent) random 
variable. The variable is sampled per episode and should determine the exploration behaviour best for 
this particular roll out. This latent variable is also learned using the total rewards. It also stipulates, similar 
to VAE ELBO [B37], that the learned latent variable its distribution is close to a normal Gaussian.   
A similar idea is explored in [B35], where the authors use a learned latent vector conditioned on encoded 
actions and states. During rollout actions are then sampled based on the encountered state and the 
learned latent vector. This is done to prevent an agent to explore to much outside its learned path.   
  

5.10.2 Model based RL for dynamical models  

Model based RL is typically more sample efficient than their model-free counterparts, but usually lag in 
terms of performance. In a sense they suffer from opposite problems. Model based methods such as 
Gaussian processes can learn fast from little data, but struggle with highly complex or discontinuous 
systems. In contrast, neural networks are excellent approximators, but overfit in low data regimes [B39, 
B44].   
Model based approaches may roughly be divided into:  

• Methods that use analytical gradients  
• Sampling based planning  
• Model based data generation  
• Value equivalence prediction  

5.10.2.1 Analytical gradients  

Model assumptions about the dynamics or cost function are convenient because they may yield closed-
form solutions for optimal control. [B48]. Similarly, a dynamics model parameterized as gaussian process 
will have analytical gradients. Control models may also be used to generate guiding samples for training 
more complex policies. [B49]  

5.10.2.2 Sample based planning  

If models are completely non-linear, local optimality may not be guaranteed and one must resort to 
sampling sequences. So called random shooting [B50] samples candidates from a fixed distribution and 
uses a model for evaluation to choose the best action. More advanced variants iteratively adjust the 
sampling distribution. For example, work from PETS [B39], combines a model-based approach together 
with an ensemble to forward sample trajectories. Each (dynamical) model encodes a probability 
distribution from which one may later sample. This algorithm was later used by [B38] to continuously 
control an adaptive optical mirror, whilst learning to adapt at the same time.   
In discrete environments, its more common to use search over tree-structures, than to iteratively refine a 
(single) trajectory. Monte Carlo Tree Search (MCTS) [B51] has formed to basis for many impressive 
results in game playing. Famously, AlphaGo [B52]  

5.10.2.3 Model based data generation  

Data augmentation is widely used in ML to increase the size of a dataset and combat overfitting. In RL 
one can envision using a predictive model to generate synthetic data. The Dyna algorithm by Sutton [B54] 
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alternates between learning, data generation by the model and finally policy learning using the model 
data. Similar strategies are used by iLQG [B53], in meta-learning in general and even in applications that 
depend fully on image observations. [B55, B56, B57]  
Lastly, a variant of this technique is commonly seen in temporal difference learning when a separate 
model is used to improve target value estimations. [B58]   

5.10.2.4 Value equivalence prediction  

Finally, an intermediate approach between model based and model free methods is offered by value 
iteration [B59]. Here generated trajectories are only constrained to the real environment in the sense that 
they should have the same cumulative reward. They have proven to be effective in high dimensional 
observation spaces. [B60]  
To summarize, work from [B49] shows that predictive models generalize well enough to overcome their 
implicit bias but suffer from compounding errors when making long horizon rollouts.  Like PETS [B39] 
they use probabilistic model ensembles combined with a stable off-policy model free optimizer. [B61]  
 
 
5.11 Pixel-based RL introduction 
The watershed paper for image or pixel-based reinforcement learning was the work of Volodymyr Mnih 
et al. in 2013, Playing atari with deep reinforcement learning, which showed that it was possible for an an 
agent to learn how to play a whole suit of Atari computer games from the screen captures only.  It 
surpassed sota on six out of seven available games and human performance in three. In particular, it 
combined a CNN-based encoder for processing the images, deployed a replay-buffer [BB2] and 
stochastic mini-batches.  
This work was extended in 2016 by them using A3C (Asynchronous Advantage Actor-Critic), which 
allowed for parallel learning [BB3] and extended by [BB4] with the introduction of IMPALA (importance 
weighted actor-learner architecture). Proximal Policy Optimization (PPO) was introduced by [BB5], that 
has proven to be effective in other pixel-based environments such as Vizdoom [BB6]. 
A special category is formed by the so-called world models. Conceived by Ha and Schmidhuber [BB7] 
these methods learn an internal model of the world from raw pixels. They typically contain a separate 
encoder structure to process raw image pixels, which in some cases may be trained separately from the 
model and behavioral parts of the architecture.  
Dreamer type reinforcement learning borrows elements from both model-based and model free RL. It 
was conceived by [BB8]. These methods incorporate a world model next to a mechanism to predict future 
states. The latter can use an extra loss function to validate if these predictions hold. Dreamer type models 
have reached sota over a wide variety of domains [BB7, BB10, BB11]. 
 

 

 
 
5.12 ASIMOV Base Architecture 
The base case for ASIMOV follows the work of [BB1] closely with the exception that we deploy a much 
heavier backbone model (Resnet18) and the inverse Fourier transform. An overview can be seen in 
Figure 57.  

Figure 56 A screenshot from the game Pong. 
What is the problem if an Agent only receives 
this frame? 
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• The encoder architectures from [BB1, BB4] proved to be insufficient for learning. Conversely, 

architectures heavier than Resnet 50 gave little to no benefit.  

• We train end-to-end using ADAM [BB12] instead of the RMSprob [BB21] method used by 

[BB1]. 

• It uses a variant for the frame-stacking from [BB1], which we call focus-stacking. 

5.12.1 Focus-stacking 

Basic Q-learning is fundamentally based on the assumption that the state adheres to the Markov property. 
All information the agent needs to make an optimal decision is encapsulated in that state. (Illustrated in 
Figure 57). Our problem needs to be able to be framed as a Markov Decision Problem [BB17] (MDP), 
where the future only depends on the current state, not the history. Formally: 

𝑃[ 𝑆𝑡+1 ∣∣ 𝑆𝑡 ] = 𝑃[ 𝑆𝑡+1 ∣∣ 𝑆1…𝑆𝑡 ]. 
Or put differently, the future and past are conditionally independent given the present, as the current state 
encapsulates all information [BB22]. 
For Ronchigrams this is clearly not the case.  This can be seen in Figures 40 and 41. The fact that a 
multitude of aberrations may lead to the same wavefront is grounded in physical reality and thus 
something we must deal with. This situation may be resolved by either using a sequence of 
measurements and logged microscope settings through time, or by taking multiple measurements while 
willfully changing the so-called defocus setting on the microscope. These combined Ronchigrams 
uniquely identify the A1 magnitude parameter.  
This last option comes at the cost of taking seemingly superfluous measurements but is technically 
simpler to implement. The first pixel-based RL algorithm for ASIMOV uses it.  

 
 

Figure 57: Base DQN architecture with a Resnet 18 encoder and a linear 
head.The latter is dependent on the number of actions that is available. 
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5.12.2 Initial Results 

Figure 59 shows the initial results of a synthetic trained agent that was deployed and test on actual real 
microscope data. For this particular style of evaluation, we are not interested in the accumulated rewards 
but rather if an agents manages to reach the goal state (at all) and if so, how far above par it was in terms 
of the number of steps taken vs the theoretical minimum shortest path.  
A red square indicates that an agent that started from that grid point, where each grid point corresponds 
to a set of defocus and A1 astigmatism settings, reached the goal. Figures 60 showcases an identical 
agent with and without the use of focus stacking. Using multiple images increases performance from 36.3 
percent to 85.3 %. 

5.12.3 Over-training  

In this design the only measure that is taken to close the domain gap between synthetic and real data is 
the use of the Fourier transform. The previously used low pass filter has been dropped. This means that 
over-training on the synthetic dataset is a significant problem that must be guarded against. This is 
illustrated in Figures 60 and 61. The left shows generalization results after a 150’000 training iterations 
resulting in 85.3% performance, the right model has been trained 300’000 iterations and only reaches 
50.1%. 
 

 

 

Figure 58 General DQN learning architecture adapted from 

[1]. 
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5.12.4 Determinism 

Analyzing the paths of agents that miss their goal, there are a couple of things evident. Outer left corners 
corresponding to (extreme) A1 astigmatism and defocus values are difficult to deal with resulting in ‘stuck’ 
behavior. Secondly, the agent has significant difficulty around the goal state where real images tend to 
be more similar. This behavior is demonstrated in Figures 60, 61 and 68. In the DQN algorithm, when 
performing inference, the agent can operate in two ways. Either by taking the action adhering to the 
maximum Q-value as by policy default, or by treating the Q-values as probability mass function from 
which one draw samples. In areas where the agent is confident and robust a less optimal action may be 
corrected along the path. Around the goal or in a corner, it can free an agent from a zone of ambiguity.  
 

5.12.5 Q and V values visualization 

Let formally: 
Vπ(S)  =  𝔼π [  Gt  ∣∣ St = s ], 

Vπ(S)  = ∑ 𝑄π(𝑠, 𝑎)π( 𝑎 ∣ 𝑠 )𝑎∈𝒜 . 
And: 

𝑄π(𝑠, 𝑎) =  𝔼π[ 𝐺𝑡 ∣∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ]. 
We can get some insight in what the agent deems a good state to be in, by looking at a pseudo value 
function defined as: 

�̂�𝜋(𝑆)  ∼ ∑ 𝑄𝜋(𝑠, 𝑎)
𝑎∈𝒜

. 

This is illustrated in Figures 62 and 63, where for Q-values the variance is shown over the available 
actions. From the pseudo V values its immediately clear that the agents learns the distance from a 
Ronchigram state to the origin effectively. There are a couple of noteworthy things: 

• These maps are (near) convex. 

• The pseudo V-maps from real and synthetic data show great similarity. 

• Good state information, bare an exception, is not sufficient in itself for an agent to act upon. 

• Being in a bad state and recognizing this is not disadvantageous, if you know confidently what 

to do. This is hidden from view in the pseudo V-maps. 

• These maps may allow for a decoupling were assigning a value to a Ronchigram state is done 

by RL and the behavior for the next move is governed by a different algorithm altogether. Such 

as Bayes (active) inference.  

Figure 59: Basic DQN with Resnet18. 

Figure 60 DQN with Resnet18 with focus-
stacking. Evaluation to real data after 150k 
synthetic training iterations. 

Figure 61 DQN with Resnet18 with focus-
stacking. Evaluation to real data after 300k 
synthetic training iterations. 
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The default Q-learning policy is to choose an action that pertains to the maximum Q value for all actions 
available in that state. Ideally you would like the entropy to be low over this range. The variance maps in 
Figures 64 and 65 show a slightly more complicated picture. Clearly around the target there are many 
zones where the agent doesn’t exhibit any strong beliefs.  
 

 

 
Figure 63: Variance of the Q values for digital twin 
data and the Vivit architecture. Note the noisy border 
effects due to the focus-stack not having valid 

neighbors in its range. 

 
 

          

           

5.12.6 Architecture variants 

A number of different architectures have been tested: 

• The MobileNetV2 backbone [BB13]. This backbone is used extensively both in 2D and 3D 

computer vision problems. For an input image of 224 by 224 it has 3.4 million parameters, 

which is roughly 1/3 of Resnet18 for a similar image size. 

• A Resnet18 based backbone with weight sharing. Specifically, each image from the focus-stack 

is processed separately through the backbone after which positional encoding is explicitly 

added to the feature output vector. This positional information may both be fixed or learned. 

This architecture may be seen in Figure 66.  

• Vivit. [BB14] is a vision transformer [BB15] adaptation for video. Here we adapt the architecture 

to use the channels in the focus-stack as imaginary time component and keep the division into 

16 patches per slice.  

• MobileNet V2 backbones with weight sharing and a GRU (Gated Recurrent Unit) [BB16] layer 

on top that explicitly learns from the sequence of latent embedded vectors from left to center to 

right.  

 

Figure 62: Pseudo v map for digital twin 

data and the Vivit architecture. 

Figure 64 Pseudo V values for the real 
microscope. 

Figure 65 Standard deviation of the Q 
values per state-action pair for real data. 
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Generally speaking, there isn’t a single architecture that wildly outperforms the others. The weakest 
performance comes from MobileNetV2 but it is also the least heavy by far. The latter specifically 
suffers in all states approximately 40nm from the goal state. Otherwise, performance is on 
comparable. All other architectures manage to achieve over 85% performance on real data. We will 
revisit this observation extensively in work package 1.2. 

5.12.7 Focus-stack variants 

We have experimented with a number of variants of the focus stacking method: 

• Varying the distance of the left and right neighbor from 20nm upwards to 60nm. 

• Setting the distance to a maximum left and right and then uniformly randomly sampling a slice 

from between the bounds for improved robustness, i.e ‘the hopper’. 

• Taking the difference between the left and right image and dropping the central state 

ronchigram from consideration.  

 
 
 
In general, the algorithm is completely dependent on the feature differences between left and right to 
determine its unique position in microscope lens parameter space. Training on the digital twin allows you 
to set this distance exact to anything exactly. However, on the real microscope these distances in nano-
meter are approximations. The process is a lot more noisy and as a result, generalization suffers. As a 
rule of thumb, we found it beneficial to have the left and rights neighbors at least 40nm away from the 
center state. 
 

5.12.8 Sequence models 

Another approach to deal with partial observable markov decision processes, is incorporating sequences 

of (previous) states into the model [BB89, BB90]. It is possible to use a recurrent model together with a 

value iterator, if one modifies the Replaybuffer to capture the hidden states of the LSTM or RNN needed 

for training. We, however, opted to switch to a policy gradient method and deployed PPO-LSTM [BB90] 

without frame stacking. This method too, comes with significant downsides: it is famously hard to train 

and requires careful hyper parameter tuning. [BB91] 

We managed to get a proof of concept implementation running, be it at a computational cost, but its 

generalization performance remained severely lacking at around 62% percent, in comparison to methods 

that use multiple defocus frames.  

 

Figure 66: Weight shared Resnet18 with added positional 
encoding. 
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5.12.9 Conclusions and Future work 

Learning from end-to-end from raw pixels is a computationally intensive task and requires a fair bit of 
hyper parameter tuning. However, the performance of successful models is vastly superior to their 
manually feature engineered cousins.  
The single most significant factor contributing to the current performance is the use of multiple images 
with identical A1 aberrations but different defocus values. Doing more of such measurements ensures 
that the resulting image set is unique for the state, and therefor satisfies the Markov property which allows 
our problem to be formulated as a Markov Decision Process (MDP).  
 

 

 
 
 

Figure 67: Generalization results for weight shared 
Resnet 18 with positional encoding. 
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Figure 68: Agent stuck in the corner or lost around the goal 
state. 
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6 AI Architecture 

6.1 Introduction 
 
A reference architecture for the artificial intelligence will be developed in this part of the document, It 
should be used as a guideline for creating the architecture of a specific artificial intelligence subsystem. 
It contains the generic elements, aspects, and best practices. It is aligned in content and layout with the 
architecture of the digital twin [89]. The digital twin subsystem and the artificial intelligence subsystem 
are closely interacting, and both systems need to be performing in order for the whole system to work. In 
this document we intend to lay the basis for the exploration of the architecture of the full system in work 
package 4. 
 
The reference architecture will comprise 4 main blocks generally following the approach of viewpoints of 
Software Plaform Embedded System (SPES) framework [91]. In the task on the architecture of DTs (T2.3) 
this has been found to strike the balance of level of detail and adequacy for describing a reference 
architecture being as use case agnostic as possible.  The views considered are “requirements view”, 
“functional view”, “logical view” and “technical view”. However, we found that the implementation 
described in the technical view cannot be disconnected anymore from specific algorithms. No insights on 
an use case agnostic level can be gained here. Therefore, the technical view is omitted.  
 
6.2 Requirements view 
Most requirements stated in [90] (ASIMOV reference architecture) refer to requirements for the AI 
subsystem focused on the operational phase; that is also reflected in [89]. In this document the 
requirements for the AI in the training phase will be studied. Should all the requirements in the training 
phase and the operational phase be the same? Are there consequences to not having aligned 
requirements? Or are the alignments in the training phase not needed at all? These question and more 
will be explored in this chapter. 
 
The AI and the DT subsystems are closely related, and the feedback loop between both is key as a 
prerequisite. Prerequisites can also be understood as requirements, so this assumption is the one that 
will be used to build the requirements of the AI subsystem during training. 
 

6.2.1 AI subsystem – training requirements. 

6.2.1.1 Functional 

The AI subsystem will require the data usage as mandated by the goal of the full system, and the tools 
used therefore. Some of the tool functional requirements are specified in Document 3.1. Examples include 
constant size of the image (in the EM case 224x224) and format of the image (eg. .png). Other 
specification indicate what are prerequisites for all the parts to work together, related to infrastructure and 
software (e.g. GPUs to run RL or containerized environments). 

 
This specification will be the same in the training, operational and finetuning phases, and will accept small 
variations in the process. 
 
In the UUV Use Case the training process is realized by subcomponents which are well separated, in the 

sense that they are deployed in a container with own computational environments. Further, the 

components loosely communicate via interfaces. In order that the training of the RL-Model works, 

interfaces between the components must be defined carefully. Specific requirements in this hindsight are 

that the input-output and the interaction of the components are well-defined. A rough illustration of such 

system is given in Figure 69. 
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Figure 69 UUV Use Case Process Diagram of the Principal Components during the training loop. 

6.2.1.2 Qualities 

When taking into account the qualities of the AI subsystem (vs the functional requirements mandated by 
goal and tooling), the following will be addressed: 

- Accuracy: 
The accuracy required by the solution will be determined by a few numbers, for example reaching goal  
within 20nm. The accuracy metrics need to be a guiding force towards the development in the solution 
even in training phase. 
During the training phase the accuracy is a guiding factor and not yet a must. 
 
In the TEM use case the important requirement is to always reach the goal within 20 nm of the goal and 
then stop when in that position.  
 
In the training phase this means that the training and the testing data need to reach roughly the same 
results. Not being able to reproduce training results for testing data results in a failure. 
 
In UUV Use Case 1, the objective is to automatically create new and challenging scenarios to fine-tune 
the parameters of unmanned vehicles. The novelty and criticality of these generated scenarios are 
assessed using various Key Performance Indicators (KPIs). Unlike the TEM use case, there is no 
predefined optimal goal in this scenario, and any enhancement in KPIs represents a favourable solution 
for the use case. Additionally, one can involve experts’ opinion to review the performance of the RL-
solution. 
 
In UUV Use Case 2, since the objective is to improve the performance of vehicle sensors based on their 
observations in scenarios generated by UUV Use Case 1, we have access to ground truth data in the 
form of an image stream from the environment. The accuracy requirement may be quantified, for instance, 
by achieving a high percentage of correctly identified objects and minimizing discrepancies between the 
sensor input and the actual image stream. 
 
The information resulting from failures and successes determines quality standards for the DT, in the 
case of the DT requirements, it is hard to have them all upfront well-established and it is an iterative 
process. Of course, failing to produce qualitatively good data will result in failure of the AI, but the accuracy 
of the AI can be determined independently upfront, even when this dependency is known. 
 

- Robustness 
The AI solution will work under a certain specified condition of the TEM. Outside those conditions the 
behaviour cannot be guaranteed.  
The factory conditions are difficult to specify upfront given a complex system with many variables, so 
often just by testing the solution in the expected desired conditions it can be determined what the working 
conditions are, and then it can be determined if it meets the needs. Finetuning on the DT side to adapt 
the data is then often required to meet desired working conditions. For different use cases different fine 
tunings can be achieved from a general trained AI. 
 
For example, an AI can be trained with different sample thicknesses, convergence angles, electrons per 
pixels in acquisition etc. This functioning AI can then be retrained to meet working conditions, for example 
one specific low convergence angle (e.g. 14 mrad), standard acquisition dose (0.5 electrons per pixel). 
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Those conditions do not need to be part of the first set of conditions, and in general if the sample solution 
worked, the specific one will be able to be trained too, if the rest of the goals of the AI stay equal. In UUV 
Use Case, Robustness can be achieved by giving slight variations in the unmanned vehicle response to 
actions (environment) provided by the RL agent (D2.2, Section 5.3) 
 
Concluding, the AI solution is robust if it works within the required working conditions. It is in general hard 

to define these conditions up front, but they can be set experimentally by validating whether the AI 

provides an acceptable solution under certain conditions 

 

- Reliability and reproducibility 
Very related to accuracy, how reliable a system is and how reproducible its results are, is defined by how 
often and how well it reaches its goal. It can be stated that the solution should reach its goal above 90% 
of the time. 
Ideally an (AI) system should be reliable all time under working descriptions as described above; but it is 
possible that in expected or unforeseen circumstance's reliability goes down. Having tools in place to 
make the AI solution as reliable and reproducible as possible is a good practice, all kind of software and 
logic can be used to that end.  
 
In the TEM use-case the solutions should be reliable and autonomous, so in case of faced with 
unforeseen conditions or states, or if the model fails under expected conditions, a restart after ‘x’ seconds 
could be set in, or another model can be loaded to deal with the problem (if parameters logged allow for 
this detection), and even as a last resort a message to an operator needs to be sent to restart the physical 
system. 
 
Only by testing under expected conditions numbers can be given about the reliability and reproducibility 
of the system, and during training the boundaries are rather soft, while this becomes a hard requirement 
in operational phase. But still, it is important to have a gross idea and expectation of what this number 
can and will be before moving to the operational phase. 
 
To enhance trust in the automatic solutions generated by RL algorithms and to mitigate potential 
modelling errors, it is advisable to involve experts in the evaluation process, preferably on a sample-by-
sample basis. This kind of testing is particularly valuable in RL applications where ground truth data is 
unavailable, as is often the case in scenarios like UUV1. 
 
To facilitate human evaluation, as is the case with expert assessments, and to ensure reproducibility, it 
is crucial to employ tools for tasks such as data labeling and process labeling, documenting the training 
and operational processes, and version control of the RL model. The goal here is to have traceability to 
link experimental results back to algorithm, data set, and settings, and vice versa. In the UUV Use Case, 
we specifically make use of the ML-Flow framework for such purpose (see Figure 69).  
 
Further, it is advantageous to complement the tools by a data analytics and management platform that 

enables thorough analysis of the resulting information. Ideally such a platform should allow interfaces 

between data, model and users allowing rapid development and usage of further analysis tools for, inter 

alia, the improvement of model training. Such an interface might be in form of Jupyter Notebook or no-

code applications. Further, it is advantageous that such platform can assign hierarchical labels to data 

This hierarchical labelling system facilitates structured organization and categorization of data, making it 

easier to access and utilize effectively. Such labels can be seen as facets of the data, e.g., the stage of 

the data (e.g., cleaned or not cleaned). Furthermore, this label can be also used for realizing the 

component data interface replacing folders allowing flexibility in handling. An illustration of such a platform 

is given in Figure 70. 
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Figure 70 Data Management and ASIMOV Solution. 

- Time to result 
In training the time to result would be defined as the cycle of training and testing. In general it is desired 
that the trainings converge fast so that they can be tested as fast as possible and so make many iterations 
in the development to move on and have feedback on the achieved performance. 
But the time to result defined like this depends on many factors, for example, in multidimensional space 
the trainings last longer than in univariate space. When having images as an input the training takes 
longer than when working with features; even the size of the image can greatly make the training time 
differ. The Neural Network used at the backend will also influence the training time needed. The size of 
the state space will influence the length of the training, if it is bigger, it will take longer. 
Of course the computation resources and the types of algorithms run will also influence how long a 
training will last. If GPUs are available and the algorithm used supports multithreading, the process will 
be accelerated. 
 
Time to result can also be understood as a requirement for testing: the AI has to be faster than ‘x' seconds 
to reach the goal. To avoid misunderstandings, this definition would be used as an accuracy requirement 
in the training phase. 
 
For the TEM use case, there is not much that can be influenced in the setup to fasten the training. Given 
that 3 images of size 224x224 are used as an input to a ResNet18 backbone, and given that DQN of  
baselines3 is used as an algorithm that can be run on a single GPU, and given that the dimensionality of 
the state space varies with the stage of development in the research and that the dimensions are given 
by the problem at hand, the interval of play to fasten this up is limited. 
 
In this case it is more important to have an effective communication process and loop between the DT 
side and the AI side, and to avoid mistakes to be able to move forwards. 
 
For example, if the data used for training does not converge in training it is important to communicate the 
kind of failure, to understand the cause and to be able to make another iteration. Making false 
assumptions or conclusion on the root cause is often more detrimental to the development on the AI side 
than anything else mentioned above. Speeding up any factor in the AI side with all the givens is less of a 
priority than having an efficient communication loop with the AI side. 
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It is hard how to establish definite requirements for the described process. 
 
In the context of the UUV use case, the execution time within the unmanned underwater vehicle (UUV) 
is not of primary concern. This is because the primary objective is to generate critical test cases for 
optimizing the behaviour of the UUV. What holds greater significance in this UUV use case is the RL 
algorithm's ability to produce potential critical scenarios. These scenarios serve as valuable test cases 
that will be evaluated in a real test bed environment. The availability of effective critical scenarios 
generated by RL can lead to a reduction in the costly usage of the test bed. 
 

- Scalability 
 

The scalability as referred to in 2.3 is a kind of robustness across machines. In training the only 
robustness that will be important is as defined in ‘Robustness’. 
 
Another aspect of scalability, as seen in the UUV use case, pertains to the adaptability of the RL solution, 
making it straightforward to expand for larger use cases. This adaptability can be accomplished by 
establishing manageable and isolated micro-service structures for each component involved in RL 
training and operations. Such a structure offers flexibility in terms of combining and extending these 
components while also granting freedom in determining how they interact with each other. 
 

- Explainability 
Explainability is an important factor in training, as failing to explain behaviour will result in not 
understanding how to improve the AI step by step in a controlled manner. Without an understanding there 
is no way in developing of the solution towards a desired behaviour, and in AI many iterations will be 
needed to build the solution in complexity and towards the desired requirements. 
 
As importantly towards building the solution, knowing why the AI works and why it fails is needed to build 
the human trust to build in the software into a system, to convince stakeholders and people involved. 
 
Some tools and metrics can be used to tracked the behavior, depending on the type of AI this will vary. 
In the TEM use case, we use DQN, a value-function based RL with Neural Networks for function 
approximation. In this specific case, using the q_values and sum(q_values), together with analyzing the 
action maps taken gives almost full explainability of the policy. Knowledge and interpretation are needed 
to make the just conclusions, as many factors can influence how the q_values and the actions taken look 
like. 
 
For example, it can be factors in the data, in the hyperparameters used during training, in the design of 
the problem, on the reward function definition in the RL. 
 
To enhance trust in the automatic solutions generated by RL algorithms and to mitigate potential modeling 
errors, it is advisable to involve experts in the evaluation process, preferably on a sample-by-sample 
basis. This kind of testing is particularly valuable in RL applications where ground truth data is unavailable, 
as is often the case in scenarios like UUV1. 
 
Similar as in discussed in the reliability and reproducibility, it is crucial to employ tools for tasks such as 
data labeling and process labeling, documenting the training and operational processes, and version 
control of the RL model. These tools should be complemented by a data analytics and management 
platform that enables thorough analysis of the resulting information by an expert. 
 

6.2.2 AI subsystem – operational requirements. 

 
In the operational phase, as an extension to the training phase when successful, all the requirements that 
needed to be approximate first, need now to be more definite. 
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For deployment upon a real system, the hard requirements need to be specified and the solution needs 
to be finetuned in order to function as described in all aspects of the requirements. 
 
The solution in training phase and operational phase should be the same, as varying the conditions may 
result in needing another iteration on the training phase. The AI software is known to work very well for a 
very specific range of conditions, so varying them may result in another iteration. The extent of the 
changes in data or requirements will determine the extent of the rework in the training phase. In general, 
if the changes are small, the method might be correct, but the models will need to be retrained, possibly 
needing other processing, hyperparameters or length of training. What makes a small or big change is 
up to the experts to decide, when the changes of requirements are too large not even the approach can 
be assumed to be right anymore. So, having changes in the requirements is especially critical for AI 
systems, that need a good definition of the problem beforehand. In training those requirements need be 
less accurate, but in big lines, correct. Assuring this for a smooth stepping to deployment is the key. 
 
For the electron microscope the first months there was no specific business-case (but a general problem 
statement) and a more generic approach to the problem was taken. When the business case was ready 
the approach was still holding even though the hyperparameter tuning was the key to solve the problem.  
 
The same also holds for UUV Use Case. In the operational phase, it is important to monitor the 
performance of the RL-Model in hindsight whether it achieves the intended goal of creating critical 
scenarios. Here, fully documentation of the processes and the possibility of user interacting with the 
resulting data is important for the users to evaluate and adjust the model for possible changes. Both the 
model-logging infrastructure (Figure 69) and the data management (Figure 70) required in the training of 
the model is helpful to fulfill those tasks. 
 
 
 
6.3 Functional view 
 
In the case of the AI subsystem, we decompose the functional view into the training phase and the 
operational or deployment phase. 
 
For ASIMOV the training phase comprises the typical RL blocks, which means that the agent interacts 

with the own defined environment. That environment is based on the gym-framework, which enables the 

agent to go to through the sequential steps of the problem. The steps followed are defined by us following 

the logic of the problem. The RL algorithm used will update its policy and learn a (desired) behaviour in 

the training process. Depending on the RL algorithm used, the method of learning and updating the policy 

will differ. In the next section the differences when updating the policy will be highlighted. In this section, 

through the graph, the learning process can be visualized in Figure 71. 
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Figure 71 Flow diagram of main functions and decisions during the training phase. Decision points contain 

exemplary numbers. 

 
The training phase generally consists of three nested loops. The lowest loop is the obtaining a state. 
predicting the next action, obtaining the next state and so on. This loop is terminated when an optimal 
state is reached. The sequence of steps is often referred to as an episode. The superordinate loop iterates 
through episodes. After a certain number of episodes or states across the performed episodes, the policy 
is updated. The highest order loop then assesses the state of the training which consists of iteratively 
updating the policy (decision: “Policy update threshold?”). It is generally stopped after a predefined 
number of policy updates or the evaluation of the training progress on a validation test set. 
In the operational phase no more learning is done, the learned behaviour is the one that will be deployed 
on the machine. For this, the trained policy encoded into e.g., a neural net, is used as is without any 
further updating. To do so, one either can decouple the artefact from the training algorithm (see Figure 
72 or fix the exploration of the algorithm.  For value-function based algorithms like DQN, if the exploration 
rate is 0 the same behaviour will always be observed for a given (estimated) state: the behaviour is 
deterministic. If the exploration rate is 0.1, one in the ten moves the action might differ from the mandated 
policy. This behaviour will be chosen from the selected model in training. 
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In the EM use-case the model will be interacting with the calibration software of the microscope in an 
automated way until it reaches the desired position, disengaging at that point. 
 
 
 

 
Figure 72 Flow diagram of main functions and decisions during the operational phase. This represents mainly the 

evaluation flow. 

 
6.4 Logical view 
 
This is the last view that will be developed, given that the technical view would refer to the connection to 
the embedded software or hardware of the physical devices itself, that is out of scope for this document. 
 
In the logical view the detail of the chosen implementation and how the policies are updated per RL 
algorithm family will be highlighted. The two families are namely value-based  and actor-critic. At this 
level, there are implementation specific choices that are unavoidable at this level of depth. 
 
From the AI perspective, it is interesting to understand what we called the ‘Predict’ block and to 
understand how the policy is updated in RL, what we called the ‘Update policy’ block. Those are the AI 
specific elements of the flows. 
 
For the EM usecase, applying a DQN algorithm (value-based), the ‘Predict’ block is implemented as 
follows: 
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Figure 73 

From the perspective of the policy update a vanilla DQN implementation was used, also from the library 
baselines3. DQN is a value-based model free RL algorithm that works according to working in the graph 
below. 
The Q-network corresponds to the custom-defined network defined above. The Target Q-network in a 
copy of the network that is only updated every policy update times, as can be seen in graph x in the 
functional view. 
 

 
Figure 74 

In the UUV case which implements an actor-critic algorithm (see chapter 4), the Predict block contains a 
neural network called “the actor” with the following dimensions:  
 
(14 states)x128 linear + relu activation layer +  128x128 + relu activation layer + 128x(9 discrete options 
+ 3 discrete options + 6 for continuous action averages + 21 for creating cholesky matrix for continuous 
actions = 36) 
 

The policy updating consists of multiple steps Figure 73. To estimate the Q-value of a specific action-

state-pair the critic is also a neural net with size. 

 
3 layers: (14states + 10 actions)x128 linear + 128x128 linear + 128x1 linear 
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Afterwards, a gradient-based, two-step process needs to be performed. The E-step is to set the weights 
for the action, and the M-step is used to fit the improved policy (for more details, consult D1.3.1). 
 

  
Figure 75 Diagrams of the actor-critic algorithm implemented in the UUV use case consisting of function blocks and 

steps. 

 
DQN and MPO are both off-policy in this case, using a replay buffer to sample trajectories, even though 

there are many ways of sampling, and this is also algorithm specific. 
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7 Conclusion  

This report describes the state-of-the-art in reinforcement learning and digital twin-based learning, the 
first ideas on their application in the ASIMOV use cases, as well as the full AI implementations in the 
ASIMOV use cases. The final contribution included in this report is a reference architecture for DT-
supported AI implementations. 
 
The extensive and well-structured literature overview provides ample information to direct the 
investigations in applying state-of-the-art techniques in both digital twinning as well as artificial 
intelligence. Chapters 4 and 5 detail the specific AI approaches and designs applied in the use cases, 
mostly in chronological order, with results. The chapters present theory behind changes made to off-the-
shelf AI tools to ensure a correct fit to the use case. The reference AI architecture in Chapter 6 
summarizes the general lessons learned in the ASIMOV project regarding DT-based AI. 
 
The AI applications have obtained varying levels of success, with the main hurdle at the end of the project 
being the complexity of the cyber-physical system. The most promising results suggest that DT-based AI 
has great potential as a product to enhance the performance of cyber-physical systems, on the conditions 
that domain-specific challenges can be overcome, and that the problem fits the AI architecture.  
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