F2.2.4 — VERDE Methodology V1.1

A VERDE
v
erde

VERIfication-oriented & component-based model

Driven Engineering for real-time embedded
systems

\j

F2.2.4-VERDE Methodology V1.1

Document version no.: 1.1
Edited by: CEA, TCF, TRT, SINTEF, FZI, Bosch,
FHG, SCS, TAS, OBEO, ALS, AST

Page 1 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be disclosed by the
recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

History

Document Author(s) Date Remarks

version #

Version 0.1 SCS 15.11.2011 Initial release based on F2.2.3

Version 0.2 SCS 05.12.2011 Update on Modelling Standards based on partner input
Version 0.3 SCS 09.12.2011 Added new patterns provided by CEA and TRT
Version 0.4 | FzI 12.12.2011 gggﬁteect%r: Sﬁ)ﬁ?)r;mir?tnd added a new pattern for
Version 0.5 TRT, TAS 19.12.2011 Update on Current Practices and Modelling Standards
Version 0.6 SCS 21.12.2011 Update on Modelling Standards

Version 0.7 TRT 26.01.2012 Added new pattern for performance analysis

Version 1.0 SCS 08.02.2012 Included Reviewers feedback

Version 1.1 TRT, OBEO | 01.06.2012 Update pattern for performance analysis

Page

2 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Table of Contents

TABLE OF FIGURES..........ccooiiiiiiiiiiiiiiiiiiiiieititeteieeteeeeeeeeeeeeeeeeteteeeeeesseettettessettesssnss 5
EXECUTIVE SUIMIMIARYccuiiiiiiiisisss 7
1. INTRODUCGTION.....ccoetttmememmmemmeemmmeeeeesss 8
1.1 RELATION TO OTHER WORK PACKAGES AND TASKSeeeeurtteesutesesiueeeeanureeessseeeesasseesssssasessssessssnsssessssssesssssssessssseesssssseessnnn 8
2. CURRENT PRACTICES (INDUSTRIAL PARTINERS) ...cceeicerrunreeteieecsssnnneesssssssssssnnsessssssssssnnnsesssssssssssnnnassssssssssnnnsesssssas 9
2.1 CURRENT PRACTICES IN THE RADIO COMMUNICATION DOMAIN....cceiiutteeerurtteraireeessiteeesbeeesesuteeesaineeessbeeesssnneeesaaneeessanseeeans 9
2.1.1 Current DevelopmMent ProCESS Qt TCFcccuueeeeceeeeeeieeeeecteeeeeteteesttaaeettteaeeettaaesssssaaasasesasasssesessssssasssseeas 9
2.1.2 EXPECLEA IMPIOVEIMENLS ..ot ettt tee e et e et e e et e e e ettt e e e sseaeessstaaaastasaeessaaaenssesassssesennses 10
2.2 CURRENT PRACTICES IN THE SPACE DOMAINuetttettieiiietteeteeeseauettteeeeesesuattteeeessesuunbetteeeesesanbaraeeeesesansasaeeeeessaansnnaaeeens 10
2.2.1 Current Development Process at Thales AlNiQ SPACEcoooueeeceimoieeeiiieieeeeeeeeee e 10
2.2.2 EXDECLEA IMPIOVEMENLES ...ttt et ettt et ettt e s e e at e e nsaeesate e s ateenateessseenanees 11
2.2.3 Current Development Process at EADS ASEIUMcccueevueemueimiiieee ettt 12
2.2.4 Expected IMprovementscccceeevuvveeieeeeecciivennennenn,13
2.3 CURRENT PRACTICES IN THE RAILWAY DOMAIN13
2.3.1 Current Development Process at ABB13
2.3.2 EXPECLEA IMPIOVEMENLSeeeeeeeeeeiee ettt e ettt e e e e e e sttt e e e e e e ssas st e e aaaeseasssssasaaaseessnssenees 13
2.3.3 Current Development ProCess Gt AISEOMcccueeiueeeueeiiieeiee ettt ettt ettt e 14
2.34 EXDECLEA IMPIOVEMENLS ...ttt et ettt e ettt et et e saaeesate e s ateenateensneenanees 15
2.4 CURRENT PRACTICES IN THE AUTOMOTIVE DOMAIN ...evttiitieeeeietteeentteeestteesesuteeeseseeeessseesessseeesssssesessssseessssseesssssseesnseees 15
2.4.1 Current Development ProCeSS At BOSCH..............cceccuveeeeeiiieeeceeeesieeeeseteeeetteaeesssaaastsaaeessssaesssssasasssesanans 15
2.4.2 EXPECLEA IMPIOVEMENLSceeeveeeeieeeie ettt ettt e et et e e e e e e ettt e e e e e e seassteaaaaesesssssssasessessnssenees 16
3. IMIODELLING STANDARDSccoovtmmmemmmmennenmnneenesesssmsss 17
3.1
3.2
33
34
35
3.6
3.7
3.8
3.9
3.10 AUTOSAR ...ttt ettt e et e s ettt e s aee et e s be e e s e m b et e s e as e e e e s ne e e e e a b et e s e s e e e e s nn e e e e e re e e s ennraeesannneeesnreeeean 20
3.11 SYSTEMCFEHLER! HYPERLINK-REFERENZ UNGULTIG. ...veeuvetentrerureeenutesteeenueessteeesseesseeesueesseeenseesseeesseessseessseesssesenseesne 21
4. EXISTING METHODOLOGIESccceuvmemmmmmmmmmmmmmmmmmmmmmmmmmmmmemememsmemeesss 22
B. 1 IVIODELPLEX .. .uuuuttttteeeeeaauttetteeeeaesautetteeee e e s asssa e e eeeeesaaanne et e e eeeaaannbe b e e e e e aeann b e e et e e e e e s nnbe e et e e e e eaannbeneeeeeeeaaannnneeeeeeesaannrnee
4.1.1 DeVeloPMENT ENVIFONIMENTeveeeieeeeecieeeee ettt e e e ettt e e e e e s ettt e e e e e e seassseeaaaeseasssssnesassesssssssens
4.1.2 Key aspects of Modelplex Solution
4.1.3 Development Methodologies in Modelplex...................
4.2 D-MINT ittt e e s e s e e s s e s s snreeesnnee
4.2.1 General Model-Based Testing methodology
4.2.2 The D-Mint Common APProach (ASSEL BOX)cceecueeeeeeieeeeeieeescieeesteaeeeteaesssteaesstaaessseaasssssasssssesanns
A.3 IMARTES ettt ettt ettt ettt ettt e ettt e sttt e e s aa bt e e e e ate e e sttt e e e abae e e e b tee e e b e e e e e ahbteeeabte e e e baeeeenbeeeeanaeeeebaeeeenabaeeenaraeas
V. (o] = 60|V OO ST UTRR TP
5. METHODOLOGICAL PATTERNSccovvmmeeeemmnnnnnnnnnneessess 28
5.1 CONCEPTUALDESIGN ...cettttteteeeiititeeee e e e ettt e e e e e sttt e e e e e s e uas bt e e e e e e saaausb et e eeeeeaannbe e e e eaeaeaanbaeeeeeeeesannbabaeeeeeesansnnneaaens
5.1.1 Definition Of REQUITEIMENTS..........eeeeereieeeeteeeeeeee e eeee e e ettt e e e ettea e sttt e e e s tteaesasseaessusesasasssaessnsseasassssasasssenannns
5.1.2 Traceability Of REQUIIEIMENTS.........ccccuueeeeeieieeecee e eeee e et e e e etee e ettt e e e st e e e s asteaeesuseaaessseassnsssassnsseasasssenannns
5.1.3 System/SUbSYStem MOGEIIING.............cueecueeeeeeecieeseeeeeeeeteecee e te et e e s te ettt e et tae e e e e aeeasas e tssessssesssaeanesenses

5.2 SYSTEM DESIGN / COMPONENT BASED DESIGN

Page 3 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

v
,\/ B VERDE
. ex 'e (ITEA 2 - ip8020)

5.2.1 Modelling of the EXeCULtION PIALIOIMooeeeeeeeeiieeeeeieeeee e ettte e e st e e ettt e e e staeaeestsaaaesssaasssssasasssenanns 38
5.2.2 Modelling of FUNCLIONA] COMPONENTLS..........ceeccueeeeeiiieeeeieieeeeee e estte e e e tteeesteaaessasaaastseseesssaesssssasasssesanans 40
5.3 DETAILED DESIGN ..etiutteetieeiuteetteeniteessteessseesseeesusesssseessseessseesssessssessssessseesssessnseesssesssesssessnseesssesssseesssssessessssassneesne 47
5.3.1 Modelling of INternal BERGVIOULScccueerueeeieiiiieeieeeeeeee ettt ettt 47
5.3.2 Non-FunctionQl CAGIACEEIIZATIONccccuvveieeiiieesiiieeeesiieeeetee ettt e ettt e e et e e e sitteesssstesssssssesssseeessnssesenns 48
5.3.3 Legacy Code Abstraction/ Integration .52
5.4 IMODEL BASED VERIFICATION ..veeuvteiureesuueesuseessseesssesssseesssesssseesssessssessssessnsessssessssessssessssesssessnsessnsessssessnsssessessssessnsessnss 54
54.1 CAPLUILE i@ CONSEIQINTS coovvveveeeeeeeeeieiieeeeeeeeeeeeeeeeeteeeee et eeeeee et aeeeeeaeseaesesesesesaaeaesesesesesesesesesesesesesesesesenennnenen 54
5.4.2 NON-FUNCLIONGI ANQIYSIS c.....vveeeeeeeeeeeeeete ettt e ettt e e ettt e e ettt e e e ettt e e e aste e e e aasasaeatsaseessssaesassssasanssenanes 57
5.4.3 PeIrfOrmMANCE ANGIYSISoooneveeeeeeeeeeee e te ettt e ettt e e ettt e ettt e e e et a e e ettt e e aasasaeesasasaeastsseeansaeassseeaaans 63
R BV, 1o To (= B Vi To]2 K SRS 66
5.5 IVIODEL BASED TESTING. .. s s s s s s s s e s s s s e e s e s e s e s e s e s e s e s e sasasasasasasasasasasasasass 69
5.5.1 Modelling of Test PUrposes fOr BIOCK BOX TESLScccueroueeerueeriieeieesieeeiee ettt 69
5.5.2 Modelling of Test Purposes for Compositional TESLINGc.ccoveeeveerieeeieiesiiieeeee e 70
5.5.3 Test Generation fOr BIACK BOX TESLSccccuueeeecueeesiieeeeeeeeeeeteaeetteeaesseseesssesaessssasasssesaesssssaesssssasasssesanans 74
5.6 IMPLEMENTATION / DEPLOYMENT ...euveeteeteestesssesseesseesseesseesseasseassssssessssssesssesssesssssssesssesssensesnsesssssssessssssesssesssessesseesnes 80
5.6.1 Allocation of Functional Components on the Platform ...80
5.6.2 Functional Connector Deploymentc.ccooveeecrvveeennns .81
5.6.3 Code Generation for Component Deployment..............82
5.6.4 Code Generation for Component IMPleMENEALIONc.eeevueeviuveeseiiiiieeeeieeeee e 84
5.7 EXECUTION AND SIMULATION...ceutteiuteesureesureassseessseessseesssessssesssssssssssssssssssessssesansessssessssessssssnsessnsessssesssssssssessnsesansessns 86
5.7.1 Execution Of TESts 0N the PIALFOIMooeeeeeeeeieeeeeeee ettt ee et eetea e e se e e ettt aa e e sts e e e s ssssaeassseaanns 86
Y 1117 Lo o PO PRSP 88

LIV B U4 [o=3) Y X 1 [1 [« RO PSP 92

6. CONCLUSION.....ccettiiiiiiiiirnntetiiiissssssnsssessessssssssssssssasssssssssssssssssssssssssnnssessssssssssnnaens 94
REFERENCEScuuuuutiiiiiiiiiiiiunreeiiiiiiissssssnessssssssssssssesssssssssssssssssssssssssssssessssssssssssssessssssssssssssessssssssssssnssesssssssssssnsessssssss 95

Page 4 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Table o

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

“All info

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

f Figures
Relation to 0ther WOrk PACKAQES.........iciivieieieeeses sttt sttt ettt st ae et e e srestessessaeneenes 8
Current design process for Software Defined Radio (SDR)cccccvireinineinenieneneeeeseeseseee e 9
Improved design process for Software Defined RadiO...........coccveereirireiininceneeeseeeseee e 10
Current design process for Space SOftWare SYSIEMS......c.coiverirerinieirnee e 11
V-Model of ECSS-E-10 ProCess PhaSingcccecririeirinieinenieineseeestestee sttt st 12
CatEYOIY BA lIifE CYCIE ...ttt ettt st et e s be et e e ss e st essesbestesreetaeseessensans 15
Design flow in the automMotive dOM@AIN..........cc.ociiiiieieee e st enes 16
SPEM DASICS ..ottt sttt sttt b e bt eer st e 18
L@ AV I o= T3 o USRS 19
MO -IM2T BASICS....veteueeterieieetertentetestet et stest et st et ebe st es s ebe st et ebesaes s ebesbea s eb e st easebesb et ese e b et e st eb e b enesbe b eneebensenesain 19
AUTOSAR System ArChiteCtUre OVEIVIEWc.ccerieirierieinierieieieneeeete sttt st eb st ebe st be e seenens 20
General Architecture of ModelpleXx WOrkDENCh ... 22
Lo Lo B o= o= B =TS 1 o P 24
D-Mint Common APProach (ASSEL BOX)c.cccuieiieiirierieeieeeetestesee e seeesteeaeesessaessaessaesse e sessesssesnnesnes 25
MARTES MethOdOIOgY OVEIVIEW.......c..eiiiiieciieeeceeeteestee e etesae e s eesaeesteeae et e ssaessaessa e seesseensesseesrnesnes 26
MOPCOM MethOdOIOQY OVEIVIEW.......c.eeiuieieciicieeeeeteestees e ete e e e saeesteesteestessaessaasteesseessesnsesseesneesnes 26
VERDE SPIFal PIOCESS ..ottt ettt st b e st b e st b e st b e et ebe st e e ebesaeeebe 28
Requirements CONFIGUIALIONccoiiiiiriiieiriee ettt sttt 29
ReqUIreMENES ENGINEEIING.....coviiiirieieierieetert ettt sttt b st b st b bbbt e st st e beseebenbenesaen 32
Requirements CoNSIStENCY CRECKINGocvvviiriiieireeieestese sttt st srestesseeseenaensenes 33
Requirements Tracing High LEVEI DESIGNocvieiiiieieeee ettt 34
Requirements Tracing Detailed DESIQNccuievieiicieeeeeeee et re ettt be e teeaeeaeesane e 35
SUDSYSIEM MOUEIINGeeiieiecie et s e e b e et e e e s ta e be et e e beestessaesrnesreesseensesnsenns 36
Modelling of Hardware BASEIINE............ccvevieriireiieirieeesese ettt st st s e srestesneeseeneensenes 38
Workflow Modelling of Functional COMPONENTS........c.coiieiririeiriiertee et 40
Definition of Component Types and INtEITACESccviiiiiienie s 41
Definition of Ports and CommUNICAtION PAEIMNSco.eoieeriieiriiieerieieeree ettt 43
Definition of Component IMpPIEMENTAtIONScoiiiiieieee e e 45
Modelling INterNal BENAVIOUFco.eiiiiiieiee ettt sttt ettt st be s ebe e nes 47
Non Functional Characterization for Safety & RAM ..o 48
Resource Usage Characterization PatterN.........ccccceveierierisieieeieeeeeesese e see et st ssae e essenes 50
[I=To = Ty A @0 o [0 AN o 1S] 1= o] 110 o I 52
Model Based VerifiCation PAIEINccocveiireiiiieineeeeenese ettt 54
Capture TiMeE CONSITAINTSccovererieerieieteee ettt e e e sr e st e e e se et e ssessessessesseaseeseessessessessesseessessenses 54
UML Interaction Lifecycle in Capture Time ConstraintS ACHIVILYccccovverireneiinienere e 54
Schedulability ANAIYSIS PAIEINcoiiiiiiieee ettt st ettt e b s aeeae e e eneas 58

Page 5 of 95

rmation contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

A\
-
,\/ VERDE
- erde

; (ITEA 2 - ip8020)

Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45;
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51.:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:

Non functional analysis for Safety & RAM ..ottt sttt nes 60
PErfOrMAaNCE ANGIYSISc.coviiiiiiieiiietietet ettt e st et st te e be e st e s e s e besbestesbeasaessessessesbestesseasaeseessenes 63
Model Based ANAIYSIS PAttErN.........ccccieieviiriiiiieceeeeiete sttt ettt e e b e tesbesta e e e s essessestessessaeseessenes 66
MOAEI ANGIYSIS ...ttt b et b s bbbt e bbb st s bt s e st b et ene b et e st ebe b eneenin 67
Modelling of Test Purposes for BIaCk BOX TESESc.coivieiririeiriiieiiriiieiesieeieseee s 69
Classification Tree method and TESIML........ccccviiiiriiiririeree et 70
Modelling of Test Purposes for Compositional TESHINGcceceririeeririeerinieereeeseet e 71
TestGeneration BlIAack BOX TESHINGcccevviciiiieiiieieierere ettt ettt te e ess s e b e besresteeseensessansas 74
DEfiNg TESt REQUITEIMENTSccviiviiiiciieeieieiestes ettt ettt ettt s te et esa e s e s e be st e stesseasaessessessesbestesseesaeseessenes 75
CreateTESICONIEXE ..ot s a e e sr s b s e 76
DEfINE TESE CASES ...ttt ettt e bbbt s b a et s st b e s se bt b ese s e nneneenis 78
Deployment Of COMPONENLSciiiiiririeietereetet ettt ettt sttt bbbt b et se bt se b sbenesaes 80
Code Generation for Component DEPIOYMENT........cc.cciririeiiirieineriee ettt 83
Code Generation for Component IMplEMENTAIONcoeceierieirenieneree e 84
EXECULION OF TESES ...c.eieieiirieiietirteeeere ettt ettt b s se bt n e benne e nnis 86
GeNErateADSITACITESICOUE ..ottt ettt sttt e 86
EXECULETESIS. ...t bbb sa e s 87
SIMUIALION TASKS ..ttt sttt se ettt re et ne 89
TrACE ADSITACLION ...cveiiiiitiieeetee ettt b et b e st b e et b e bt eb e b et ebe st et ebesbe e ebens 92

EXamPle Of tracCe fil@ (LCSV) .cuiririiiicieeeeeer ettt sttt bt sne s e ne e nes 93

Page 6 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Executive Summary

The growing complexity of real-time embedded systems is combined with constantly growing quality and
time-to-market constraints. This creates new challenges for development projects in this domain. Traditionally
most development processes used in this area are based on the V Model and other domain specific
standards, where validation and verification activities start when implementation and integration is completed.
Problems related to the architecture of a system are often identified late in the project cycle and are therefore
more difficult and more expensive to correct.

The goal of this document is to provide information on a more iterative and incremental approach to software
development, driven by the early validation and verification activities. Beside modelling of functional
components and modelling of the execution platform, activities like capturing of timing constraints and
modelling of non-functional properties are addressed as well.

Chapter 2 gives a brief overview of current practices used by the industrial partners in the various domains.
This is a good source to find out similarities and differences in the processes and to define the expected
improvements.

The VERDE methodology is based on modelling standards, mainly UML2 and its extensions. All standards
that are taken into account are described in chapter 3.

An overview of existing work and previous EU projects deliverables can be found in chapter 4. These results
can be seen as a good input and a good starting point for the results defined in this task of the project.

The main part of this document is chapter 5 where methodology patterns are described. These patterns
provide practical and “easy to put in practice” modelling solutions for concrete modelling issues, that can be
selected by end users when needed.

This version of the deliverable in an update of F2.2.3, delivered end of 2011. Beside corrections in chapter
one, two, three and four, the main updates are in chapter five, where additional patterns have been added.
These patterns are derived from other work packages and are also based on feedbacks from WP1 industrial
cases.

Page 7 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
4 VERDE
g (ITEA 2 - ip8020)

1. Introduction

This document describes Methodological Patterns for iterative, incremental design of real-time and
embedded systems (RTES). The modelling languages selected for representing components,
applications, context, deployment and configuration plans, non-functional properties, tests, variability and
in general any of the artefacts envisioned in the VERDE process are UML2 and its extensions for RTES.
These languages propose a large number of modelling constructs that may be used in a variety of
situations and for different validation techniques. The aim of this task is to select and restrict the
modelling practices to those necessary to cope with the iterative, incremental and validation-driven
design of component based RTES, and more specifically to their implementation and deployment on the
concrete platforms proposed in the project. This is necessary to drive into industrial practice the large
amount of research in the field, reducing complexity when possible and posting directions to follow in
concrete situations.

1.1 Relation to other Work Packages and Tasks

This deliverable is the result of task 2.2 of work package 2. Figure 1 shows the relationship between
WP2 and the other work packages.

WP1 - Industrial Cases

Software

Radio Automotive

Railway Space

Integrated solution for Verification

Requirements Driven Engineering

WP2 — Methodological and Tool Integration Framework

- Requirements to ensure overall consistency
- Common, transversal modelling technology
- Languages, tools, methods and process elements

WP7 - Management
WP6 - Dissemination and Exploitation

WP3 WP4 Non- WP5
Execution Functional Model-based
Platform Properties Testing
Analysis

Figure 1: Relation to other Work Packages

The Requirements that drive the outcome of this task are defined in work package 1. This task also provides
information on current practices in the various domains. Results of this task will be proved in domain specific
use cases, also defined in work package one.

This deliverable is related to other deliverables of work packages 3, 4 and 5. Information from these
deliverables is included in this document.

Page 8 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

2. Current Practices (Industrial Partners)

The industrial partners in the VERDE project provided information on the current development processes
and the used modelling techniques. This chapter provides for each of the industrial domains an overview
extracted from the VERDE deliverable F1.6.1: Evaluation Criteria.

2.1 Current Practices in the Radio Communication Domain

2.1.1 Current Development Process at TCF

We focused in the following section on the description of the software process description, as it is currently
applied at TCF (mainly GPP based). The enhancement proposals to this process will include System
requirements allocated to the hardware in order to validate early in the process non-functional properties.

The current development process is described in the figure below.Each arrow implicitly associates decision
points to evaluate the capability to go further in the process.

Operatio?al Needs

Waveform A ; 7 : / \

Simulation Wave'form UTV!L = b = ; l—ELI ‘:\:

(OMNET Tool) Modelling &J
Waveform and
. Platform Simulation
SCA and UML Modelling
of Waveform and Platform

<+—— Target ——
SCA Platforms

Figure 2: Current design process for Software Defined Radio (SDR)

The first step is based on System analysis as validation of the hypothesis of the specific protocol layers from
the System Requirements Allocated to the Software. These validations are done from specific modelling
tools, which could be either Matlab for Signal processing specific algorithms or protocol simulation layers in
order to validate parts of protocol layers. This first step aims at the definition and specification of the desired
waveform as well as the definition of a preliminary software architecture, taking account the characteristics of
the target SDR radio.

The second step is based on a definition or use of already implemented Radio Devices and Radio Services
on the platform, which corresponds to the definition of the different SCA based components to be
implemented on the platform and used by the resources defined to design the waveform. This software
application also implements the interface with the SCA based platform (standardized API). The interface code
generation as IDL files is the result of this Software specification phase. This second step, software
development, allows for the development of several software components that will be executed on different
processing elements and need to be connected together.

The third step reuses the interface definition, and goes further in the SCA component decomposition, in
particular in describing the resources used by the waveform, and intra SCA components decomposition. The
components deployment on the platform is defined at this stage. XML code generation results from the
description of this specification.

The following fourth step corresponds to the encoding of the waveform code, called business code or
application code, describing the components behavior. Unit testing of these components follows.

Page 9 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

A next verification step (Simulation integration test) validates on host the behaviour of several radio units,
with the physical layer simulated. This verification validates only behaviour on complex scenarios involving
data transmissions and control information exchange. This test aims at testing the developed software in a
“host test environment” prior to integration on the target SDR. The waveform will be validated with
communication rules (based on CORBA exchanges) common with the ORB implemented on the based SCA
compliant target platform. The compliancy with the adaptation layer (set of un-standardized drivers on legacy
radio implementation) is there validated on host by construction.

When the Software is verified on host, it is integrated on target, on which the different components (Physical
layers, vocoder, crypto modules, radio protocols are validated as a whole, taking care of non-functional
(mainly timing) results. This step finishes the system level testing of the waveform from a functional and
performance point of view.

This phase validates if the software and hardware are (at least) qualified on further ground tests.

2.1.2 Expected Improvements
The evolution of this process can be folded on the following major topics:
e Uniform notation based on component based design to specify, design and encode the waveform.

e Modelling of the software and hardware components and their allocation in order to validate non-
functional properties on host.

e Automatic test generation in order to complete the manual tests in the software integration phase.

Operaﬁorl'nal Needs

_ Test modeling &
generation

Coverag criteria

Unified Specification and coding notation

» Component based

» Addressing SCA with CORBA based
wrapper code generation

=
g1 ca

a £
Waveform
Simulation

(OMNET Tool)
Waveform and
Platform Simulation [
Irjterface T
v . Fonctional & (Host) timing
Software components Hate mddeling evaluation ™ NFP Analysis
Platform components modeling d
modeling >
Platform rIquiramems Ta rget SCA Platforms

Figure 3: Improved design process for Software Defined Radio

An improved process is shown in the figure above.

2.2 Current Practices in the Space Domain

2.2.1 Current Development Process at Thales Alenia Space

The Thales Alenia Space On board software development is based on the V Cycle development. In this
development process, the left part of the V (or the descending part) represents the development part. And the
right part (or the rising part) represents the validation part. In the following a closer look to the main
development process steps is presented.

Page 10 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

n [\
Component L I
development /' \

‘\\ Enriched
CCM model
—
. _ ﬁ | >
s esc‘i:isct:tr;:ms System " System build
P design Component

impleme ntation

Figure 4: Current design process for Space Software Systems

System specification

The first step of the software development is the software specification. During this phase, the requirements
and specifications coming from the system engineers are analyzed and some software level specifications
are produced.

High level software design

During this phase, the software architects design the software according to the incoming specification. The
software architecture is modeled in the CORBA components model, using the Melody CCMinternal Thales
modeler. The system is split in functional components who communicate through defined interfaces to
provide required and provided services.

Low level software design
Once each component has been defined, each component is detailed in a stereotyped UML class model.

This model will contain the implementation definition of the component (detailed design). This model will
define the different operations provided by the component (or application). The UML model can be generated
automatically from the CCM model. The design can be refined by adding packages or internal operations.

This model can also contain some non -functional properties such as real time information.

Coding

Once the modelling steps have been done some code is automatically generated for the component
interfaces and internal procedures. The software developers now have to implements the functional code in
the generated skeleton.

2.2.2 Expected Improvements

The major expected improvements shall allow the modelisation, the generation, and the execution of tests,
based on the system model.

Therefore, the test framework should allow to express test objectives (non-functional properties, or expected
system behaviour) related to the system requirements. It should provide the capability to define the
interactions of the environment with the System under test.

Based on the above elements, test cases should be generated, and the capability to refine them should be
provided. The framework should support the execution of the test set, and provide results and feedback.

Page 11 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

v
V B VERDE
. ex 'e (ITEA 2 - ip8020)

The main process evolution topics are:

e Capability to model / generate tests from the system model
e Capability to annotate the system model with non functional properties in order to validate them

e Capability to execute tests and give a feedback

2.2.3 Current Development Process at EADS Astrium

As illustrated in Figure 5, the generic process starts with a concept definition (Phase 0) and a feasibility
investigation (Phase A). When having proved feasibility the design will be industrialized, first through a
detailed definition of the system design (Phase B activities). This phase is based on the preliminary system
design as defined in the Phase A and refines the system design with respect to the various engineering
discipline in an iterative manner.

Space Engineering Development Phases
.4 -

Manufacturing = Mot shown
Detailed Phase F (disposal)
Design

Development

Figure 5: V-Model of ECSS-E-10 Process Phasing

At the end of Phase B and based on the design, the equipment specification is derived and suppliers are
selected.

After the supplier selection the S/C design as well as the AIT plan has to be updated accordingly and verified
subsequently. This is due to the fact that the design evolves more and more from specification to as-built.
During the Phase C and Phase D the spacecraft equipments and related flight software are developed and
assemblies are integrated more and more to form the complete spacecraft. These phases are concluded by
comprehensive environmental and functional tests to verify and validate the spacecraft system and its
components.

As it can be seen from above explanations, the flight software is developed in parallel of the remaining
spacecraft equipments. The enabling technology to do so is called Astrium in-house the Model Based Design
and verification environment. This environment allows to support the flight software development as well as
its verification through extensive positive and negative test on a variety of test benches such as Software
Verification Facility (SVF), Electrical Functional Model (EFM), hybrid test benches with H/W and S/W in the
loop.

Page 12 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

2.2.4 Expected Improvements

The Verde project results will have a direct effect on the ASTRIUM GmbH model based infrastructure. It is
conceived that the system simulation development, the flight software development as well as the verification
planning will benefit from Verde activities.

For instance the system simulation as well as the flight software development requires a certain system
model representation to efficiently develop the SW. A core system model itself describes the overall system
architecture including interfaces which can be subdivided into:

e System analysis

e System topological design
e System physical design

e System AIT design

e Operational concepts

This model then shall be automatically transferred to engineering domain models where detailed analysis can
be executed. Also the results of the various analysis activities will be provided back to the design activities to
contribute to the consolidation of the design.

Through this, one approach is to use the same principle for verification planning to derive automatically
verification cases which are established via requirements in the system model. However this requires a
strong correlation between the system model the transformation rules either to engineering domain or the
verification model in both aspects syntax and semantic.

2.3 Current Practices in the Railway Domain

2.3.1 Current Development Process at ABB

ABB has together with SINTEF, Oslo developed a graphical train station description called Train Control
Language (TCL) in the MoSIiS project. Interlocking code for simple train stations can automatically be
generated based on this language, a corresponding Meta model, and a predefined library for all basic
elements.

e The final code is run on ABBs AC800XA system placed on each station.

e The code is run on a PC when it is under development and testing.

e Development testing of the safety code for Interlocking is done in several steps.

e First of all basic, library elements tested by formal methods and manually inspection.
e Then the code for an individual station is tested for correct operation.

e Finally, all safety features are retested.

The Verde project will help to make the testing more efficient by using the TCL description to be the base for
more automatic test generation in the development phase of the project.

In addition we will incorporate the results from a parallel project called Cesar to make the link between the
requirement specification and testing.

The Cesar project will include the formal requirements and methods for developing tools to generate safety
code according to EN61129.

2.3.2 Expected Improvements
e The test patterns should be generated automatically if possible.

e Alink must exist between tests and requirements specifications.

Page 13 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

e Manual interaction shall be easy with graphical environments.

2.3.3 Current Development Process at Alstom

Alstom Transport systems are developed from productized platforms complemented with specifically
developed products. The product platforms are already the results of the integration of hardware and
software platforms. This development strategy is the logical consequence of a strict safety conformance and
the high level of reliability expectations. Platforms evolve over time through an incremental approach of new
releases.

Developments (of software and hardware) are ruled by CENELEC norm which defines the mandatory
activities and the evidences that must be produced and documented. The basics of the associated
development process are those from the “V” Model life cycle. Applying this constraining paradigm leads, at
the end of the development cycle, to a secure result and a reasonable confidence about the functional match
with the needs.

However, the level of safety is also the outcome of the selection of platforms (i.e. software and hardware) and
the strong interaction between them. This commonly leads to a late discovery of gaps or errors after several
steps of test and integrations have been achieved. As a consequence long-lasting iterations are often
required due the numerous developments steps and evidences to produce and document.

Software development process of safety related software:

This process classically defines milestones complying with company’s life cycle. The milestones are the
triangles in the following diagram:

e Cxxx correspond to the start of phase check points

e Rxxx correspond to the end of phase reviews

The development process is phased as follow:
e Software project definition (D)
e Software specification (S)
e Software preliminary design (C)
e Software production (P), being composed of:
e Software Architecture and Design (AD)
e Software Module Design (MD)
e Software Implementation (IM)
e Software Module testing (MT)
e Software Integration testing (IT)
e Software Validation (V)
e Software Project closure (PC)

Each activity results have to be documented and verified: verification activities aim at checking that the
results can be traced from entries with a full coverage.

The resulting documents are tagged with “VR” in the following diagram:

Page 14 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Cdef Rdef W Rclosey
Definition Closing g1 Maintenance
SwPMP A
2&,"232 Cspe Rspe CQval Rval SWRTR
SWEMP Specification Validation SwWSAR
SWSVVP F
- e SWRTP, SWRTD, Sw Requirement
> Sw Specification = = — = RIOvR™ — — ™ test
SWRS
SWRSADVR*
SSWSHF\’AA Qprod Rprod SwWITR
w -
Production
o | SwArchitecture & | switp_ | Sw Integration
| Design SwITD test
SwWITDVR i
SwAD
SwRSADVR*l SRR
SWMTD
Sw Module Design — — —»{ Sw Module test
SWMTDVR|
SwMD SwWSC (Code)
SWMDVR . SWSCVR
Implementation SWPM
*: The SWRSADVR gathers the verification report of both SWRS and SwAD
**: The SWITDVR gathers the verification report of both SwITP and SwITD
***: The SWRTDVR gathers the verification report of both SWRTP and SWRTD

Figure 6: Category B4 life cycle

Even if activities can overlap to some extent, this development cycle is mostly sequential. Major
developments are organized into releases implementing then the functional roadmap of the system to cover
business needs.

2.3.4 Expected Improvements

The upstream part of the current development process provides an efficient definition and documentation of
requirements, top level design and analysis.

The largest improvement expected is the capability to perform meaningful requirement testing during the
descending (design) part of the “V” Cycle. A continuous validation along the design steps should allow
checking the behaviour of the product regarding the functional requirements but also the non-functional ones.
In other words, it would mean specifying timing constraints, time tolerances and scheduling to characterize
the expected behaviour. It is also necessary to specify the platforms behaviour (Hardware + low level
software) to take into account performance constraints induced by safety execution mode (MPC,
redundancy).

The behaviour monitoring at each step of the design would allow for optimizing convergence lead time.

The test framework should allow the definition of test objectives and their allocation to design items from
models or from existing software components (source code).

2.4 Current Practices in the Automotive Domain

2.4.1 Current Development Process at Bosch

As depicted in Figure 7, current design processes can be divided in sequential design steps. Starting with a
first idea of a new product or even the next generation of an existing one concrete requirements have to be
acquired. This can be based on requirements of existing products and available experiences. The abstraction
level of the requirements vary from high level demands (e.g. if the brake pedal is pressed, the car has to slow
down) to very detailed specifications (e.g. the voltage on pin 23 has to be in the range of 2.7 and 3.6 mV).

Page 15 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

P vy @

Idea Requirement HW Prototype Software Pfoduct
Figure 7: Design flow in the automotive domain

Current design flows are mainly sequential and do not allow parallelization of design steps. After the
formulation of the requirements, a first hardware prototype can be implemented to allow further design steps.
The step to this prototype includes a very high implementation effort of the digital and analog hardware
components. This also includes the simulation and verification of these components or even small parts of
the system. The interaction of the components and the correct interaction with its environment can be
investigated not until the first prototype. Therefore, the implementation of the necessary software starts with
the availability of an adequate prototype. Due to the fact that some design limitations are become visible not
until the software implementation, there is usually more than one prototype. However, after the final
integration and several extensive test and verification steps the final product can be transferred to the
production lines.

2.4.2 Expected Improvements

The largest improvement expected is the parallelization of hardware and software development. The parallel
execution of design steps reduces time to market, improves quality, avoids expensive redesigns, and enables
global optimizations.

Another expected improvement is the reduced Verification and integration effort at the end of the design
process. This should be reached by a continuous refinement enabled through a living exchange between the
parallel design steps using (executable) models.

Using executable models also substantiates assertions about functionality and performance of the entire
system in early design phases. The application of the rule-of-thumb can be reduced and decisions
become more and more comprehensible.

Page 16 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

3. Modelling Standards

The VERDE methodology is based on modelling standards, mainly UML2 and its extensions. The semantic
alignment of UML extensions will be done in Task 2.4 and the restriction to those modelling practices
necessary in the context of Verde will be based on these results. Nevertheless, this chapter gives a brief
overview of the standards that are used.

3.1 UML

The UML (Unified Modelling Language) defines a general purpose modelling language standardized by the
Object Management Group (OMG). UML provides notations to model static and dynamic aspects of any
application field (application structure, behaviour, architecture) and supports behaviour diagram (activity
diagram, sequence diagram, state machine diagram, use case diagram) and structure diagram types. It
allows also to model business process and data structure the application area is not restricted on Software
Development.

Standard UML can be extended by defining stereotypes, tag definitions, and constraints that are applied to
specific model elements, such as Components, Operations, Activities and States. Extension mechanisms
allow refining standard semantics in an additive manner, so that they do not contradict standard semantics.

A Profile is a collection of such extensions that collectively customize UML for a particular domain. In the
following chapters several profiles used in the context of VERDE are described.

Specification: http://www.uml.org/

3.2 SysML

The OMG Systems Modelling Language (OMG SysML™) is a general-purpose graphical modelling language
for specifying, analyzing, designing, and verifying complex systems that may include hardware, software,
information, personnel, procedures, and facilities. In particular, the language provides graphical
representations with a semantic foundation for modelling system requirements, behaviour, structure, and
parametrics, which is used to integrate with other engineering analysis models. SysML represents a subset of
UML 2 with extensions needed to satisfy the requirements of the UML™ for Systems Engineering RFP.
SysML leverages the OMG XML Metadata Interchange (XMI®) to exchange modelling data between tools,
and is also intended to be compatible with the evolving ISO 10303-233 systems engineering data interchange
standard.

Specification: The formal public version of the OMG SysML™ v1.1 was published by the OMG as an
"Available Specification” in December 2008. The OMG document numbers are formal/2008-11-01 (with
change bars) and formal/2008-11-02 (without change bars). All files for the SysML 1.1 specification are linked
from the specification page at http://www.omg.org/spec/SysML/1.1/.

3.3 MARTE

MARTE is a profile for the UML2 language dedicated to the definition of real-time embedded systems. It
consists of a set of sub-profiles dedicated for different aspects, globally divided into foundations, design,
analysis and annexes. The foundation part defines general concepts such as non-functional properties and
time. The modelling part contains general concepts, such as the possible communication mechanisms
between components or high level modelling of time properties of service invocations. It also defines sets of
stereotypes to model all the entities that are involved in a real-time embedded architecture (execution
resources, computation nodes, timers, data types, etc.). These stereotypes can be characterized with non
functional properties such as bandwidth/jitter of busses, periods of tasks, size of memories, etc. These
properties can be processed to configure applications or perform analysis. The main advantage of MARTE is
to provide a standardized way of describing all this information, which can therefore be shared between tools.

Specification: http://www.omgmarte.org/

Page 17 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.omg.org/spec/SysML/1.1/
http://www.omgmarte.org/

4N F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

3.4 UML Testing Profile

The UML Testing Profile is a graphical modelling language for designing, visualizing, specifying, analyzing,
constructing and documenting the artifacts of test systems.

This profile is based upon UML 2.0 and is divided in three sub-packages:
e test behaviour, which addresses the observations and activities during a test
e test architecture, containing the elements and their relationships involved in a test
e testdata, structures and of values to be processed in a test.

The system under test (SUT) is not specified as part of the test model. In order to run black box tests, the
architecture package imports the complete design (UML) model of the SUT to get access to the elements to
be tested. The SUT can be exercised via its public interface operations and signals by test components.

Specification: http://www.omg.org/technology/documents/formal/test_profile.htm

3.5 Object Constraint Language

The Object Constraint Language (OCL) is a formal language to describe expressions on UML models. OCL is
an extension to UML and allows to be more precise in System or Software Models. While UML focuses on
structures and relationships between objects, OCL can be used to define additional conditions on model
element.

OCL expressions can be used to specify invariant conditions in class diagrams, conditions in Sequence
diagrams or pre- and post conditions for Methods. If these expressions are evaluated, they do not have side
effects, i.e., their evaluation do not alter the state of the corresponding executing system.

Specification: http://www.omg.org/spec/OCL/2.2/

3.6 SPEM

SPEM (System and Software Process Engineering Metamodel) provides graphical notations to capture
system and software processes. It has been standardized by the Object Management Group as a metamodel
as well as a UML profile. The core principle of this language is that any process is ruled by collaboration
between abstract entities (roles) performing operations (activities) on concrete entities (work products)
(Figure 8).

Responsible for

%* E S
Role Work Product

* *

uses produces
Performs

Figure 8: SPEM basics

Like the norm 1SO-12207, from which it is inspired, this language can be used to describe a wide range of
processes. The main use cases of this language are:

e Support for management of reusable libraries of methodological patterns,
e Support for application of methodological patterns into specific processes (including possible
adaptations),

Page 18 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.omg.org/spec/OCL/2.2/

F2.2.4 — VERDE Methodology V1.1

v
V B VERDE
. ex 'e (ITEA 2 - ip8020)

e Support for configuration of methodology and process patterns,

e Support for process enactment.
One major feature of SPEM 2.0 is a clear separation between method and process descriptions.

Specification: http://www.omg.org/spec/SPEM/2.0/

3.7 QVT

The QVT (Query/View/Transformation) standard provides declarative and imperative syntaxes to specify
model-to-model transformations. Thus, it is an important component of the Model-Based Engineering
approach. It allows the specification of transformation chain that capitalizes part of the know-how needed to
transform a model into another one applying transformation rules.

produces

-------- > M2
A

utes confi @rms

Figure 9: QVT basics

The Figure 9 sketches a simplified QVT model: a transformation is performed by a transformation engine
which processes a source model M1, conforming to a meta-model MM1, and produces a model M2
conforming to a meta-model MM2. Transformations are specified by transformation rules that establish
relationships between elements of meta-models MM1 and MM2. The transformation is said « endogenous »
when MM1 and MM2 are the same and «exogenous» otherwise.

Implementations: Eclipse M2M, SmartQVT, ATL, Borland Together.
Specification: http://www.omg.org/spec/QVT/1.0/

3.8 MOF-M2T

MOF-M2T (Model-to-Text) provides a template language to specify model-to-text transformations. Like QVT,
it is thus an important component of the Model-Based Engineering approach as it allows the production of
any textual artefact (code, documentation, etc.). The Figure 10 sketches a simplified MOF-M2T model: a
generation is performed by a template engine which processes a model M conforming to a meta-model MM
to produce a textual artefact. The generation is specified by a template that gives production rules.

MM
A

|
conforms
1

Figure 10: MOF-M2T Basics

Implementations: Acceleo, Eclipse M2T.
Specification: http://www.omg.org/spec/MOFM2T/1.0/

Page 19 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/MOFM2T/1.0/

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

3.9 UML Profile for Corba and Corba Component Model

The UML profile for Corba and Corba Component provides an extension to UML allowing the specification of
Corba Components and their required features. This profile represents actually a projection of CCM concepts
into UML, allowing the usage of UML syntactic facilities to capture any CCM architecture. Then, from such
UML models, all CCM artifacts (idl interfaces, implementations, configuration files, etc.) can be generated
thanks to model-to-text transformations.

Implementation: Papyrus
Specification: http://www.omg.org/spec/CCCMP/1.0/PDF/

3.10 AUTOSAR

AUTOSAR is an international development partnership consisting of a multitude of car manufacturers,
suppliers and tool vendors, which define concepts and workflows, how electronic automotive software-related
systems can be formally specified and processed. AUTOSAR focuses on a software architecture that
decouples application software and hardware by offering a runtime environment and a basic software layer.
The application software is implemented within software components. These software components
communicate via well defined interfaces. The goal is to make the application software completely
independent from the underlying hardware architecture to allow an arbitrary distribution onto different ECUs
(Electronic Control Units). Configuration and generation processes build the final ECU software.

Application Actuator Sensor Application
ASU;EVS;E cSoftware Software ‘ Software AUTOSAR Software
Psdal el omponent Component Component Component
[=2EReRE e — Software

e fntérfacg. o

Standard
Software RRRIRERRS AR
Standardized Standardized - AUTOSAR AUTOSAR:
Interface Interface . Interface Interface =
Interfaces: R i
Services Communication Ecu
= I‘U'FB at; RTE Abstraction
retevan o Standardized Standardized Standardized
‘:::’ RTE — Interface Interface Interface
s
2=
relevant I g‘g c[?flyt[i}(lzix
= Bsw System |2 o Drivers
relevant L g Standardized
T r— Interface
inside Microcontroller
Basic Software .
T Abstraction
not specified
within AUTOSAR) ECU-Hardware

Figure 11: AUTOSAR System Architecture Overview

In contrast to the current state-of-the-art development approach, which is ECU-centric, AUTOSAR focuses on
the entire system. As illustrated in Figure 11 one fundamental feature is the separation of application and
infrastructure which allows for a model-driven architecture like methodology, i.e. a platform independent
software development of functionality. Applications can exist and communicate independently of a particular
infrastructure and mapping onto ECUs in an environment called Virtual Functional Bus (VFB). Furthermore,
AUTOSAR comprises even more: it specifies methodologies and workflows on how to come from the system
living in the VFB to software running on particular ECUs as part of a multilayered ECU architecture.

An AUTOSAR conform architecture consists of an application layer (called AUTOSAR Software), a
middleware layer (called Runtime Environment -- RTE), and the infrastructure layer (called Basic Software --

Page 20 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.omg.org/spec/CCCMP/1.0/PDF/

4N F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

BSW). Assuming that the components of the application layer behave exactly the same way like in the VFB,
the RTE and BSW implement the VFB for a particular ECU.

Properties of AUTOSAR applications are described with a specific language, called AUTOSAR Software
Component Template (as part of the entire AUTOSAR meta-model). In general, the AUTOSAR Software
component template is arranged into three parts regarding the structure, the behavior and the implementation
of models.

3.11 SystemCFehler! Hyperlink-Referenz unguiltig.

SystemC is a C++library extending the pure software specification capabilities of C++ by hardware and
system specification features. The extension consists of a simulation kernel, which enables a pseudo-parallel
execution of inherently parallel hardware and system models. The library introduces constructs for parallelism
and concurrency, model topology, hardware and system-level communication, and hardware-related data
types. The SystemC specification library is standardized in IEEE 1666. Although SystemC covers a full-
featured RTL and hardware modelling methodology - including hardware synthesis and analog-mixed-signal
modelling - the focus of the language lays on system specification on higher levels of abstraction
(transaction-level modelling, TLM). SystemC fits into all modern sophisticated design flows, which handle the
increasing system complexity by introducing higher levels of abstraction together with refinement and
mapping paths for the system implementation. SystemC allows powerful simulations for algorithm validation,
model verification, system-level performance analysis, and software development on virtual hardware and
system platforms.

Transaction-level modelling (TLM) is the key technology to raise the abstraction levels for the modelling of
complex embedded systems and cyber physical systems. SystemC 2.x incorporates such a TLM mechanism
enabling signal-based low-level modelling on RTL as well as high-level modelling on higher levels of
abstraction like system level. SystemC 2.0 introduces 5 abstraction levels: Algorithmic level (AL),
communicating processes (CP), programmer’s view (PV), programmer’s view timed (PVT), and cycle callable
(CC). Within this set of levels, CP, PV, and PVT form the core TLM levels. On one hand side, TLM allows a
clear separation of communication and functionality, which enables an easy replacement and reuse of
components and modules, and on the other side, TLM allows the abstraction of the communication itself. This
leads to a separation of the communication process and its implementation. Models can now express
complex communication scenarios without any need to specify the implementation of the communication.
This especially avoids the disintegration of complex data types into single bits or bytes, which would be
necessary for a hardware implementation. As a consequence a TLM specification has to deal with complex
user-defined or application-specific data structures. These data structures are far more complex than single
bits, especially in terms of their relation to system or simulation time. In SystemC the communication process
itself will be modeled as one single function call or a sequence of function calls, depending on the level of
abstraction, e.g. programmer’s view or programmer’s view timed or depending on the TLM (TLM-2.0)
modelling style like loosely or accurately timed.

Page 21 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

4. Existing Methodologies

This chapter gives an overview of existing works and previous EU projects deliverables. These results
are a good input and a good starting point for further work.

4.1 Modelplex

The European Project Modelplex (Modelling Solutions for Complex Software Systems) funded partially by the
European Commission in the 6" Framework (Contract n° 034081) was mostly concerned with the
industrialization of the model-driven development. Although the project aimed at complex system
engineering, some of the approaches and finding of this project are also reference and input for VERDE.

4.1.1 Development Environment

One of the key aspects of Modelplex was the creation of a development environment which allows the
application of various development methodologies for all four industrial case studies in Modelplex in a similar
way. This development environment is called Modelplex workbench and it was created by strongly focusing
on models as key aspect of a development process. Figure 12 shows the general architecture of the
Modelplex Workbench.

Eclipse-Based Tools Non-Eclipse and Remote Tools
A
" ~

i Local Non-
! | Tool A1 | | Tool B1 Tool Bn Tool Z Tool 1 Tool N Adaptor H Eclipse
i cao e A Plugin g L
: T -\ /- T ' Services
- o ~ |
(I TR E C JEEmsips Tools using Eclipse extension points :
' Remote :
: p—o Tool

MODELPLEX standMension points and Ul

Plugin

I ‘ Modeling Tool

Remote Tool

-
i Core tooling: Transformation fwk_, Traceability fwk., Model Management, Model Composition and
! Weaving fwk., DSL development fwk., Processes fk.

| [Common Metamodels and DSLs

: ——
Team l\’/ Repositor | | Maodel
EMF GMF OCL UML2 Provider BM%\::I; H’yPlugin E Repository

MODELPLEX Platform (based on Eclipse 3.4)

e

! MODELPLEX Workbench

Figure 12: General Architecture of Modelplex Workbench

The Workbench in itself is very much Eclipse-centric for two important reasons. Firstly, Modelplex developed
a couple of tools as Open Source and within a limited time frame, so the benefit of having Eclipse as a tool
framework which allows the rapid development of tools was well appreciated. Secondly, Eclipse with its
various model-driven technologies and frameworks allow creating a homogeneous model-driven
development environment.

Nevertheless, it has been identified that there is still a strong need for the integration of non-Eclipse based
tools in order to realize a real industrial development environment.

The idea of the Modelplex Workbench is to have a number of potentially integrated tools co-located with a
number of other technologies and techniques. This set of technical assets can be used for instantiating the

Page 22 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Modelplex Workbench for a specific development process. This instantiation means basically to select which
of the potentially available technical assets needs to be part of the workbench instance.

4.1.2 Key aspects of Modelplex Solution

Taking the idea of the Modeplex Workbench, the industrial partners used a customized version of it for
conducting their case studies. This means that each industrial partner defined a couple of development
process steps and the corresponding methods, tools and technologies. However, it has been turned out that
there was a strong need for the automation of development steps and for combined persistency of models
and other development artifacts such as source code. Both issues are considered as key elements in order to
cope with the complexity of a development process for complex software systems.

4.1.3 Development Methodologies in Modelplex

Industrial partners in Modelplex have used a number of methods and techniques in order to realize the
development process of their case studies. The following list highlights most of them:

e Guideline checking and constraint modelling: Using guidelines and constraints (based on constraint
languages like EVL or OCL) in order to ensure certain properties of work products before further
processing

e Test case generation: Various strategies have been used in order to generate test cases out of
systems and test models

e Automatic test execution: Automatic execution of test cases (generated or manually created) and the
presentation of test results

e Verification: Verification of certain (system) model properties (static and dynamic ones) in order to
ensure software quality

e Model transformation: The transformation of models to other models. The mapping between
elements of these models can be described by specialized languages or by using general purpose
programming languages

e Code generation: A special kind of model transformation, which targets the creation of source code

e Model traceability: Follow links between work products of development process in order to analyze
impact of changes

e Model composition: Compose work products coming from different process steps in order to create a
new (composed and integrated) work product

e Model based performance analysis: The analysis of behaviour models in order to get performance
indicators prior to the deployment of a system

e Domain specific modelling: Creation of specific languages for certain aspects of development
process

e General purpose languages and customizations: The usage of UML and UML Profiles (e.g. MARTE)
e Architectural refinements: Definition of systems at various levels of granularity

e Viewpoints: Definition of system properties at various viewpoints

e Model debugging: Follow the flow of execution on behaviour models

e Orchestration: Definition and automated execution of certain process steps in the development
process

e Process enactment: Execution of a formally defined development process

e Knowledge discovery: The presentation of knowledge (information) which is only implicitly present in
a system or a development process

Page 23 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

4.2 D-Mint

The ITEA project D-Mint (Deployment of Model-Based Technologies to Industrial Testing) targets the
development, enhancement, and deployment of high performance methods and tools for quality assurance of
large and software-intensive systems. The project was focused on the testing part of a development process.

The D-Mint results are collected, summarized and presented in the D-Mint Asset Box.
4.2.1 General Model-Based Testing methodology

D-Mint has promoted the usage of the model-based testing approach in order to achieve high quality and
high performance in the work products of the testing process steps. The Figure 13 outlines the general idea
of the model-based testing approach.

Require

generate generate
Test
System
test system

Figure 13: Model-Based Testing

Similar to model-based system development the key concept of model-based testing (MBT) is to generate the
test cases out of a test model. Although there are a number of issues to be addressed during the test case
generation (e.g. what is the test execution environment) the key question of MBT is: How to create the test
model.

The test model may be derived from the requirements (similar to the system model but with a different
purpose) or it can be partially derived from system model. Both ways do have pros and cons.

4.2.2 The D-Mint Common Approach (Asset Box)

The results coming from D-Mint as well as results coming from other sources are summarized in the D-Mint
Common Approach which constitutes an overall D-Mint Methodology and builds a kind of Asset Box at the
same time. This Asset Box can be used in order to approach the domain of model-based testing on a
practical level. The Asset Box offers methods and tools which can be chosen in order to realize the different
test related process steps. Figure 14 outlines the D-Mint Asset Box.

Further details on the D-Mint Common Approach are described in the D-Mint White Paper (http://www.d-
mint.org/public/CommonApproach WhitePaper DMINT.pdf). However, there are a couple of innovations
which can be listed here explicitly:

e Architecture-Driven Testing: A particular test derivation strategy which takes the different architectural
viewpoints into account and which focuses on integration specific faults

e Pattern-oriented model-driven test engineering: The exploitation of a pattern approach in order to
facilitate the engineering of test models

e Test Management: Integration of MBT tools and methods in state of the art test of management tools

Page 24 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.d-mint.org/public/CommonApproach_WhitePaper_DMINT.pdf
http://www.d-mint.org/public/CommonApproach_WhitePaper_DMINT.pdf

F2.2.4 - VERDE Methodology V1.1

v
-
VERDE
| rde (ITEA 2 - ip8020)

e Test Quality: The assessment of the test models in the context of specific goals, guidelines and
regulations

e Test Process Evaluation: The assessment and metrication of the test process as such

4 .
rocess | Momsgomentt | - Tost | oot res Test Test
ivati Impl tati i i
Docurnentation Derivation Derivation mplementation Execution Reporting
L
Abstraction Level: System Architecture
ABSTRACTION Viewpoints: Requirements (all), Logical (all), Technical {(most),
Topological (possibly of interest, but not realized)
Pass/Fail;
State_!. q_ue_n_ce; Architecture Ahstrz_act test Statistical
charts, Priorities > casesin a test 5
Structured o models and : analysis;
Reguirements LiE _n s behaviour e b Ly Test execution
METHODS : - : specific offline, tr:;céq'
MATERA MILEST, MBST,) poy mpsT, [REGGSSGE B Gack-tracing of
ADT, MotesWF, ADT. I WE compiled” to Red's
MATERA » Motes byte code eq’s
/S + < + s S
UML, SysML,
Textual format, QCL, M3C,
tabular format, TPT, PTML QmL
HOTATIONS sequenc&ﬁased Domain specific TTCNS3 Machine code
specification, languages, Taol specific Java byte code
TPLan, Model pec EAST scripts
SysML annotations for
-
Text based agicDraw. EA Qtronic, EAST Qtronic
tools, ot I Qtronic TTworkbench EAST
DOORS, : TTm odelér Qtronic i TTworkbench,
PREEvision, JUMBL, TPT, MOTES . TTworkbench -3 MATERA
TooLs MATERA, Qronic, e JUMBL, TPT, 55, TTCN-3
Test- PREEvision, F’REE‘ﬂin;] TTCN-3 E:(press 1 2
WORKFLOW, et ot : WORKFLOW,
MagicDraw BAE RS MessageMagic
Figure 14: D-Mint Common Approach (Asset Box)
4.3 MARTES

MARTES stands for Model-Based Approach for Real-time Embedded Systems. It is an EUREKA-ITEA
project aiming to provide « the definition, construction, experimentation, validation and deployment of a new
model-based methodology and an interoperable toolset for Real-Time Embedded Systems development, and
the application of these concepts to create a development and validation platform for the domain of
embedded applications on heterogeneous platforms architectures ».

The Figure 15 gives an overview of the MARTES methodology, which is based on a ah-doc UML profile
which extends UML with new capabilities to model Hardware and Software platforms as well as Non-
functional properties and allocations.

Links: http://www.martes-itea.org/public/news.php

Page 25 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.martes-itea.org/public/news.php

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Requirements Model |

L
Req&&&onal Req;&gitecture
Qhaplication Model | Execution PlatforrEb

Application2Application Execution2Execution

CIM

ApplicationExecution2Allocated

Allocated Model
T
PIM — %

Allocated2Allocated

AllocatedZlmplementation

PSM
P Model
Implementation2Implementation
Code Implementation2Code
(Code

Figure 15: MARTES Methodology Overview

4.4 MoPCoM

MoPCoM stands for Modelling and specialization of platform and components MDA. It is a French ANR
project that aims to help designers to deal with high complexity systems by designing their developments
using modelling approaches for their applications and platforms. To provide efficient solution, the goal of the
MOPCOM project is also to target modelling techniques driven by application domains in order to provide
specific design guides and rules. Refinement techniques are essential to promote these approaches as they
help designers along the design process.

functional_Req
freq
MoPCoM |
A'mq preq W‘_A(ML_plat_veq
Abstract |
@ Sina moc_analysis,
Modeling Level " ax documentation
2pa D ey aaml H
dpa
preq I T EML_plat_req
Execution eepa dom documentation,
Modeling Level aml allocated - topology_analysis,
model schedulability_analysis
aasm,
Dnml aeml
dpa
________________________ emlplatorn |
refin 2l dpre
L npm J]Wq "] OML_plat_req
aml allocation
. refinement
Detailed adpa
. aml allocated cepa cycleAccurate_analysis,
Modeling Level . ddpm documentation
ﬁ adml
D adml
-

s
ardware_code, software_code

Figure 16: MoPCoM Methodology Overview

Page 26 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

The Figure 16 gives an overview of the MoPCoM methodology as a set of interconnected process
components. Briefly, the MoPCoM methodology is split into 3 levels of abstraction, each dedicated to a family
of analysis:

e The Abstract Modelling Level (AML) is intended to provide the description of the expected level of
concurrency and pipeline through the mapping of functional blocks onto a virtual execution platform,

e The Execution Modelling Level (EML) is intended to provide a generic platform defined in term of
execution, communication or storage nodes in order to proceed to coarse grain analysis,

e The Detailed Modelling Level (DML) is intended to provide a detailed description of the platform in
order to proceed to fine grained analysis. It allows RTL code generation for hardware (VHDL) and
software (C) parts including glue logic (drivers).

Regarding the MARTES methodology, the MoPCoM methodology has introduced an essential level of
abstraction focusing on Models of Computation and Communication (MoCC) related issues.

Links: http://www.mopcom.fr/doku.php

Page 27 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.mopcom.fr/doku.php

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

5. Methodological Patterns

Analyzing the current practices in the various domains addressed in the context of VERDE, it is pointed out
that all industrial partners have well established development processes in place, which are mostly variations
of the V Model.

On one hand, the used processes provide some similarities for activities like requirements capturing and
modelling of a system architecture. On the other hand, they are also specialized for a certain domain,
especially for activities like verification and testing with a clear request for improvements here. Therefore, it is
not the intention within the VERDE project to define a unified process for all domains. Nevertheless VERDE
describes generic spiral process as shown in the following graphic.

Conceptual design

Model based verification

del based testing

", abstraction
x

time Implementatio ecution and simulation

Actual system

Figure 17: VERDE Spiral Process

This process consists of common activities or phases well known from standard processes and also
described by the industrial partners in the current practices chapter of this document. The clear focus in the
context of VERDE is Model based testing and verification. Therefore more detailed steps are defined for the
activities, to describe what is needed to get there and to address the requirement tickets defined by industrial
partners.

For each step a set of methodological patterns is described. Patterns provide practical and “easy to put in
practice” modelling solutions for concrete modelling issues, that can be selected by end users when needed
and integrated in domain specific processes.

Page 28 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

5.1 Conceptual Design

Projects mostly start with a conceptual design phase, where requirements and a first architectural
breakdown are defined.

5.1.1 Definition of Requirements

5.1.1.1 Requirements Configuration

L5 RequirementsConfiguration

RequirementsEngineer 3 :
b RequirementsEngineer QualityManager

<<pefforms>> <<pe&forms>>
< rforms> >

defineRequirementsRuleSet

defineRequiremenh:my’.
\ equirementsStructure <<none>>

RequirementsRuleSet <<none>>

<<using>>

Pro

Figure 18: Requirements Configuration

Requirements Configuration

VERDE
ip8020)

Overview In order to maintain requirements in a structured way, the structure must be
defined initially. In addition, rules based on this structure will be defined to do
automated analysis of the requirements.

Assigned #33, #76, #93, #117, #242, #237

Tickets

Language RIF/ReqlF, SMM, OCL

Tools ProR,Xtext,Metrino

Parameters Requirements Structure, out

Requirements Rule Set, out

Pre-Conditions

Requirements Engineer Knowledge, Quality Manager Knowledge

Post-Conditions

Steps

Define Requirements Structure:

The requirements will be managed using the RIF/ReqlF (Requirements
Interchange Format) standard. The RIF/ReqlF standard defines a meta-model
including an internal DSL to define the concrete structure of the requirements. The
following picture shows the main concepts of the meta-model:

Page 29 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

VERDE

(ITEA 2 - ip8020)
RIF
—— hypes J-L objects —‘
SpecType SpecObject AltributeValue
type values
attributes
AttributeDefinition DatatypeDefinition
— dataytype —™

The required spec types, their attribute definitions, and the used datatype
definitions must be defined in this step. While defining datatype definitions theXtext
framework can be used to provide textual modelling for more formal specifications.

Please look into the user guide of ProR to get detailed instructions about the tool
usage.

Define Requirements Rule Set:

The rule set that is used for the checking of consistency and well-formedness of
requirements models is defined by using the Structured Metrics Metamodel
(SMM). The SMM defines the way how to organize such rule sets. Each particular
rule is linked to a specific evaluation action which can be expressed by using
formal languages like OCL.

The set of rules consist of more general ones which target on the general
soundness and more specific ones which focuses more on the specific project.
(e.g. description field of a requirements shall not be shorter than 20 characters)

Example

Define Requirements Structure:

Below is a screenshot from the ProR configuration view showing a possible
configuration including one spec type with a few attributes and their data types.

Page 30 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

v ES[_‘:EET\I‘DES
v @ Requirement Type
N ID (T_String32k [String]}
D Description (T_String32k [String])
¥ Status (T_Status [Enumeration])
¥ Priority (T_Priority [Enumeration])
D Safety Critical (T_Boolean [Boolean])
™ Author (T_String32k [String])
) Date (T_String32k [String]}
3 Non Functional {T_Boolean [Boolean])
0y Formal (T_String32 k_Xtext [5tring])
¥ || Catatypes
i T_String3 2k [String)
W T_String32k_Xtext [String)
@ T_Eoolean [Boolean]
¥ 84 T_Status [Enumeration)
u~ SUBMITTED (0}
e ACCEPTED (1)
u VERIFIED (2}
-~ REJECTED (3)
¥ 8 T_Priority [Enumeration]
m HIGH {0
u- RMEDIUM (1)
e | OW (2]

Define Requirements Rule Set:

The following screen shot shows the Metrino rule editor, which allows the definition
of rules with the help of OCL. Each rule (Measure) consists of a number of
attributes, like name, scope, and thresholds.

@ extlibrary softwaremetricsmetamodelz 23
Measures
* Measures Dverview ¥ Measure Properties
=] g Library Mame: MNoOfemployeesLibrary
@:9 NoOFwritersLibrary Description:
|) P ——————————
[Cek [ioofemploveestibrary W
> ==
17_;1:) MoOfbarrowersLibrary
ﬂ;:‘) MoOFstockLibrary
17_:|29 MoOfbranchesLibrary
17_;19 Christians Measure
Scope: Library [LibraryScope]
Lower Threshold: 0.0
Upper Threshold: .0
Operation: self employees- =size() E
Directly invokable:
Base Measure (CollectiveMeasure):
Biaze Measure 1 (BinaryMeasure):
Qwerview |Measures | Audits | Results | Model Tree

Page 31 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

5.1.1.2 Requirements Engineering

Requirements Engineering

End User RequirementsEngineer

: <<pefforms>>
’_\Requnrementsstru&ue << p€rforms> >

p\) Req. Model < <Artifact>>

.———"/”-

Gather Requirements

<<using>>
ProR,

Figure 19: Requirements Engineering

Requirements Engineering

Overview Requirements Engineering is typically the initial activity in a development process.
Assigned #33, #76, #93, #117, #242, #237

Tickets

Language RIF/ReqlF (Requirements Interchange Format)

Tools ProR

Parameters Requirements Structure, in

Requirements Model, out

Pre-Conditions | End Users Knowledge

Post-Conditions

Steps Gather Requirements:

The requirements for a product, for a process, or for persons involved in a process
are gathered here or it could be that a customer can deliver the requirements,
which will be imported and maybe extended. Consider that there can be attributes
in the requirements structure that can have an impact on the process while
processing requirements. For example, an attribute “status” could require a
validation of the input by a second person.

Please look into the user guide of ProR to get detailed instructions about the tool

usage.
Example Here is a screenshot from the ProR Specification Editor including two
requirements.
IRl requirements.rif-xmi |R| Specification Document &3 =g
|R| Specification Document
Y s} | Drescription Status Priority Safety Critical
- The AAD (Automatic Activation Device) must activate the reserve
! © ReQ-1 parachute if the skydiver does not open his parachute. SUBMITTED {0) | HIGH (0} true
2 @ REQ-2 The emergency hight is 300m over ground. SUBMITTED (0) HIGH (0) true

Page 32 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

5.1.1.3 Requirements Consistency Checking

Requirements Engineering

End User RequirementsEngineer

: <<pefforms>>
’_\Requnrementsstru&ue << p€rforms> >

p\) Req. Model < <Artifact>>

.———"/”-

Gather Requirements

<<using>>
ProR,

Figure 20: Requirements Consistency Checking

Requirements Consistency Checking

Overview Requirements Consistency Checking follows the initial requirements baseline in a
development process. It may be repeated after each change, especially after
adding new requirements.

Assigned #33, #76, #93, #117, #242, #237

Tickets

Language RIF/ReqlF (Requirements Interchange Format)
Tools RAT

Parameters Requirements Documents, in

Former formalizations of requirements documents, in

Sets of inconsistent requirements, out

Pre-Conditions | End Users Knowledge

Post-Conditions | Consistent set of requirements, c.f. 5.4

Steps Formalize Requirements:

The requirements for a product, for a process, or for persons involved in a process
have to be translated into a formal language using an intermediate step. The
intermediate step involves restricted natural language that can be automatically be
translated into timed automata. The sum of automata can be checked for
consistency.

Analyze Requirements Formalizations:

The result of such an automatic analysis reveals that requirements are obsolete
are partly redundant or that the requirements are too restrictive such that no
system can be build that satisfies all of them

Reflect Analysis Results:

The results of the analysis have to be evaluated in measures have to be taken to
improve the consistency. This means, that requirements have to be modified,
deleted, or in some instances, that additional requirements have to be added. It is

Page 33 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

best practise to restart the process after any maodification until no more analysis

problems are indicated.
Example Here is a screenshot how one requirement is translated into a formal notation.

iformel Requirement Resticed Engish Crammar
— - Formal Requiremeant in Duration Calculus
,g;&fﬁ%"gg':g{‘?ﬁ:ﬁ \Globally, it is always the
e bfrared lonpn ave lurmed ?ﬁftsgsﬁih:ﬁdﬂf p=—(true; IRTestr—IRLampeOn If —IRLampsCn |xI= 1 (;true

on after at most 10 seconds.” mcgt 10 seconds.”
5.1.2 Traceability of Requirements
5.1.2.1 Requirements Tracing High Level Design

L RequirementsTracingHighLevelDesign
SystemArchitect
Req. Model
=1 <<4performs> >
createTraceReqSystem
/ T T3 | TraceModelAchitectureLevel < <Artifacts >
L_£2 systemArchitectureModel o
<<usingyg >
\ RequirementsEditor
Figure 21: Requirements Tracing High Level Design
Requirements Tracing High Level Design

Overview Validation and verification of the development is the basis for quality assurance

and requires the tracing from requirements to the implementation including tests.
Assigned #33, #76, #113, #93, #114, #116, #237
Tickets
Language TracingMM
Tools YakinduCReMa
Parameters Requirements Model, in

System Architecture Model, in

Trace Mode, out

Pre-Conditons

Post-Conditions

Steps

Create Traces:

The traces between the requirements and the system architecture elements
should be created as soon as possible. This step requires disciplined work.
Whenever the system architect creates a new system architecture element, he
should trace it to the corresponding requirement. This ensures that the
implemented system does not include unwanted features. The system architect
can use customization features like filtering, sorting, and grouping on attributes
defined in the tracing meta-model to analyze the traces. Additionally there is a

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Page 34 of 95

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

synchronization support, which shows all available traces for the current selection
in a supported tool. Another analyze feature is the generic reporting.

Please look into the user guide of YakinduCReMa to get detailed instructions
about the tool usage.

Exam p I e " Properties ?VS-M\AIDOH Resuits @ Tracing Editor 83 =0

Current Trace Point Selection Tracing Connector

Name: AAD [Block] [/de.itemis.aad /architecture.umi] Type: | SATISFY)

Type Block

T A ™
Position: _BsbscGABERC-FMZGXnKXQ e S B

Name: REQ-1[/deitemis.aad/requirments.rif-xmi] | Name: AAD [Block] [/de.temis.aad/architecture.u
Context: PAPYRUS

Type: Requirement Type: Block
Resource: /de.itemis.2ad /architecture.umi

Role SRC #) ol TARGET D)
Set as Trace Point A Set as Trace Point 8 Context PROR Context. PAPYRUS

Resource: /de.itemis.aad/requirments.rif-xmi Resource: /de.itemis.aad/architecture.uml

Position: _wpRQWBOEECG~1_Sohh14Q Position: _BsbscGABEEC-FMZGXnKXQ

Create % Reset

5.1.2.2 Requirements Tracing Detailed Design

~/7" RequirementsTracingDetailedDesign
RequirementsEngineer

DetailedModel <<none>>
DetailedDesigner

Req. Model
37

extendingTracingModel

TraceModelDedailedlLevel < <none>>

raceModelAchitecturelevel

=2

Figure 22: Requirements Tracing Detailed Design

Requirements Tracing Detailed Design
Overview Validation and verification of the development is the basis for quality assurance

and requires the tracing from requirements to the implementation including tests.
Assigned #33, #76, #113, #93, #114, #116, #237
Tickets
...

Language TracingMM
Tools YakinduCReMa
Input Requirements Model, in

Trace Model, Detailed Model, in

Trace Model, out

Pre-Conditions

Post-Conditions

Steps Editing Tracing Model:

The existing trace model is extended in this step to include the dependencies to
the detailed design.

Page 35 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example see Requirements Tracing High Level Design

5.1.3 System/Subsystem Modelling

Subsystem Modeling

Subsystemn Model
Requirement Definition «parameters Q

wparameters Sbsystem Modeling
>
wperforms w58

System Architect

o, ‘Jfﬁ UML/Marte Tool

Figure 23: Subsystem Modelling

Subsystem Modelling

Overview For large scale system development it might be useful to decompose the system
into smaller parts so called subsystems. There should be a loose coupling
between subsystems so that a development in parallel can take place.

Assigned #43 #49, #76, #218, #264, #145 #34 #77

Tickets

Language UML for Marte profile, VERDE profile definition

Tools Papyrus MDT or any tool supporting the standard (full compliance)
Parameters Requirement Model, in

Subsystem Model, out

Pre-condition Requirement definitions

Post-condition

Steps Subsystem Definition: To model subsystems a UML stereotype <<Subsystem>>
can be assigned to components in UML class diagrams.

Subsystem Decomposition: A system or subsystem can consist of none or many
subsystems. In order to show that a subsystem is decomposed into other
subsystems a composition association is modeled in a UML class diagram.

Page 36 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example

zsubsystems
«=Components
VehicleControlSystem

«subsystems xsubsystems
sComponents «Components
EngineControlSystem GearshiftSystem

Page 37 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

5.2 System Design / Component based Design
5.2.1 Modelling of the Execution Platform
5.2.1.1 Modelling of Hardware Baseline
2
-~ HardwareModelling

ModellingExpert HardwareExpert

<performs> >
<Aperforms>>

JodelHardware
/ HarwareModelLib < <Artifact> >

! InformalHardwareDescription < <Deliverable> >

Figure 24: Modelling of Hardware Baseline

Modelling of Hardware Baseline

Overview For an accurate estimation of non-functional properties in software-intensive real-
time systems the consideration of the underlying hardware platform is an essential
part during an iterative development process.

Assigned hardware / software integration to one system (Ticket 58)
Tickets VERDE shall offer different views (Ticket 76)
VERDE shall support partitioning (Ticket 56)

Different bus architectures, protocols and arbitration schemes (Ticket 67)

Language UML for Marte profile, SysML
Tools Any tool supporting the standard (full compliance)
Parameters Informal hardware description, in

hardware module specifications, in

SysML hardware model, out

Pre-Conditions

Post-Conditions

Steps Import UML2SystemCAdapter library For being able to provide communication
ports of the hardware baseline with communication primitives (e.g. blocking or
non-blocking) a library based on transaction-level communication patterns has to
be imported. Note that in general this library is independent from the language
which is used to build the execution platform.

Identify hardware subsystems First of all, the hardware modeler should be
aware of (already existing) hardware subsystems, e.g. electronic control units
(ECU), communication buses, and controllers. For each identified hardware
subsystem a UML package is created.

Define hardware modules as SysML blocks Hardware modules are defined as a
SysML block in a SysML Block Definition Diagram (BDD). On that level the ports of

Page 38 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

the hardware module are of a special interest such that each of these hardware
modules ports is modeled by a UML port which is added to the corresponding
SysML block. The UML ports are stereotyped with a SysML flow port indicating the
direction of the information flow. To specify the interaction pattern of the port, the
port has to be typed with a class defined in the adapter library representing
different communication primitives (e.g. synchronous blocking communication at
transaction level).

Assign MARTE stereotypes to SysML blocks To configure the hardware
module the hardware-specific MARTE stereotype (e.g. HwProcessor, HwBus) from
the MARTE library MARTE::MARTE_DesignModel::HRM::HwLogicalis assigned to
the SysML block and the tagged values of this stereotype are set according to the
hardware module specification.

Instantiate SysML blocks The SysML blocks representing hardware modules are
instantiated in a SysML Internal Block Diagram (IBD). Therefore, an IBD is created
for every SysML block on the next higher level block, e.g. the top module level or
any subsystem, which is supposed to be modeled in detail.

Connect ports After instantiation of the SysML blocks, the ports of the instances
are connected among each other in the IBD by using standard UML connectors.

Example

=]

HardwarePlatform

«hwComputingResources
+ ecu: ECU[1]
+targetPortFRBus: simple_target_socket [1] + initiatorPortFR: simple_initiator_sockst [1]
iz} e
+|rm|aluPunTuF;Eh simple_initiator_socket [1] +targetPort ToFRCHr: simple_target_socket [1]
1= =)
—
chwBuss
+flexRayBus: FlexRayBus [1]
+ targetPorToFRCtIr: simple_target_sacket [1] +targetPorToFRCHIr simple] target_socket [1]
o =]
+ initiatorPortToFRCtr: fimple_initiator_socket [1] +initiatorPort ToFRCHIr: simple_initiator_socket [1]
+targetPortToFRBus: simple_target_socket [1] +targetPortToFRBus: $imple_target_socket [1] [+ initiatorPortToFRBus: simple_initiator_socket [1]

O bridgeF RCHlr, FlexRay 1] T driveChainFRCHlr Fidwmiy Cirl [1]

+initiatorPortToF RBys: simple_initiatar_socket [1]

+targetPortToFRCHI

Page 39 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

ECU

«hwPracessars +carCore: CarCore [1] chwTimers
+ timer: Timer [1]

+irgPort: Bgolean [1] + irgPort: |Boolean [1]
] |

+targetPort: simple_target_socket [1]

—
+targetPort: multi_passthrough_targst_socket [1..7]
+

o bus: OnChipBus [1]

+ initiatorPort: simple_initiator_socket [1]

+initiatorPort: multi_passthrough_initiator_socket [1

+targetPortToOnChipBug: simple_target_socket [1] PigitiatorPert ToOnChipBus: simple_initiator_sockst [1]

+targatPort: simple_targs

+ onChipFRCHIr FlxmayCtrl [1]

+ram: RAM [1]

+initiatorPortToFRBus: simple_initiator_socket [1]

=]
+targetPortToFRBus: simple_targst_socket [1]

=]

+targetPortFRBus: simple_target_sockst [1] +initiatorPortFR: simple_initiator_socket [1]
=]

5.2.2 Modelling of Functional Components

MARTE has the notion of component, which is mapped on the UML component concept: there is no specific
MARTE stereotype for components. The stereotype component of UML2 is not sufficient, as it is likely to be
used not only for functional components, but also for other kinds of components (processors, buses, etc.).
Therefore we need a way to specify the nature of functional components more accurately.

A good choice is to use stereotype ComponentType from FCM, which corresponds to the notion of
functional component declaration.

Component types do not specifically correspond to software of hardware components: they only represent
functional components.

MARTE does not provide any specific stereotype for functional components implementations. For the same
reasons as for component types, one needs more specific semantics for modelling.

We can use stereotype ComponentImpl from FCM, which corresponds to the notion of functional
component implementation.

T ':Umpc'”mﬂ}"p':y“ Component Interaction Definition

~|Interface Definition omponentImpl Definition

Figure 25: Workflow Modelling of Functional Components

The definition of Components starts with the definition of Components Types and its Interfaces, followed by
the definition of Component interactiosn. Since each component type can be implemented in several ways, a
component implementation can be modeled as well.

Page 40 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

5.2.2.1 Definition of Component Types and Interfaces

ComponentType Definition

Marte Profile
EE Verde Profile

Component Type definitions

=guidances ;b
«guidances «parameters
. R sguidanees
Requirement Dpf'mtmnRComponentType Definition «parameters
|_1'} «parameters A
Interface Definitions
«parameters
«performs e I_t.% Intetface Definition
wperforms
S5W developer usen
g

\,’% UML/Marte Taal

Figure 26: Definition of Component Types and Interfaces

Creation of Component Types

Overview Functionality of a system to be developed is encapsulated in functional
components. Component types are identified using the FCM stereotype
ComponentType applied on UML components. No additional information is
required. Only component types should have ports.

Assigned #62, support of control or data oriented architectures / systems
Tickets #146, Definition of generic components
#264, VERDE shall be able to refine components during specifications phases

#217, support of analog components and simulators

Language UML for Marte profile, VERDE profile definition
Tools Papyrus MDT or any tool supporting the standard (full compliance)
Parameters Requirement definition, in

Component Type definition, out

Pre-condition Requirement definitions

Post-condition Component Types are defined in a UML Class Diagram

Steps To define a new component type open an UML Class Diagram, create a new UML
Component and add stereotype ComponentType from the Verde profile to this
component.

Optional relationships between components like Dependencies can be defined in
class diagrams as well.

Page 41 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

Exam ple «componentType, componentImpl»

«Component»
=] AdaptiveCruiseControl

/ AN

«componentType» «componentType, componentImpl» «componentType, componentImph»
«Component» «Component» «Component»
<] SpeedCtrl =] AccelerationCtrl = JEngine

Creation of Interfaces

Overview Verde ML entirely relies on UML for the definition of interfaces. One should use a
UML interface with UML operations. In class diagrams a realization and usage
relationship denote the dependency to UML components.

Assigned #146, Definition of generic components

Tickets #34, VERDE shall provide a clear definition of software interfaces

Language UML for Marte profile, VERDE profile definition
Tools Papyrus MDT or any tool supporting the standard (full compliance)
Parameters Requirement definition, in

Interface definition, out

Pre-condition Requirement definitions
Post-condition Interfaces are defined in a UML Class Diagram
Steps Open a UML class diagram and create a new Interface type. Add operations to the

Interface Symbol to describe more details.

In class diagrams a realization and usage relationship denote the dependency to
UML components.

Example 5.2.3
«componentType, componentImpls «componentType, componentImpls
+«Campaonents +«Campaonents
= | AccelerationChrl = _Engine
T T
| |
i i
| |
i |
| v
i «Interfaces
—————————— >
#LISE® @ EnginelF

+ GetSpeed(+ out speed: double)

Page 42 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

5.2.3.1 Component Interaction Definition

Component Interaction Definition

Hj Marte Profile

aguidaneces zparameters

Port Definitions

=

Component Type definitions

«parameters I_E’F'Urt Definition

=

sparameters <Perfarms SLSEs

Ihterface Definitions

=3 W devel@fer UML/Marte Toal
LD»

Figure 27: Definition of Ports and Communication Patterns

Ports and Communication Patterns for Components

Overview Ports are the interaction points of functional components and are modeled as UML
ports with stereotypes from MARTE.

Assigned #146, Definition of generic components

Tickets

Language UML for Marte profile, VERDE profile definition

Tools Papyrus MDT or any tool supporting the standard (full compliance)

Parameters Component Type definition, in

Interface definition, in

Port definition, out

Pre-Condition Component Types are defined in a UML Class Diagram

Post-Condition | Ports and Communication Patterns are defined in a UML Composite Structure
Diagram

Steps Ports in Verde ML are UML ports with stereotypes from MARTE.

Operation calls

Communications based on operation calls are modelled by ports with stereotype
ClientServerPort from MARTE. A MARTE client server port can provide and/or
require several interfaces. In order to specify interfaces that are provided and
required, some attributes should be filled in. Attribute kind indicates whether the
port provides or requires interfaces. Attributes reginterface and provinterface are
lists of interfaces that are required or provided. Their values should be consistent
with the value of field kind.

Page 43 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

As the interfaces are specified using attributes of the stereotype, no type should be
associated with the port itself.

Messages

Communications based on message passing (signals or events) are modelled by
ports with stereotype FlowPort from MARTE. No specific attribute is required. The
type of data transmitted through the port is to be specified by associating a type to
the UML port.

Interaction Patterns

Use connectors. A connector is a specific kind of component responsible for
interactions. A connector shares all properties of components, i.e. connectors own
ports and there is a separation between type and implementation. A difference is
that connectors typically need to be adapted to the context in which they are used,
e.g. a connector realizing client/server calls needs to be adapted to the interface of
the components that should interact. This implies that the port type is generic and
needs to be instantiated. One (non-mandatory) solution is to defined connectors in
a UML package template and performs the instantiation by means of a model
transformation. This approach has been chosen in eC3M.

Example

«componentType, companentlmpl»
«Component»
AdaptiveCruiseControl

TowPort»
direction=in}
esiredSpeed: double

-~ A

«flowPort»
{direction=ir}
+ DesiredSpeed: double

+ swel: SpeedCtrlimpl

«clientServerPort»
{kind ﬁ‘quired,reqlnterface =[EnginelF1}

EnginePort

«clientServerPort»
{kind=pravided,provinterface =[AccelerationlF, EnginelF]}
L EnginePart

+ swc3: Engine

Page 44 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

5.2.3.2 Definition of Component Implementations

Componentlmpl Definition

EE Marte Profile Hj Verde Profile

«guidarices *guidances Component Implementation Definition

zparameters |—;}

Companent Type definitians I_E’Componenﬂmpl Definition

:’b «=parameters

&L5ED
«perfarms

i:”ﬁ UML/Marte Tool
SW developer
i@

Figure 28: Definition of Component Implementations

Creation of Component Implementations

Overview A Component Implementation is supposed to implement a Component Type.
Assigned #146, Definition of generic components

Tickets #145,VERDE shall offer Reuse of precedent design components

Language UML for Marte profile, VERDE profile definition

Tools Papyrus MDT or any tool supporting the standard (full compliance)
Parameters Component Type Definition, in

Component Implementation Definition, out

Pre-conditions

Component Types are defined in a UML Class Diagram

Post-conditions

Component Implementation are defined in a UML Class Diagram

Steps

To define a new component type open an UML Class Diagram, create a new UML
Component and add stereotype ComponentImpl from the Verde profile to this
component.

The relationship between a component implementation and the corresponding
component type is inheritance.

Using inheritance between component implementation and component type allows
the preservation of ports, which are defined at the component type level. No port
should be defined in component implementations.

Note that both stereotypes ComponentType and ComponentImpl can be applied
to a component declaration. In this case, the component declaration is both a type
and an implementation. The attribute componentType must then points to the
component itself.

Page 45 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example [|
«componentTypes» «componentType, componentImpls
«Component» «Components»
< | SpeedCtrl =] AccelerationCtrl

/

«componentImpl»
«Component»
=] speedCtrimpl

Page 46 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

5.3 Detailed Design

5.3.1 Modelling of Internal Behaviours

Modeling Internal Behawvior

Detailed structural Model Detailed behavioral Model

zparameters,

wparameters %!‘dau‘ennglntemal Behavior

wlISER
wperfarms

e Yakindu Statemachine Tools
_\Detailed Designer

L2

Figure 29: Modelling Internal Behaviour

Modelling Internal Behaviour

Overview Behaviour modelling is necessary to reproduce the required behaviour of the
original system. It is fundamental to simulate the system and obtain validation and
verification results. Later on it is used to generate the behaviour implementation.

Assigned #63, #68, #76, #218, #223, #264, #10, #257, #30
Tickets

Language Yakindu SM Metamodel, Simulink Metamodel
Tools YakinduStatemachine Tools, Matlab/Simulink
Parameters Detailed Model (structure), in

Detailed Model (structure and behaviour), out

Pre-Conditions

Post-Conditions

Steps Model Internal Behaviour:

Behaviour modelling can be done with any type of behaviour modelling
techniques. We decided to do behaviour modelling with the Yakindu Statemachine
Tools and Matlab/Simulink. Before beginning behaviour modelling the detailed
design model should include the system structure. Detailed design modelling is
often done iteratively. That is why the detailed design model must include at least
those structural elements that will be extended with behaviour.

Example Model Internal Behaviour:

The following picture shows a YakinduStatemachine diagram example:

Page 47 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

o
v 1o smes drive
park — = ey
< ey <dg
H g e— et
Ta <eite satsu g
0
! u?
acceerate roll ke
T ey
<o
<endt>
L]
rake
ancelerate fa
Ta
accelerate }
— brake
L T EEs <anry>
<gas
<enit> traiz LY “
<eits
5.3.2 Non-Functional Characterization
5.3.2.1 Non Functional Characterization for Safety & RAM
4 N R
(«Step » W « Step» « OptionalStep »
Create Time Observations Model transition btw safety Associate fransitions biw
failure & nominal modes states to failures (fail to
respect time constraints)
¢ T throuah Safety Profile
(« Step » W « Step »
Create a C?”Sfr?i,m and - Define safety failure modes
cterantvne it ac “time canstraint! and model them as states
} - 5
4 N
« Step» « Step»
| -
L
Specify the constraint Define safety nominal modes
body in VSL syntax and model them as states
J N\)

Figure 30: Non Functional Characterization for Safety & RAM

Page 48 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

Non Functional Characterization for Safety & RAM

Overview Safety & RAM are core issues for train industry. They represent thus an important
non-functional aspect of modelling activities. Modelling Safety or RAM
characteristics is mainly based on time constraints and (safety) nominal or failure
states -and transitions between them- of Systems. Modelling these characteristics
is an open door to better understanding and analysis of a System’s Safety and
RAM levels

Assigned Support functional and non functional aspects (Ticket 60)

Tickets

Language SysML, Marte profile, Safety profile (in-house)

Tools Any tool supporting these standards (full compliance)

Parameters System Design Model, in

Time constraints, Failure states, stereotypes refereeing to System Design Model,
out

Pre-Conditions

Post-Conditions

Steps

Create time observations: This step consists in creating time observations (in the
context of Sequence Diagrams), so that they can be referenced in VSL
expressions, formally capturing time constraints. Each time observation will
typically refer to a communication event associated with a message from the
interaction, or to an execution occurrence.

Create a constraint: In order to encapsulate an expression that will actually
describe the timing constraint, an UML Constraint must be created. This constraint
is typically owned by aSysML Sequence diagram, and can additionally refer
constrained elements (e.g., the time observations that will be manipulated in the
VSL expression). Marte Profile is used to stereotype each constraint as a
“timeconstraint”.

Specify the constraint body with VSL: Once the constraint has been created, a
VSL expression can be encapsulated in it. The VSL expression is a Boolean
expression which will make reference to time observations. For example, if the
context interaction defines time observations @t1 and @t2, the following VSL
expressions could be specified: @t2 - @t1 < {value = 15.0, unit = ms}.

Define& Model safety nominal modes: Safety Nominal Modes correspond to
operational or functional modes and are modeled with states. They are linked to
components (System, sub-system, software...)

Define safety failure modes: Safety Failure Modes are modeled with states. They
correspond to possible types of failure. And a reach from Safety Nominal modes
through transitions.

Model Transitions: Btw Safety Nominal and Failure Modes. They correspond to
specific events that trigger the transition and guards.

Associate transitions btw states to failures: Failures can be due to non respect
of time constraints. In such cases, transitions’ guards can be associated to time
constraints.

Page 49 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

Example

Sequence
(1 Diagram

[5.0] bursdabrend]

Bana Traiten Rawt s

State Machine
Diagram

[t}

TimeConstraint

A i .)
| TimeObservation -
. Safety Nominal

X Mode

\ ‘o > VSL language

Safety Failure
Mode

S > Transition (guard points to a
TimeConstraint)

5.3.2.2 Resource Usage Characterization

Resource Usage characterization (of elements from a system model) is an important aspect of non-functional
characterization. It consists in specifying the amount of resource usage (e.g. memory, CPU time, network
bandwidth, etc.) required by the run-time manifestation of a given model element (e.g. a model element
representing a component instance) in order to enable early analysis and validation of design choices. As
depicted in figure 29, this methodological pattern is composed of a single task “Express Resource Usage”.
Details about this task are provided in the table below.

Ca

Express Resource Usage

Figure 31: Resource Usage Characterization pattern

Page 50 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

Express Resource Usage

Overview Associate resource usage information with a UML model element.
Assigned #60, #95, #307, #308, #309, #451, #452, #453, #454, #455
Tickets
Language UML, MARTE
Tools MDT Papyrus
Parameters Inputs:
- inoutelementToBeCharacterized : NamedElement [1]
- inresources : Resource [0..*]
Pre-condition None

Post-condition

elementToBeCharacterized has stereotype « ResourceUsage » applied.

Steps

Apply ResourceUsage stereotype:

This step consists in applying the MARTE stereotype <<ResourceUsage>> to
model elements of interest in the system model. This stereotype can be applied to
any UML NamedElement. For examples, this includes structural elements (e.g.
component implementation, instances or properties) as well as behavioural
elements (e.g., activities, actions or messages), or even relationships such as
Allocations. The third step of this task provides details on the various kinds of non-
functional properties which can be specified via this stereotype.

(Optional) Identify used resources:

This step enables to specify the resources for which the resource usage values
(see step 3 for details) are specified. This is captured via property usedResources
: Resource [*]. Since the multiplicity of this property is * (i.e., it is potentially empty),
the overall step can be considered optional. In this case, the ResourceUsage can
be considered underspecified, and could be refined further in the design process.
Note that an Allocation (e.g. of a software component onto an execution resource)
can also be stereotyped with ResourceUsage. In this case, the used resource is
simply the target of the allocation relationship.

Specify the resource consumption with VSL:

This step consists in specifying the various usage values for this particular
resource usage. Stereotype ResourceUsage carries the following non-functional
properties:

e execTime : NFP_Duration [*], the time that the resource is in use due to
the usage

e msgSize : NFP_DataSize [*], the amount of data transmitted by the
resource

o allocatedMemory : NFP_DataSize [*], the amount of memory that is
demanded from or returned to the resource. It maybe a positive or
negative value

e usedMemory : NFP_DataSize [*], the amount of memory that will be used
from a resource but that will be immediately returned, and hence should
be available while the usage is in course. This may be used to specify the
required free space in the stack for example.

e powerPeak : NFP_Power [*], the power that should be available from the
resource for its usage

Page 51 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

e energy : NFP_Energy [*], the amount of energy that will be permanently
consumed from a resource due to the usage.
The type of each of these properties is an NFP type. The VSL syntax can therefore
be conveniently used to specify associated values. Note that the multiplicity of
each property is *. Firstly, it means that it is not mandatory to specify a value for all
of these properties. Secondly, it means that multiple values can be specified for
each property, which enables to have different values characterized with different
statistical or source qualifiers.
Example “resources
MyHwZomponenk
M
Resource usage Resource usage Resource usage !
expressed o the expressed at the expres.sed at the : sahstractions
companert level propetty level allocation level _._: callocates
| ;
Systemn :
i
sresourcellsages L
SwComponent sresourcellsages + 52 SwCormponent [1]
“Resourcellsager + 51: SwComponent [1]
execTime=[{urit = ms, value = 20.0}] #Resourcellsage
usedResources=[MyHwComponent] execTime={{unit = ms, value = 15.0}]
usedR esources=[MyHwComponent]
5.3.3 Legacy Code Abstraction/ Integration

Legacy Code Abstraction

|=] Legacy Source Code

320

sparametefs~ .

4

¥
I
xperforms
i

I
¥

|=| VERDE Model

sparameters. - = = = ¥ ;‘}

. Legadi Code Abstraction
=

-

%
wllsgn
A
%
%

&

! T Eclipse CDT
Detailed Designer
[

Figure 32: Legacy Code Abstraction

Page 52 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

./

F2.2.4 — VERDE Methodolo

(ITEA 2 -

Legacy Code Abstraction

gy V1.1
VERDE

ip8020)

Overview For analyzing and testing non-functional properties in software-intensive real-time
systems the modelling methodology must be able to capture already existing
(source) code and generate an execution platform including this source code.
Legacy code abstraction is especially needed for round-trip engineering in a
model-based development process.

Assigned Functionality described using C/C++ (Ticket 68)

Tickets Timing and power abstraction of legacy software (Ticket 403)
Abstraction of legacy code to components (Ticket 404)
NFP Analysis of functionality implemented in C/C++ (Ticket 440)

Language C/C++/SystemC, UML

Tools Eclipse CDT

Parameters C/C++/SystemC Source Code, in

(UML/VERDE) Functional Model, out

Pre-Conditions

Post-Conditions

Steps

VERDE Model

Abstraction f

Abstract SystemC
Model

%

SystemC Code Model

(Semi-)Automatical
Identification
of Components

suoljewojsuel] [Spol Z ISPOIN

Mapped to Subset f

CDTAST

Legacy C Code [SystemC (g

Building AST in Eclipse CDT By using the Eclipse CDT framework existing
source code is parsed and an AST representation is automatically generated on
condition that the source code is contained in a valid CDT project.

Mapping to SystemC Code Metamodel The CDT AST model is elaborated and
all relevant nodes in the CDT AST are mapped onto corresponding elements in a
SystemC Code Model. Due to the bidirectional M2M transformation with QVT this
model can be used to generate code. This feature is mainly applied in a top-down
development process starting at UML/VERDE modelling.

Component Abstraction by SystemC Metamodel The source-code-oriented
SystemC code metamodel is mapped onto an abstract SystemC metamodel using
the same technology for M2M transformation as in the transformation step before.
This abstracted model is bridging the gap between a representation of existing
source code artifacts and the component-based modelling approach addressed in
VERDE.

Page 53 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

_ O «finishToStarts _ Q)
o @
Capture Time Constraints Early Design Verification

Figure 33: Model Based Verification Pattern

The Model Based Verification starts with the capture on non-functional properties related to real-time
constraints. Annotating the models with real-time constraints is a pre-requisite to their early design
verification. In the following sections, we describe each of those activities.

5.4.1 Capture time constraints

Capture Time Constraints

3

TimedCons;ré{nt MARFE stereotype

¢ .
. .
. .

TimedDurationObservatEﬁP MARTE stereotype «cery:épt) «ancept») .
. P = . TlmedInstantObservlﬁlon MARTE stereotype
“ PR o UML Interaction '
' o = LY S .o 243 :’
. . P ~ he
‘ o, ~. . 8
«contept» = «parameters «DaFame@r» . «contept»

o’ e Rt NS]

' - . 2% R [

\\ . 4 e” < S -~ ¥ -~ :'

\ ¢ f e’ e i adR]
\ ?.” (2P,
@——— A —————@
s 21 S
Specify time constraints with duratioft ebservations Specify time Eonstraipts with time observations
‘\ Tuy, PE 2 '
& - £
X S «performs o
Al s -
e - ’
\\ T P ’
«perforps ~. . quser
P - ’
“ - 2" N ok ll
N e “euse» S
\ -
Tester .- T y’
Q-7 vg UML Modeling Tool
LS

Figure 34: Capture Time Constraints

Expression of timing constraints is an important non-functional aspect of system design and validation, e.g.
for specifying the maximal duration of a method call or the minimum duration between two occurrences of an
event.

5.4.1.1 Products lifecycle

UL Interaction Lifecycle

s @ Defined @9 Annotated @3 verified
| @0sine |] ‘®

Figure 35: UML Interaction Lifecycle in Capture Time Constraints Activity

Page 54 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

In the Capture Time Constraints activity, only one product is transformed and verified. Indeed this activity
consists mainly in transforming a well defined UML Interaction product into an annotated UML Interaction
(with time constraints). Those annotations are then used to verify the real-time properties of the model.

5.4.1.2 Capture Time Constraints Tasks
Specify time constraints with time observations

Overview One way to capture time constraints is to use time observations into UML
Interactions. Then, from those observations, we can establish time constraints.

Assigned Support functional and non functional aspects (Ticket 60)

Tickets
.

Language UML for Marte profile

Tools Any tool supporting the standard (full compliance)

Parameters Interaction:UML Interaction (inout)

Pre-condition Interaction in state “Defined”

Post-Condition Interaction in state “Annotated”

Steps I ?

g = 775
«Step» «OptionalStep»
Create time Refine time constraints
observations using the
"TimedConstraint”
stereotype
3 i Fy
«Step»
Create a constraint
Y «OptionalStep»
«Step» Refine time observation
_ - using the
Specify the constraint "TimelnstantObservation"
body in VSL syntax stereotype
-

7 =4

Description Create time observations: This step consists in creating time observations (in the
context Interaction), so that they can further be referenced in VSL expressions,
formally capturing timing constraints. Each time observation will typically refer to a
communication event associated with a message from the interaction, or to an
execution occurrence. Graphically, a time observation is represented by the
symbol "@" followed by the name of the time observation. The fact that a time
observation is actually bound to a communication event of a message will be
graphically captured by having the time observation located at the corresponding
end of the message.

Create a constraint: In order to encapsulate an expression that will actually
describe the timing constraint, a UML Constraint must be created. This constraint
is typically owned by the context UML Interaction, and can additionally refer
constrained elements (e.g., the time observations that will be manipulated in the
VSL expression). Note that these additional references have no semantic impact
on the VSL specification of the constraint, in the sense that it does not restrict the
set of time observations that can be manipulated in the expression. Therefore, it
can be seen as additional information making the model potentially easier to read
or exploit.

Specify the constraint body with VSL: Once the UML constraint has been
created, a VSL expression can be encapsulated in it. Encapsulating the VSL
expression involves the usage of an OpaqueExpression. The property language of
the opaque expression must contain the string "VSL", and the property body must

Page 55 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

contain the VSL expression. Since properties language and body are ordered
collections, the indexes of "VSL" and of the VSL expression (in their respective
collection) must be the same (see Section 7.3.35 OpaqueExpression from the
UML superstructure).

The VSL expression must be a Boolean expression (i.e., an expression whose
evaluation will produce a result of type Boolean), which will typically make
reference to time observations. For example, if the context interaction defines time
observations @t1 and @12, the following VSL expressions could be specified (this
list is of course not exhaustive):

- @tl < @t2, which specifies that the event associated with the time
observation t2 must occur before the event associated with the time
observation t1 (shortly, @t1 must occur before @t2)

- @t2 > 11:43:45 2010/09/21, which specifies that @t2 must occur after a
date literally specified

- @t2 - @t1 < {value = 15.0, unit = ms}, which specifies that the duration
between the occurrence of @t1 and occurrence of @t2 must be lower
than 15.0 milliseconds

- @t2 - @t1 < 15.0, which roughly specifies the same thing than the
previous constraints, without specifying the time unit (i.e., it can be implicit
from the context, or can be indirectly obtained from another model
element, as illustrated in the last step of this task).

(Optional) Refine time observations with the MARTE stereotype
<<TimedInstantObservation>>: As explained in the previous steps, in the context
of an Interaction, a TimeObservation is bound to a communication event (i.e., the
emission or reception of a message), and can therefore be literally interpreted as a
specification of the instant where a message is emitted or received. However, this
explanation only remains an interpretation.

In order to avoid any ambiguity on the interpretation of the event observed via the
time observation, MARTE provides a stereotype : <<TimedInstantObservation>>.
With the property obsKind:

EventKind of this stereotype (possible values are start, finish, send, receive,
consume), it is possible to indirectly characterize the event associated with the
time observation. For example, if we have:

- @t1 with <<TimedinstantObservation>> {obsKind = send}, a VSL
expression such as @tl1 > 17:25 that the emission of the event underlying
t1 must be done after a literally specified date

- @tl with <<TimedInstantObservation>> {obsKind = consume}, a VSL
expression such as @tl < 17:25 that the event underlying t1 must be
consumed before a literally specified date. This can be used to specify the
validity date of a message.

(Optional) Refine constraints with the MARTE stereotype
<<TimedConstraint>>: From a given expression context, it is possible to
determine if a constraint actually concerns a particular instant (e.g., @t2 >
11:43:45 2010/09/21) or a duration (e.g., @t2 - @t1 < {value = 15.0, unit = ms}).
Determining if the constraint refers to an instant or a duration typically requires an
interpretation phase (which can be automated since the VSL syntax is formally
defined), with an inference mechanism exploiting the content of the expression
(e.g., the time events it refers to and the operator which are manipulated) as well
as the context in which it is specified.

MARTE provides a stereotype which enables to explicitly tag a constraint as an
"instant" and/or a "duration" constraint: <<TimedConstraint>>, which extends the
UML metaclass Constraint. By applying the stereotype on a Constraint, it is
possible to specify how the constraint must be interpreted, using the property

Page 56 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

interpretation: TimelnterpretationKind (possible values are instant and duration). If
interpretation is set to the enumeration literal instant, then the constraint is
interpreted as a constraint on instant value. If interpretation is set to the
enumeration literal duration, then the constraint is interpreted as a constraint on
duration value.

Note that the stereotype <<TimedConstraint>> also inherits from stereotypes
<<TimedElement>> (see Section 9.3.2.7 of the MARTE specification) and
<<NfpConstraint>> (see Section 8.3.2.5 of the MARTE specification).

With the property on: Clock (inherited from TimedElement), it is possible to
reference a clock, which can itself be associated with a time unit (e.g., seconds,
milliseconds, ticks, etc.). Considering a VSL expression such as @t2 - @t1 < 15.0,
this can be used to indirectly specify the time unit behind the real literal "15.0".

With the property kind: ConstraintKind (inherited from NfpConstraint), it is possible
to further characterize the timed constraint (typical values are required or offered).
Required indicates that the constraint represents a minimum quantitative or
gualitative level. Offered establishes that the constraint represents the space of
values that the constrained elements can afford.

Exam ple bg“'::[?’;if’::&;ﬁ?}e Constraint in an
Jitter constraint i -nccurrénce-‘w 5 observation with condition
) e expression
Sd DataAcquisitioy ~constraint1={ (0 }1_«) i) > L___;)_ = y
<—tonstraint2= { (t3 when data<5.0) < t2+(30 _m§)j,::>
Extended N :Controller :Sensor
s AN
duration ok sl Biiratidri
intervals with /_"“gtan()(jmer(to)<(5"g'§))| _|A o "'lt"‘t"“"l
bound « []» [——= S ad1 4 S

specification

@o /l acquire() {d1<=(1, ms) }

—emn @t |

W

¥

Instant Interval
Constraint

C (11046, mIh
o =

e (Q 30"d1]} ’;\

@13 e
I

ack() JJL

sendD;ta (data){ [(0, ms)..(10, ms)]}l

(Taken from the official MARTE tutorial)

5.4.2 Non-Functional Analysis

5.4.2.1 Schedulability Analysis

The purpose of this process pattern is to enable schedulability analysis at early stages of the development
process, by identifying the various steps required to refine an input functional model towards an output model
carrying schedulability results. The proposed pattern is part of the Optimum methodology, detailed in VERDE
deliverable F4.4.1.

Page 57 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

Functional mocel

Y

Builed Workload Madel

vWorkload model

T
Generate SAM
- Ls
H Refactor SAM
e, Schedulzhility
Analysis
D, tdadel
o — Design Advice
Schedulabilty Analysis g
Schedulahility
Analysis
Result
Ko Lo

Design Advices Selection

K

®

Figure 36: Schedulability Analysis Pattern

Schedulability Analysis Pattern

VERDE
ip8020)

Overview Build a UML/MARTE model analyzable by schedulability analysis tools.
Assigned #60, #218

Tickets

Language UML, MARTE

Tools MDT Papyrus, Optimum

Parameters - in functionalModel : FunctionalModel [1]

- out analysisModel : SchedulabilityAnalysisModel [1]

Pre-condition

[TODO: specify rules for the input functional model.]

Post-condition

None

Steps

Build Workload Model:

The workload behaviour model is build from the input functional model specifying
the controlled sequence of actions triggered by external stimuli. The construction
of a workload behaviour proceeds by the generation of an UML Activity diagram
containing a canonical form of the controlled sequence of actions contained in the
function model. Details about this canonical form are given in section 4.2.1.1.1 of
VERDE deliverable F4.4.1.

In addition to the workload behaviour, a very abstract view of the execution

Page 58 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

platform resources is also needed to have an estimation of computation time
budgets for steps. This estimation is used to perform feasibility tests with respect
to expressed end-to-end deadlines and external events activation rates. The
platform execution resources are modeled with a UML property stereotyped
<<SaExecHost>>. The resources types are modeled in a model library that can be
reused. The classifier containing platform resources is stereotyped
<<GaResourcesPlatform>>. This platform model is refined in the following steps.

Generate SAM:

Schedulability tests in the literature apply on specific characterization of
recurrences of each external event (e.g. arrival pattern of the event, deadline for
the system response, etc.). In this step, these characterizations are added to the
input workload model in order to produce a schedulability analysis model suited to
exploitation by analysis tools. It mainly consists in refining the platform resources
identified in the previous step and specifying allocation of workload behaviours to
platform resources. Details about modelling rules are given in section 4.2.1.2 of
VERDE deliverable F4.4.1.

Schedulability Analysis:

In this step, the input SAM is enriched with information needed by schedulability
analysis tools such as input numerical parameters, threading strategy and
allocation information on potential execution and communication hosts. After
analysis by tools, the model is enriched with computed schedulability analysis
output parameters such as worst-case response time and hosts' utilization alons
with a verdict on the schedulability of this context. Details about this step are given
in section 4.2.2 of VERDE deliverable F4.4.1.

Design Advices Selection:

In the case where the schedulability analysis performed by an analysis tool reveals
that scheduling requirements of the input SAM cannot be satisfied, the input SAM
needs to be refactored. The purpose of this step is to identify and select an
analytical design advice that could help the designer in the refactoring of the input
SAM. Examples of analytical design advices are given in section 4.2.3.1 of VERDE
deliverable F4.4.1.

Refactor SAM:

This step consists in refactoring a non-schedulable SAM by following analytical
design advices selected in the previous step. This may for example imply reducing
event arrival frequency, bounding execution times or increasing logical
concurrency. The way to specify the information in the refactored model follows
rules indentified in the other steps of this pattern.

Example

See section 5 of VERDE deliverable F4.4.1

Page 59 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

5.4.2.2 Non functional analysis for Safety & RAM

I

« Step »

Capture Input

Reanirameants

T

v

(« Step »

L

System Design modelling

.

« Step»

F2.2.4 — VERDE Methodology V1.1

« Step »

Preliminary Hazard
Anailveic

\ 4
-
— 1 J

VERDE
(ITEA 2 - ip8020)

« Step»

Altarica Model
Analysis: production

FMFA

« Step »

of SHA-FT and SHA -

A

Safety NFP modelling - (see
Non Functional Characterization
forSafety& RAM)

Transformation into
Altarica Model

Overview

%

Figure 37: Non functional analysis for Safety & RAM

Non functional analysis for Safety & RAM

Safety is a core issue for train industry. It is thus an important non-functional
aspect of modelling activities. Modelling Safety characteristics is mainly based on
time constraints and safety nominal and failure states -and transitions between
them- of Systems. Modelling safety characteristics is an open door to better
understanding and analysis. Safety Analysis exploits Models to build FMEA.

RAM analysis manipulates the same kind of NFPs and reveals availability and
reliability levels of a System.

Methodological
Pattern

[TODO: reference methodological pattern]

Assigned Support functional and non functional aspects (Ticket 60)

Tickets

Language SysML, Marte profile, Safety profile (in-house), Altarica (Geensoft)

Tools Any tool supporting UML standards (full compliance) — SD9 (Dassault — Geensoft)
Parameters System Scpecification, in

Altarica Model + Safety Hazard analysis (Falt tree+ Failure Modes and Effect Analysis),
out

Pre-Conditions

Post-Conditions

Steps

Capture Input Requirements: Input Requirements are the initial input of the
whole process. They define the end-user specifications of a System (or
components).

System Design Modelling: Refers to a full modelling process used in Alstom
which address operational, functional and constructional view modelling.

Page 60 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Safety NFP modelling: See note Non-functional characterization for Safety &
RAM

Preliminary Hazard Analysis: Identification of the main hazards and there
possible reasons.

Transformation into Altarica Model:PIVOT transformer (Geensoft) generates
an Altarica model out of design model (SysML). It includes at least nodes,
hierarchy, interfaces and states. Ways of modelling Failure Modes effects on
the design model are being evaluated and would therefore lead to generate
through the PIVOT a full Altarica model.

Altarica Model Analysis: Using Safety Designer to analyse the Altarica Model
allows for generating the Safety Hazard Analysis (Fault Tree) and Safety
Hazard Analysis (Failure Mode and Effects Analysis).

Page 61 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example -
Write Input

Requirements
in a model

S System Design

: == \ Model
v

| e

Additional Safety NFP

to the Design Model
Pl
'
’
’
/
1
/
/
’
7, 1
e 4-- 1
L 1
;
PIVOT
=" (ex RT Builder)
P -
!
\ /
~ s
S~oo - \
-~ \
\
1
v
node External_ Actors_RollingStocks
flow
- NoTractionInhibition i : bool ;
Altarica ChangeDirectionRequest : bool ;
Model or Code ActiveTrain : bool /*: out */;
Traction : bool /*: out */;
edon
Joodos) |]] il 1.]) s | s |
7| node External Actors_ATS
/x>
edon

node External_ Actors_ATO
ALY,
edon

node ATP_Component CarborneATP
Al /x.x/
edon

::::::j fﬁiﬁi;j e gggg;ggj

node ATP_Component WaysideATP
flow
TractionRequest : Message TractionDirection ;
Traction : Message_ TractionDirection
NoDangerToTraction : bool /*: out */;
ActiveTrain : bool ;
state
Tracting : bool ;
ReversingDirection : bool ;
Active : bool ;
sub
f1 : f1_Acquire_Data;
£2 : f2_data_processing;
£3 : f3_data_sending;
event
TractionInhibitionReceived ;
FailsToAcquireMsg ;
TractionDirectionRequested ;

T
1
1
)

SRS -] alxiaialel
F

A = e - - — -~
e Altarica Model
Analysiswith SD9

Page 62 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE
g (ITEA 2 - ip8020)

5.4.3 Performance Analysis

In order to be able to perform scheduling and performance analysis for component-based models, the later
have to be annotated with information describing the timing characteristics (e.g. core execution times and
activation frequencies for threads and methods) and the behaviour (e.g. data dependencies and
communication protocols between threads). The set of annotations extending a component-based model is
called Domain Specific Language (DSL). In the following, we describe the DSL we have defined extending
the component-based models used by Thales Communication. Note that the DSL we developed is based on
the MARTE standard.

MARTE
e"l_; UML Component
System Engineer #COnCepts |
«performs: .
«in, maridatorys
;,_) «performss D
Hardware Engineer Anhalyze Pefformance <olty mandatorys
«performss |
Performance Analysis Result
L, #LSESE #lsese «Ugesw
Software Engineer
fﬁ f% fﬁ
Papyrus 0'Time SymTA/S

Figure 38: Performance Analysis

Performance Analysis

Overview The purpose of this process pattern is to be get performance estimations at early
stages of the component-based development process.
Assigned #448, #450, #451, #456 and #458
Tickets
... |
Language UML, MARTE profile
Tools Papyrus, O’time, SymTA/S
Parameters IN: UML Model

OUT: Performance analysis results

Pre-condition None

Post-Condition None

Steps Before applying performance analysis to his component-based model, the
designer has first to annotate his model with information describing the mapping,
the scheduling and the timing characteristics.

Step 1: Threads Scheduling

The user has to select a scheduling policy for each processor. Then, he has to set
the scheduling parameters for each thread mapped to a processor. E.g., in case of

Page 63 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

static priority preemptive scheduling, the user has to set priorities for the threads.
Step 2: Methods Mapping:

The user has to map the methods to the threads using the methods mapping table.
All methods are namely automatically displayed in the left column of the mapping
table. Each cell in the right column contains a drop-down list with all available
threads. In order to map a method to a thread, the user has simply to select the
thread in the method corresponding drop-down list.

Step 3: Timing Characteristics

Timing characteristics needed by the performance analysis have to be set in the
thread configuration window and the sequence diagram illustrating the scenario to
be analyzed.

Thread internal activation

The internal activation of a given thread is driven by an internal clock which
triggers the thread periodically. The internal clock timing characteristics have to be
described in the thread configuration window, where the user has to set the a
period and eventually a jitter value for the clock.

Thread external activation

The external activation occurs, when an external event (call, signal, data) triggers
the root method of the thread. External activation is modeled using input stimuli.
Events sent by an input stimulus are either strictly periodic, periodic with jitter or
sporadic. A sand timer is used for the graphical representation of an input
stimulus. The timing characteristics of the external activating events are set under
the sand timer. First, the user has to specify if the external activating event stream
is periodic or sporadic. Then, it has to specify the period and jitter value in case of
periodic event stream or the minimum inter-arrival distance between events in
case of sporadic event stream. In case of sporadic event stream, if no jitter value is
set, the jitter is automatically set to O.

Communication behaviour between methods:

The communication between methods is either synchronous or asynchronous. The
communication type is illustrated by the user in the sequence diagram by
connecting the caller method and the called method using an arrow: a full arrow for
in case of a synchronous communication and a half arrow in case of a
asynchronous communication.

Execution times for methods:

Each method and sub-method is characterized by a core execution time interval
which limits its minimum and maximum execution duration. The user has to set the
core execution time interval of each method and sub-method at its right in the
sequence diagram illustrating the scenario to be analyzed.

Timing requirements:

The user may require to set constraints regarding latencies or jitters at the paths
outputs. These timing constraints can be modeled using output stimuli. A sand
timer is used for the graphical representation of an output stimulus. The timing
constraints are set under the sand timer. In case of a latency constraint, the user
has to set a couple (input stimulus, latency interval) under the output stimulus. In
case of a jitter constraints, the user has simply to set the jitter value under the
output stimulus.

Step 3: Timing Characteristics

The user must launch the performance analysis method in order to get
performance estimations.

Page 64 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 - VERDE Methodology V1.1

A
-
A VERDE
g %”d’e (ITEA 2 - ip8020)

Example

15 *HwRessources Object Diagram(Package HwRessources) & X n]

Bv Biv & By Wy = 2 100% v m i Palette b
QA 2~

@ Create Instance
[21 CPUL: CPU # Reference Instance
[2 Set Default Value
& Comments)
& Comment
/ Link comment

B Biv & By W ® 2 100% | m * Palette >
RO

[T 7 Egg
(&) IdealClk : Ide: & Object Diagram @

@ Create Instance
< Reference Instance

2 Set Default Value
g ; & Comments @
@ Taskl:Task | [Dmsimk | I ELTR Comment
L | — L —] / Link comment

Schedulable Resource HW Computing Resource
£ MyccM_Component1
v & MyApplication
Y& Part:C1
> & Port: P2
» & Port:P3
¥ % Port:P1
@ Operation:m11 Task! cPUt
¥ & Part:C2
Y & Port:P4
@
¥ & Port:P6 Refreshtable
@ Operation: m61 T2 sort by ’
> & Port:PS Show/Hide R
» & Port:P7 |
» @ Port: P8 Delete line
» & Port: Port9 Export '
Show Properties View
Team »
Compare With ’
Replace with ’
Checkstyle »
OTime »
Traceability ']
Allocation

Page 65 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

7 Palette b
AL~

& Creation
Lifeline Creation

» & Execution Creation

Y Onous
age Creation

o 3y & Import from model
R (NS ¥ A | (= Timing Constraint

- 3 « I Executiontime

X Response time

= Periodic input
stimulus

Py g R yopma st 1 §inm > Periodic Output

imudus
oo stimutus

= Sporadic Output
stimulus

2N - Sporadic input
4 stimulus

Input Jitter
Output Mtter
» | Critical Section

[N

5.4.4 Model Analysis

° 9 29 ®

ModelReview ReportEvaluation

Figure 39: Model Based Analysis Pattern

The ModelAnalysis starts with the definition of the analysis rules. This is dependent on the nature of the tools
to be analysed. The rule set could be both generic and predefined or it can be specific for the actual process
and project definition.

Model Analysis can be done at multiple places during the development process. Most obvious are places
where certain work products are completed and new process steps shall be entered. Model Analysis can help
to ensure the quality of the work products.

The analysis of a model can be done in a manual way, in an automatic way or in both ways at the same time.
The latter is to be preferred as it combines the benefits of both approaches. So the automatic way can check
a high number of rules while the manual analysis can benefit from the experience of the quality engineer who
can better adapt to the specifics of the project and the respective work products.

Page 66 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

In general the Model Analysis can be separated into ModelReview (either automatic or manual) and
ReportEvaluation.

5.4.4.1 ModelReview and ReportEvaluation

The following picture shows the Model Analysis in the Requirements Engineering Phase.

| i
=" AnalyseRequirementsModel

QualityManager

VerdtctAutomatlcRewew < <Deliverable> > QualityManager

orms> >
<< performs> >
irementsRuleSet

evaluateRegAnalysisReport

atncRewewRequuements
\ mna SIM

<<using>>

VerdidRequierementsReview <<Deliverable> >
<<using>>

v ‘.“ Metrino 4‘\‘ Metrino

Qualltyl‘\lanager

<< pe&urmp > VerdictManualReview < <Deliverable> >

nualRewewRequnements

Figure 40: Model Analysis

The Model Analysis is concerned with several work products.

e Rule set

e Model under analysis

e Automatic Report / Verdict automatic Report

e Manual report / Verdict manual report

e Final verdict

ModelReview and Report Evaluation

Overview Analyze Requirements with respect to certain rules
Assigned #115, #88, #170,
Tickets
Language SMM, OCL, UML for Marte profile
Tools Metrino
Parameters n/a
Pre-condition Analyzed model shall adhere to metamodel definition

Post-Condition Model is unchanged

Steps Automated Review: This step will use the predefined rules set appropriate for the
analyzed model (e.g. RequirementsRuleSet) and a model which is to be analyzed.
Both work products have to be loaded into the Metrino tool. After doing so the
analysis can be started. As a result the Metrino tool creates a visual output of the
analysis in tabular view and in a Kiviat view. The results of the analysis can
optionally be persisted and can be used for analysis over a certain period of time.
The Metrino tool creates also a report describing the results of the analysis.

Manual Review: The manual review of a model is done by loading the model in a

Page 67 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

corresponding tool. Optionally the model can be loaded with a reflective editor
(e.g. EMF reflective Ecore Editor) which allows browsing through the model as
well. Quality Manager performs now a manual review and delivers findings in a

report.
Evaluate Analysis Report:

Example

File Views Help

Quality Manager shall now evaluate the automatic
and the manual model analysis report and shall give a final verdict whether the
analyzed model is conformant to the corresponding rule set.

— (O] x|

O Riviet 23] - H\stnrvl [cComputation results‘

[l Measures S@} % =08

Element: [myLibrary

HeOfStackLibrary

Hoofemployeestibrary

HoofBranchesLibrary

=] oate: [05.05.2008 16512

HoORWritersLibrary

NeRBssksLibrary

HoofBorrowsrsLibrary

= Addressable
= Audiovisualltem
7 £ Bock
B NoOfBiographyBasks
P MoOFMysteryBooks
1 NoOFSeienceFictionBooks
£ BookCatsgory
E BeokOnTape
~Z Borrower
= Circulatingltem
= Employes
ERC
+Z Lendable
= = Library

== Perio
= Person
£ videoCassette
= writer

O audics 22

Rules 5% | & v =0

Hame | # Measures

Y NumberOFContainedElements

& Numberofinstancechidren

@ PartioningBocleanFroperty

& PartioningEnumProperky

@ ReferentialDependenciesClasses

D B cferentininotionin: (=l

@ Depth r -
@Y InstanceRaticlnhertanceTree

ameasures 10 rules

Page

68 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

5.5 Model based Testing

5.5.1 Modelling of Test Purposes for Black Box Tests

testEngineer
Requirements o)
performs
paramefer
testhenchymodeling

parameter '—Ev parameter Test description

Classification tree
= use
‘-'/g Eclipse EMF

Figure 41: Modelling of Test Purposes for Black Box Tests

Modeling of test purposes for black box tests

Overview This pattern describe some of the VERDE modelling approach for black box test
by means of classification tree method for embedded systems (CTM/ES) and the
use of an interchange format based on TestML.

TestML is a tool independent and XML-denoted language that was developed for
the interchange of test descriptions. It was originally designed to meet the specific
demands of model-based testing of embedded automotive software.

Assigned #76, #113, #218, #38, #117, #268, #270-284, #285 #15
Tickets

.
Language XML

Tools Any tool supporting the standard (full compliance)

Input Requirements, Classification trees, in

A description (.xml)of the test bench including both the System-Under-Test (SUT)
and elements referring to the individual components of the test environment, out

Pre-Conditions

Post-Conditons

Steps Test cases (horizontal lines in CTM) are defined in a table of possible
combinations based on the classification tree method for embedded systems
(CTM/ES) as depicted in Figure 42. Interfaces (compositions) of the SUT are
represented as tree, classifications represent the individual inputs/outputs and
classes are used for the specification of the value ranges.

The VERDE test-bench modelling process covers different test stages from the
module to integration and system tests as well as test levels from Model-In-the-
Loop (MIL) to Hardware-In-the-Loop (HIL).

The basis of the VERDE test-bench interchange format is a self-contained
language definition that makes it possible to cover test descriptions at different
levels of abstraction independent from the respective tool environment. Such a test
system consists of the following components:

e System under test (SUT): represents the system that is to be tested.
Mainly relevant for TestML is its test interface. From the perspective of

Page 69 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

TestML, the SUT itself disappears behind the test interface.
e Stimulation Unit: This unit is responsible for the generation of test
stimuli. The actual test execution takes place here.

e Capture Unit: This records the system reactions and/or the test
stimuli. Therefore this unit can be used for the generation and
representation of execution traces and is in the focus of working task
4.5 within the VERDE project.

e Evaluation Unit: This unit is responsible for the evaluation of test
cases. It accesses all data and execution traces recorded by the
capture unit and can be operated temporally independent from the
stimulation unit.

Specification of stimulation, recording, and evaluation is undertaken, with a strict
conceptual separation, by the elements stimulate, capture and evaluate. See
chapter 5, section 5.1 of deliverable F5.1.1 for further details.

Example

composition

combination tg

O TCTestcasel
(O TCTestcase2
(O TCTestcase3

Test Behavior > ! P
rd
sehavior/s , /\

.}f \;
\ N\
S I B Evaluation
Capture Unit Unit
sapture/> | <evalu />

StimuTaTortric—]
Figure 42: Classification Tree method and TestML

<gtimulate/>

<interfaceMapping/>

5.5.2 Modelling of Test Purposes for Compositional Testing

Components involved in the model of a system can be designed and implemented specifically or simply
reused out of existing contexts. For designers, bridging the gap between abstract specifications of systems
and concrete executions of components can be challenging: choosing or implementing components and
communication architectures to design the system requires anticipating the result of all possible component
interactions in order to insure they stay within the system requirements. The task is hard because the number
of possible interactions is often huge or even infinite in a purely reactive case.

Verde deliverable F5.4.2 proposes compositional testing techniques where such combinatory explosion can
be avoided. Test purposes are basically captured by a model of intended interactions between the
components of a system, only based on the knowledge of component interfaces and timing constraints

Page 70 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

expressed at the system level. From such behavioural system specifications, it this then possible to
determine how intended interactions constrain the behaviours of components. The result is a set of
constraints on component executions elicited from the system intended behaviours. Such constraints can
then be used as behavioural specifications to guide the design or the choice of components to be plugged in
the system, within a refinement process.

This process pattern focuses on the modelling rules for the specification of the interaction model used by the
techniques described in Verde deliverable F5.4.2. This interaction is concretely modelled via a sequence
diagram, enriched with timing and data constraints.

Lo

Identify Communicating Entities

M N

L L

L —S

Specify Message Exchanges Specify Execution Occurences

_%L

=

Specify Control Operators

LA_L

Oy Oy
Specify Timing Constraints Specify Data Constraints

I

Figure 43: Modelling of Test Purposes for Compositional Testing

Modelling Test Purposes for Compaositional Testing

Overview Build a UML/MARTE interaction model, suited to compositional testing techniques
of deliverable F5.4.2.

Assigned #76, #113, #218, #38, #117, #268, #270-284, #285, #15

Tickets

Language UML, MARTE

Tools MDT Papyrus, Optimum

Parameters - in component : Component [1]

Page 71 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

- outinteractionModel : Interaction [1]

Pre-condition

The following hypothesis apply on the input component model:
- The input component contains parts.

- The components typing these parts (as well as the input component) can
only have atomic flow ports (i.e., no client/server ports).

Post-condition

None

Steps

Identify Communicating Entities:

The purpose of the interaction model is to specify the messages that are expected
to flow between the ports of interacting components. In this step, each port
involved in the exchange of messages is therefore modeled with a dedicated
lifeline.

Specify Message Exchanges:

According to semantic hypothesizes underlying testing techniques described in
F5.4.2, only asynchronous message exchanges are supported. This kind of
message is capture by tracing a Message between the source and target lifelines,
and by setting property “messageSort” to “asynchCall”.

Note that the directions associated with atomic flow ports (represented in the
interaction by lifelines) constrain possible sources and targets of messages.
Messages can flow only from an “out” (or “inout”) atomic flow port towards an “in”
(or “inout”) atomic flow port. In addition, the source and target ports must be type
compatible.

Note that the methodology does not put particular requirements on the presence or
absence of connectors in the structure of the input component. In the case where
connectors are actually specified, they should however be considered as
additional constraints on possible message exchanges: Messages can only flow
between interconnected ports.

Specify Execution Occurrences:

As explained in the introduction to this pattern specification, interacting
components are considered as black boxes. Nevertheless, in order to model the
expected behaviour of the overall system, it may be necessary to capture some
abstract representation of the computations that are intended to happen inside
each individual component.

This kind of computation is represented as a BehaviourExecutionSpecification on
a Lifeline. The property “Behaviour” of BehaviourExecutionSpecification can then
be used to reference a particular OpaqueBehaviour. This OpaqueBehaviour must
be owned by the component typing the port represented by the lifeline. The tool
chain described in F5.4.2 supports the following assignment syntax:

OPAQUE_BEHAVIOR_BODY =< <PORT_NAME | PROPERTY_NAME>
‘=" <VSL_EXPRESSION> > |
<NEW_VALUE_EXPRESSION>
NEW_VALUE_EXPRESSION = ‘new(’
<PORT_NAME | PROPERTY_NAME>
'y
The usage of operator “new” simply denotes that, during the execution of the
behaviour, a new value has been assigned (respectively sent) to the operand

property (respectively on the operand port). No particular assumptions are made
about the new value (i.e., it can be the same as the former value).

Note that, according to step 1 (Identify Communicating Entities), the modelled

Page 72 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

interaction only contains lifelines for ports, not for parts associated with these
ports. Having the BehaviourExecutionSpecification on lifelines representing ports
should be seen as a shorthand notation for an interaction where lifelines
associated with parts would also be modelled, and the
BehaviourExecutionSpecifications would be put onto these lifelines.

Note also that a BehaviourExecutionSpecification, as a kind of
ExecutionSpecification, owns a “start” and “finish” OccurenceSpecification. These
occurrence specifications can then be used to put constraints on the denoted
executions, like in the two last step of this process pattern.

Specify Control Operators:

In addition to Messages and BehaviourExecutionSpecifications, compositional
testing techniques of F5.4.2 also support particular kinds of CombinedFragment. In
a UML interaction, a CombinedFragment enables to specify control structures
around interaction fragments (Note: BehaviourExecutionSpecification as well as
MessageOccurenceSpecification indirectly inherit from InteractionFragment. The
metaclassMessageOccurenceSpecification is used to denote emission / reception
events underlying a Message).

The precise nature of the control structure represented by a CombinedFragment is
denoted by its property “interactionOperator’. Fragments playing the role of
operands for the “interactionOperator’ are denoted by the property “operand” of
CombinedFragment. UML defines several interaction operators. However,
according to semantic hypothesis underlying testing techniques of F5.4.2, only the
three following ones are supported:

- loop, which represents a repetition of an execution scheme (where an
execution scheme is composed of a set message exchanges and
behaviour executions),

- alt, which represents a non-deterministic choice among a set of possible
execution schemes,

- strict, which can be used to identify instants when all lifeline behaviours
are forced to leave execution.

Specify Timing Constraints:

The resulting interaction model can be enriched with explicit timing constraints.
These constraints rely on the usage of VSL and time observations, and they must
be annotated with stereotype «TimedConstraint» from the MARTE profile. The
rules for modelling time constraints using VSL are given in pattern [PUT REF:
Expressing timing constraints with time observations]. Note that time constraints
can be associated with occurrence specifications or messages. Concerned
occurrence specifications or messages must be identified through the property
“constrainedElement” of the Constraint. In the case of a TimeConstraint,
occurrence specifications are denoted using the name of a TimeObservation
referencing the occurrence specification (The reference is given by property event
of metaclassTimeObservation). In the case where a time constraint relates to
occurrence specifications directly or indirectly part of a loop (i.e., combined
fragment where interactionOperator equals loop), these time observations can be
indexed (e.g. @t[i]), where the index refers to the time observation in particular
iteration of the loop.

Specify Data Constraints:

In addition to timing constraints, interaction models can also be enriched with data
constraints. The modelling rules for capturing these constraints are similar to those
used for timing constraints, except that underlying VSL expressions are not
allowed to handle time observations. The only “variable” that can be used are
either ports or properties. Note that data constraints can be associated with
occurrence specifications. Concerned occurrence specifications must be identified

Page 73 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

through the property “constrainedElement” of the Constraint. Semantically, data
constraints associated with reception occurrence specifications are meant to be
evaluated after the reception of the message.

Example

The following example illustrates the application of the various modelling steps
described in this section. The example is extracted from F5.4.2, and represents
the expected behaviour of a rain-sensor wiper controller in a car.

sd

/ ctrl:Controller calc:Calculator eng:Engine ‘
intensity:Real ‘ ‘ speed:Real intensity:Real H speed:Real speed:Real |
[] ctrl.preVSpéed =0
loop J °

alt 01

J my <<TimedConstraint >>

{0l -] <(0.1,5) }

my
@ty ! @t

< <TimedConstraint >>

{tll-t[-1]1=(0.55)}

02

ms
@t; |
<<TimedConstraint >>

{t[1-t[i1<(0.559)7}

j)
alt I 1

strict) Q111

i { ctrl.speed <> ctrl.prevSpeed }

] new(calc.speed)

ctrI.prevSpeéd = ctrl.speed

Mg Oi12

012

{ ctrl.speed = ctrl.prevSpeed }

The system contains a controller ctrl which receives rain intensity values from a
sensor (not depicted in the diagram) on its port intensity through message m1.
Every 0.5 seconds, the received value is resent to a calculator component calc
whose main purpose is to compute a speed for the wiper depending on the rain
intensity (message m2). The frequency is identified by means of the constraint

t1[i]-t1[i-1]=(0.5,s) (where s means seconds).

5.5.3 Test Generation for Black Box Tests

o——=25 88 s ®

DefineTestRequirements CreateTestContext DefineTestCases

Figure 44: TestGeneration Black Box Testing

The Test Generation BlackBox Testing starts with the definition of the test requirements. These requirements
reflect the system requirements in a way which helps to model what should be tested and for what reason.
Next step is the creation of a test context. A test context contains the test configuration, test components,
system under test. Last step is the definition of test cases within the test context.

Page 74 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

5.5.3.1 Define Test Requirements

The following picture shows the Definition of Test Requirements.

DefineTestRequirements

I.e\f.ﬁngi neer.

SystemRequirements TestModel

DeflineTestRequirements

Papyrus

Figure 45: Define Test Requirements

Define Test Requirements is concerned with the following work products.

e System Requirements Model
e Test Model

ModelReview and Report Evaluation

VERDE
ip8020)

Overview Test Engineer starts to work out the test requirements

Assigned #47, #69, #113, #160, #163, #222, #15, #38, #40, #117, #242, #243, #268,
Tickets #270-287, #1009, #12, #41, #87, #111, #159, 164, #338, #339, #340, #350,
Language UML-Profile for Testing, UML for Marte profile, SysML

Tools Papyrus (or any other UML-Compliant tool)

Parameters n/a

Pre-condition

Sound system requirements definition

Post-Condition

Testmodel with test requirements

Steps

Create Test Model: First of all a test model needs to be created. This test model
may optionally refer to the system model in order to reuse the system model type
system. Alternatively, the test model can be created inside the system model but in
this case it needs to be put into a separated package in order to keep separation
between test and system relevant model element. The package needs to be
stereotyped with <<testPacakge>>.

Create Test Requirements: Test requirements needs to be created in order to
control the creation and execution of the tests. Test requirements shall refer to the
system requirements. The stereotype <<testRequirement>> shall be used.

Page 75 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example «requirements «requirements «requirements «requirements
FR1 FR2 FR_3 FR4
' A A A
! | | 1
| V "
L S0 : Verifidl L Verify :\Icrifyll
«testRequirements «testRequirements| |«testRequirements) «testRequirements|
TR1 TR2 TR 3 TR 4
«requirements requirements «requirements «requiremel
FR.6 FR7 FR.8 FRO
A A R A
|
i i ! i
I ! ! l
' Verify | Verify? L Verify8 kX
: | | :
| ! ! |
b | ! |
testR ; t: : : i
«testRequirements testRequirement testRequirements «testRequirem
RS TR TR8 L TR9
5.5.3.2 Create Test Context
The following picture shows the creation of Test Context.
s ™
I \
~1Z| CreateTestContext
g/
~

TektEngineer

u \ |: J— —

TestModel
7@@9&@9&@&

Papyrus

=

TestModel

Figure 46: CreateTestContext

Create Test Context is concerned with the following work products.

e Model
e Test Model

Page 76 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

CreateTestContext

Overview Create the basic elements of a Test Context

Assigned #47, #69, #113, #160, #163, #222, #15, #38, #40, #117, #242, #243, #268,
Tickets #270-287, #109, #12, #41, #87, #111, #159, 164, #338, #339, #340, #350,
Language UML-Profile for Testing, UML for Marte profile, SysML

Tools Papyrus (or any other UML-Compliant tool)

Parameters n/a

Pre-condition

Post-Condition

Test context created

Steps

Creation of Test Context: The test context is a component with stereotype
<<testContext>>. It contains test configuration, test components and the system
under test.

Creation of SUT: The SUT (System Under Test) needs to be modeled. It should
reflect the parts of the system model that shall be tested. The modelling of the
SUT can be either done from scratch or it can be done by creating a new
component, which inherits from the relevant system component or components.

Creation of Test Components: Corresponding to the definition of the SUT the
Test components (which acts as environment for the SUT) needs to be modeled.
This could be either done from scratch or it can be realized by inheriting from the
system components. The Test components needs to be stereotyped
<<testComponent>>.

Example

(SysMLmodel:System|
=Components
MWO

«testComponents
«testContexts =Components

SystermnTestContext

«Components AF MWOEnvironment

«Components
MWO_SUT

Page 77 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

5.5.3.3 Define Test Cases
The following picture shows the Definition of Test cases.

L] DefineTestCases

Ie&l Engineer

| =
TestModel TestModel

7|neTe5tCases

Papyrus

Figure 47: Define Test Cases

Define Test Requirements is concerned with the following work products.

e Test Model

DefineTestCases

VERDE
ip8020)

Overview Definition of Test cases

Assigned #47, #69, #113, #160, #163, #222, #15, #38, #40, #117, #242, #243, #268,
Tickets #270-287, #109, #12, #41, #87, #111, #159, 164, #338, #339, #340, #350,
Language UML-Profile for Testing, UML for Marte profile, SysML

Tools Papyrus (or any other UML-Compliant tool)

Parameters n/a

Pre-condition

Post-Condition

Steps

Manual Definition of Test Cases: Test cases can be create manually by using
sequence diagrams. This is an essential part of the creation of test campaigns as
the automatic derivation of test cases shall be supported by the experience and
manual investigation of a test engineer.

Definition of Test Behaviour: In order to derive test cases automatically the
behaviour of the system under test needs to be modeled. This shall be done in a
manual step and should not depend on the behaviour modeled for the system in
the system model. In this way the system model and test model remain separated
and systematic errors done in the system model are not propagated to test model.

Page 78 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example

OnRequest / OpaqueBehavior OpaqueBehavior)

NormalFunctionalBehavior

@ 1iti-0

SetRequest / OpaqueBehavior OpaqueBehavior)

Transitionl ON }
/ OpaqueBeha\ior
Transitjo
Transjtion1l
OffRequest / OpaqueBehavior OpaqueBehavior)

Framsitronz programmed

SetRequest / OpaqueBehavior OpaqueBehavio ResetRequ

n?gaqueBehaviorO Transftion3 Transitiot

cooking

/ OpaqueBehavior OpaqueBehavior)

I

Transitiond

Transition8

InterruptRequest / OpaqueBehavior OpaqueBehavior) SetRequest /

NS Transition6

Page 79 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

5.6 Implementation / Deployment

5.6.1 Allocation of Functional Components on the Platform
Assigned tickets: #56, #58, #76, #218, #264, #10, #92, #142, #144, #451, #452, #453, #454, #455, #95

The allocation of components relies on UML abstractions with stereotype allocate from MARTE. Several
ways of allocating components can be considered:
e allocating operations of component ports on execution resources, in case of client server ports,

e allocating component ports on execution resources,
e allocating whole componentinstances on execution resources,
e allocating component instances directly to memory spaces.

In all cases a UML abstraction needs to be defined with the UML property that represents the instance of the
execution resource as the target of the abstraction.

Deployment Modeling

Detailed Designer

Iy
L1
A { HW Developer
=performs ,
=] Compaonent Type definitions B ‘s
j - 9 E_perfnrmx-
sparameters = = = - - Deployment Modeling
. -L_t..-%" © = = sparameters
L ° 1 I P Deployment Maodel
- suses ==
_affarameters i
- |

| = Hardware Model

5 ‘u’fg UML/Marte Toal

Figure 48: Deployment of Components

Deployment of Components

Overview Definition on how functional components are deployed on Hardware
Assigned #56, VERDE shall support partitioning (hardware / software and digital / analog)
Tickets

#58, hardware / software integration to one system

#95VERDE shall offer NF properties comparison with respect to several different
Sw/Hw allocations

#451, VERDE shall offer performance properties comparison with respect to
several different Sw/Hw allocations

#452, VERDE shall offer power/energy properties comparison with respect to
several different Sw/Hw allocations

Page 80 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

#453,VERDE shall offer reliabiliry properties comparison with respect to several
different Sw/Hw allocations

#454, VERDE shall offer NF properties optimization with respect to several
different Sw/Hw allocations.

#455, VERDE shall offer execution time and power properties comparison with
respect to several different Sw/Hw allocations.

Language UML for Marte profile, VERDE profile definition
Tools Papyrus MDT or any tool supporting the standard (full compliance)
Parameter UML Class Diagram with Component Type definitions, in

SysML Block Diagram describing the Hardware Baseline, in

UML Composite Structure Diagram showing the assignment of functional
components to hardware nodes, out

Pre-Conditions

Functional components and Hardware Baseline is defined

Post-Conditions

Composite Structure Diagrams showing the deployment

Steps

Allocation of a client server port: Several elements must be set as the sources
of the abstraction: the component port, the operation (defined in a UML interface)
and the UML property that corresponds to the component instance. It is mandatory
to include the component instance in the sources of the abstraction, as UML ports
are associated with component declarations, not with component instances.
Without specifying the component instance would then lead to allocate the port of
all component instances to the specified execution resource.

Allocation of a component port: Set the UML port and the UML property as
sources of the abstraction. For a client server port, this will mean that all of the
operations provided by the port will be controlled by the execution resource. For a
flow port, this will mean that the reception of messages in this port is controlled
by the execution resource.

Allocation of a component instance: Draw an abstraction arrow from the UML
property of the component instance to the UML property of the execution resource
instance. In this situation, all ports of the components will be controlled by the
execution resource, i.e., users are not allowed to allocate components to more
than one execution resource.

Allocation of a component instance directly to memory spaces: The allocation
of a component instance to a memory partition does not imply any execution
resource (thread). Thus, it is to be used if a given component instance is passive
(i.e. not driven by any thread), or if the definition of execution resources is
performed in a separate process.

Example

5.6.2 Functional Connector Deployment

Deployment of Functional Connectors onto Hardware Connectors

Overview

If a dedicated model of the hardware (without managing middelware) is used in the
model, UML connectors in the functional software component model (in the
following called “logical connector”) have to be deployed on UML connectors in the
hardware model (in the following called “physical connector”). This is done in a

Page 81 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

UML class digram.

Assigned hardware / software integration to one system (Ticket 58)
Tickets VERDE shall offer different views (Ticket 76)
VERDE shall support partitioning (Ticket 56)

Language UML for Marte profile, SysML
Tools Any tool supporting the standard (full compliance)
Parameters Hardware model in SysML, in

Functional model in UML/MARTE, in

Deployed hardware/software model, out

Pre-Conditions | Functional components and Hardware Baseline is defined, functional components
are deployed onto hardware components (SysML blocks)

Post-Conditions | Composite Structure Diagrams showing the deployment of functional components
and functional connectors onto one or more physical connectors.

Steps Identify logical connectors: Since a logical connector usually connects software
components which are deployed on different hardware components and which are
not directly connected in the hardware model, a logical connector must usually
refined by multiple physical connectors.

Logical connector deployment: A dependency relation is used between first
physical connector (starting from the hardware component on which the software
component is deployed) and logical connector. For the following physical
connectors on the path from the source component to the target component (on
which the target software component of the logical connector is deployed) in the
hardware model, UML/MARTE dependency branches are used to refer to same
dependency.

Note that the order of dependency branches reflects the connector path in the
hardware model between source and target hardware component.

Example
StDev_Ectrl
A
LR
. ', Conbpl_StDev_Ectl

= X -

o

ConCANFRBridge2BridgeFRCtIr |ConBridgeFRCtri2FRBus| ConFRBuUs2ECU

5.6.3 Code Generation for Component Deployment

This methodological step consists in applying code generation tools to the deployment information.
Deployment model typically address the following elements: component instances, component connections,
execution resource allocations. Component port definitions are not in the scope of the deployment model;
however, they are necessary to correctly generate the deployment code.

Page 82 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

architect

Ly

| =| Deployment Maodel «performss

f'-\.

%in, mandatorys -

#in, Mandatorys #lses» |

=] 5::mp1:unent Type definitions a4

-

=

=[%"% code generation For component deployment
.7 7T = =aut, mandatorys
-) ! Il = | 1

! = i |

=

deployment source code

h”g code generatar

Figure 49: Code Generation for Component Deployment

Code generation for component deployment

Overview Generation of the source code that manages the component deployment.
Assigned #84 VERDE shall support compilation, debugging and analysis
Tickets #60 support functional and non functional aspects
#64 different task priorities and scheduling schemes
Language Verde modelling language (corresponding to the Marte profile)
Tools Code generator, e.g. eC3M, MyCCM
Parameter in: UML composite structure diagrams for the deployment information

in: class diagrams for component definitions

out: source code for component deployment

Pre-Conditions

the deployment of the components is defined (connections, resource allocations).
This implies that the components are defined also.

Post-Conditions

the deployment source code is generated

Steps

There is one single step that consists in launching the deployment code generator.

Example

Page 83 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

5.6.4 Code Generation for Component Implementation

Code Generation for Component Implementation

Detailed Design Implementation Code

wparameters L{}
“parameters - Code Generation for Component Implementation
sperform» ysen
LTy Yakindu Statemachine Tools
Detailed Designer
o8

Figure 50: Code Generation for Component Implementation

Code Generation for Component Implementation

Overview The detailed design model is used to simulate the system. The next step is to
convert with a linear sequence of instructions to source code.

Assigned

Tickets

Language Yakindu SM Metamodel, Simulink Metamodel

Tools Yakindu Statemachine Tools, Matlab/Simulink

Parameters Detailed Design Model, in

Implementation Code, out

Pre-Conditions

Post-Conditions

Steps Generate Code:

While generating source code we use the code generators shipped with the
modelling tools we are using. Please look into the manuals of the
YakinduStatechart Tools and Matlab/Simulink to get detailed instructions on how
to generate code.

Example Generate Code:

The following screenshot shows the Eclipse Project Explorer with the c-src-gen
folder including the c files generated from a YakinduStatemachine and the source
code editor including a state machine implementation.

Page 84 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

-

Y

erde

F2.2.4 — VERDE Methodology V1.1

VERDE
(ITEA 2 - ip8020)

12 Project Explorer 3. “E

[8 sm_engine.n | [€) sm_engine.c 52

EEEN

¥ 2 engine
» =) JRE System Library [J25E-1.5]
b =i Plug-in Dependencies
> (B workflow
P il Includes
> (= bin
| &cscgen |
b (£ engine_Handle.c
¥ [h engine_Handle.h
b [£) engine_iface.c
» [engine_iface.h
b [engine_timeriface.c
¥ [h engine_timeriface.h
¥ [engine.c
¥ [n engine.h
b [simElement.c
¥ [K simElement.h
¥ [£] sm_engine_Drive.c
¥ [h sm_engine_Drive.h
¥ [sm_engine.c
» [sm_engine.h
make.include
¥ (= environment
¥ (= META-INF
» (= model
» = workflow
» [&] main.cop
¥ [trafficlightwaiting_timeriface.cpp
b build.properties
| & Makefile

BOOL sm_engine_runCycle(SM_Engine_Handle* rhandle)
i

Engine_StateType oldState - rhandle->global->state;
Engine_StateType localState = getlocalStateInThisRegion(rhandle->global->state};

/* clean transition information */
rhandle-»global->transition - trans_Engine_noTransition;
SM_Engine_Handle* rhandle, "
S Y Find transitions */
swrren(rocarsTTey T

case st_engine_Initigl: {
local_Initial_handle(rhandle);
break;

case st_engine_Park: {
local_Park_handleCrhandle);
break;

}

case st_engine_Drive: {
local_Drive_handleCrhandle);
break;

}

default: {
local_Initial_handle(rhandle);

1

/% if the new state is within this region but the local state has changed,
then run the enter entries %/

if (((sm_engine_isInCrhandle->global->state) — TRUE) &&
(localState - getlocalStatelnThisRegion(rhandle->global->state))) 11

((rhandle->global->state == localState) && Crhandle-»global->transition |- trans_Engine_nofransition}

/% run the state exit actions from this point */
sm_engine_exit(rhandle, oldState);

/% run the transition action */
if (rhandle->global->transition I= trans_Engine_noTransition)
engine_callTransitionAction(rhandle->global);

/% run the state entry actions from this point %/
sm_engine_enter(rhandle};

Page 85 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

4N F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

5.7 Execution and Simulation

5.7.1 Execution of Tests on the Platform

o 55 55 ®

generateAbstractTestCode ExecuteTests

Figure 51: Execution of Tests

The execution of tests starts with the generation of abstract test code, which is in principle independent of the
test execution platform. This test code can then be compiled and executed within a test execution platform.

5.7.1.1 GenerateAbstractTestCode
The following picture shows the Definition of GenerateAbstractTestCode.

-| generateAbstractTestCode

TeXtEngineer
! \ —/-)

TestModel TTCN-3 Code

G/erateTestCode

Fokus!MBT

Figure 52: GenerateAbstractTestCode

GenerateTestCode is concerned with the following work products.

e TestModel
e TTCN-3 Code

Each step of the activity is described in the following tables.

GenerateAbstractTestCode

Overview Test Engineer generates abstract test code which can be later executed in a test
execution environment.

Assigned #47, #69, #113, #160, #163, #222, #15, #38, #40, #117, #242, #243, #268,

Tickets #270-287, #1009, #12, #41, #87, #111, #159, 164, #338, #339, #340, #350,

Language UML-Profile for Testing, UML for Marte profile, SysML, TTCN-3

Tools Fokus!MBT

Parameters n/a

Pre-condition Completed test model containing test case definitions

Post-Condition | Abstract Test code generated for each test case

Steps Load Test model: The test model containing the test cases needs to be loaded
into the Fokus!MBT tool chain. This is usually achieved by adding such a test

Page 86 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

model to a project context in Fokus!MBT.

Generate Test Code: Fokus!MBT offers an export wizard, which allows to export
a test model in to TTCN-3 code as an abstract test notation. After executing the
export wizard the corresponding TTCN-3 code is added to the project where the
test model is contained. The code can now further processed in subsequent steps
or even manually modified.

Example 7] SystemTestContettten3 (]

e o o e e

port SynchUtil synch;

type component MWOEnvironment {
port MWOEnvironment tc displayHandler tc_displayHan
port MWOEnvironment_tc_powerPo tc_powerPort:
port MWOEnvironment tc_uiControllerPort tc_uiContro

port SynchUtil synch;:

timer dyn_timer := 0.0;

type component TestSystemType{)}

type component Syn
port SynchUtil

nizerMIC{

5.7.1.2 ExecuteTests

The following picture shows the execution of tests.

5] ExecuteTests

i g

TektEngineer

= o——5

TTCN-3 Code TestTraces

?M

ii- ~y
A

TTWorkbench

Figure 53: ExecuteTests

ExecuteTestsis concerned with the following work products.

e TTCN-3 Code
e Test Traces

Each step of the activity is described in the following tables.

Page 87 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

ExecuteTests

Overview Execute the abstract test code in a test execution environment.

Assigned #47, #69, #113, #160, #163, #222, #15, #38, #40, #117, #242, #243, #268,
Tickets #270-287, #109, #12, #41, #87, #111, #159, 164, #338, #339, #340, #350,
Language UML-Profile for Testing, TTCN-3

Tools TTWorkbench

Parameters n/a

Pre-condition

Post-Condition

Steps Load Test Code: TTWorkbench can load TTCN-3 files. This is done by adding
such a file to a TTWorkbench project.
Creation of Test Harnish: Before Executing test cases a test harnish needs to be
configured. In this step the configuration and the connection to a real system under
test (SUT) needs to be established.
Run Tests: The test cases contained in the TTCN-3 files can be executed by
starting the execution in TTWorkbench. TTWorkbench now completes all test
cases and stores the test traces.
send OnRequest
13:39:43.702 tc_powserP... | powerHan...
13:39:43.707 > dyn_timer(500.0)
13:39:43.712 OnRequest
13:39:43.713 te_display.. :“—‘——‘xnd i reidmos displayPort
13:39:43.722 DisplayResponse
133943723 F2¢dwn timerig 016)
5.7.2 Simulation

The virtual prototype is simulated to gain insight into its non-functional (timing, power consumption,
communication) and functional behaviour (values of variables respectively signals).

The simulation activity processes a set of manually coded SystemC source files and generated ones. The
sources are compiled, the system configuration is completed and the resulting binary code is then run inside
the Verde Eclipse Platform. The resulting products are the log and trace files which are then subject to further
analysis. The generated binary is discarded upon any change to the input source code.

Page 88 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE
(ITEA 2 - ip8020)

Simulation
-| System Configuration | =] system C Source Code @ Log and Trace Files
1 /L@ A
«parameters ’ aparan1eier»
' «parameters o
L{} gqqfifgfliSimulation - L= -\;{j{) Execute Prototype
S [O\ BuildProtolype .-~ +
‘\ r$ad i)'LQ - 2 : Y
2 «performs «perform» =~ s
«perfoim» . =" e ’ TS
. #Ke Je=" 8 . «pafameters “USE”
of R «’}Jse» o .
i ‘_‘\':Sii'n[nlation Expert 4 A "LP o 02
g | =] Prototype Binary 3™
© «parameters VV\\: Cygwin Con{p_i@ u{; Yerde Ftiorm

Figure 54: Simulation Tasks

Overview Simulation of systems composed of hardware and software is the final step for
validating and verifying functional and non-functional properties.

Assigned Support functional and non functional aspects (Ticket 60)

Tickets

VERDE shall allow the verification and validation of the entire system and even
only parts of it. The partwise verification / validation is necessary to reduce
complexity, increase simulation performance and allow investigations even if not
all components are available. (Ticket 59)

Which communication architecture is the optimal solution for the aimed system /
product? What's the difference in performance using a slower memory? (Ticket 54)

VERDE shall be able to run software on the hardware model. This may be realized
using a processor model (ISS) and SystemC-based connected peripherals. (Ticket
57)

VERDE shall allow to configure, start and execute simulations out of the VERDE
framework, including external simulators, co-simulation and co-emulation (this
includes necessary modifications in XML, defines, etc.). (Ticket 129)

VERDE should support both the simulation of the entire system and the simulation
of subsystems isolated from the rest of the system. (Ticket 130)

VERDE should be able to represent and regard operation system aspects during
modelling and simulation. This include various schedule strategies, resource
management, interrupt handling and so on. (Ticket 65)

VERDE should allow to parameterize suitable parameters without necessary
recompile and in some cases even the change of parameters during simulation.
(Ticket 70)

VERDE or the model consisting of component models shall be executable in all
environments for which adequate interfaces were provided (e.g. to allow
distributed simulations (e.g. cluster/cloud, HW in the loop, Debugger, etc.)). (Ticket

Page 89 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1

(ITEA 2 -

VERDE
ip8020)

Language

124)

C++, esp. SystemC, TLM

xml for configuration of model parameters

Tools

Eclipse Helios Release and Verde Platform
Cygwin tool chain with compiler

OSCI SystemC Library version 2.2.0

OSCI TLM Library version 2.0.1

Parameters

Software and Hardware models in SystemC, i.e. the Virtual Prototype (In)

Any logging information, i.e. traces, test results, power consumption and timing
information (Out)

Pre-condition

All SystemC code has been generated. AND
Configuration is complete. AND

Virtual Prototype is compileable.

Post-condition

Execution of simulation has finished. AND

Trace file has been written.

Steps

In order to set up and run a simulation, the following steps need to be done.

Preparation: Download and install the open source framework Cygwin that
provides a C++ compiler for Windows. In addition download, configure and install
necessary libraries (OSCI TLM 2.0.1 and SystemC 2.2.0). Afterwards run
Eclipse.exe that is provided as a part of the Verde Platform.

Import prototype into Verde Platform: If not yet done the virtual prototype has to
be imported into the Verde platform. The substeps are:

1. Import the prototype as an Eclipse C++ project.

2. Set all necessary project properties (paths to include directories
SystemClinclude and TLM/include), paths to SystemC library, select the
Cygwin tool chain).

(Optional) Generate missing code fragments: If configuration or model data has
been changed, code generation might need to be restarted.

Configure the prototype: The prototype may be configurable according to model
parameters that can be set using xml configuration files. Some configuration data
is stored in the IP-XACT XML format (see example). One example for configurable
data in the showcase is the size and segmentation of the address space and its
memory maps. The path to the xml file needs to be specified in the C++ File that
contains the SC_MAIN method (usually named main.cpp).

Compile the prototype: All modules of the simulated system have to be compiled
using the above mentioned tool chain. In the Verde Eclipse Platform this is started
via a menu entry “Project->Build”.

Link prototype to SystemC simulator and other libraries: In order to be able to
run a simulation, the compiled models have to be linked against a OSCI SystemC
compliant simulator kernel. In addition more libraries might be linked to the
executable model (e.g. a TLM library for higher level modelling of communication).

This step is automatically executed by the “Project->Build” command from the last
step.

Run simulation: Once executable model has been created it can be run directly
from the Verde platform. In Verde this can be done by right-clicking on the

Page 90 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

compilation result, i.e. an executable file. The context menu on this file shows the
“Run As...-> Local C++ Application” command which triggers the execution to be
started.

(Optional) Debug the simulation: Instead of a normal execution, the simulation
can also run in debugging mode via “Debug As...-> Local C++ Application”.

Execute post-simulation steps: The simulation produces large amounts of logged
data to trace files. These trace files can be analyzed manually in the process step
“Trace Visualization” or automatically in the process step “Trace Abstraction”.

Example Example configuration data (IP-XACT xml):

"OTF-B" 2>

="http://www.spiritconsortiom.org/XMLSchena /SPIRIT/1.5" xmln=:xsi="ht
<spirit:vendor>VERDE Automotive ShowCase</spirit:vendor>

<spirit:library>VERDE Antomotive ShowCase</spirit:library>

<spirit:name>Memory</spirit:name>

<spirit:version>0.1</spirit:version>

<?xml version="1.0" encod

<spirit:component xmlns:spiri

<spirit:memoryMaps>
<spirit:memoryMap>
<spirit:name>MemoryMap</spirit:name>
<spirit:addressBlock>
<spirit:name>SteeringDevice</spirit:iname>
<spirit:baselddress>0x00001000</spirit:baselddress>
<spirit:range>»32<!--space for 32 32 bit registers reserved--></spirit:range>
<spirit:width>32<!--32 bit registers but & bit addressing—-></spirit:width>
<spirit:register>
<spirit:nameraimedSpeed</splrit:name>
<spirit:addressCffset>0x00</spirit:addressCffset>
<spirit:size>»1<!--32 bit register—--></spirit:size>
</spirit:register>
</spirit:addressBlock><spirit:addressBlock>
<spirit:name>RightFrontWheel</spirit:iname>
<spirit:baselddress>0x00002000</spirit:baselddress>
<spirit:range>»32<!--space for 32 32 bit registers reserved--></spirit:range>
<spirit:width>32<!--32 bit registers but & bit addressing——></spirit:width>
<spirit:register>
<spirit:name>AimedSpeed</splrit:name>
<spirit:addressCffset>0x00</spirit:addressCffset>
<spirit:size>l<!--32 bit register—--></spirit:size>
</spirit:registerr><spirit:register>
<spirit:name>CurrentSpeed</spirit:name>
<spirit:addressCffset>0x04</spirit:addressCffset>
<spirit:size>1<!--32 bit register—-></spirit:size>
</spirit:regiscer>
</spirit:addressBlock><spirit:addressBlock>
<spirit:name>leftFrontWheel</spirit:name>

Example screenshot from SystemC simulation inside Verde Platform:
3 crore et e -

File Edit Source Refactor Mavigate Search Project Run Window Help

RS = R

mild Glh @-&-E-Gr /B B0 @SS DEE S B e = Eocr) >
[2) Project Explorer 3 2[5 & 7 = O|([testbench.cpp &3 =g
5 VERDE_TLM_Models - 70 -

5 VERDE_TLM Models/include
(@ > config 426
(= Debug

[

do the reset scuff
SC_LOG_INFO(name (), "Rise reset and wait a little..."):

Gy documentation 426

2y include 426 75 resetPort = trme; // rise the reset

(& Release 78 wait(3 * clockPeriod); walt a little bit... e.g. three clock cycles
resources 426 o

& - SC_LOG_INFO(name(), "End reset and wait one clock cycle..."):

Gy source 425 -

resetPort = false: /
wait (clockPeriad) ;

[7) main.cpp 426
[5} testbench.cpp 426

[E1 CAR_COR_TLM._log.log 2 test the memory
< M | » *
= Properties | 3= Outine 5 P AW o k-0 SC_LOG_INFO (name (), "Writs test DATern TO NMERAIY..."); 1
o scution unsigned int testData = 0x01234567;
sc_utils

tlm::tlm response_status retStatus = send(tlm::TLM FRITE COMMAND, MEMORY BASE ADDRES
Teinterpret cast< unsigned char* > (&testD
SC_LOG_INFO(name(), "Write was " << ((retStatus == tlm::TLM OK RESPONSE) ? "" : "not

1 tim_utils/simple_initiator_socket.h
4 testbenchh

o simple_timerh

o tim_memory_manager.h

TestBench: TestBench{sc_module_name)

5C_LOG_TNFO(name(), "Read from memory..."):
unsigned int readData: =)
retStatus = send(tlm::TLM READ COMMAND, MEMORY BASE_ADDRESS, re t_cast< unsig

5C_LOG_INFO(name(), "Read was " << ((retStatus == Tim::TLM OK |
5C_LOG_DESUG (name(), " written = Ox" << std::hex << testData <<

TestBench:periodChange() : void
TestBench:irqReceived(): void

: void

TestBench::send(const tim::tim_command, const sc_dt-uint54&, unsign

test the bimer

< I] '

[20 Problems | Tasks | & Console &% Enror Log| & History| 47 Search| %% Debug| £ Disassembly | &g Progress =8
g u4 9 y g
No consoles to display atthis time. * B v [

o* Witable Smart Insert 7:1

Page 91 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

5.7.3 Trace Abstraction

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Trace abstraction tester

systemcTraces
o 53
®
parameter performs
[%, generate traces
7 process Tracing information
o < [=X
parameter exportdest descliption
parameter
- parameter
softwareTraces
use £33 use
. - testDescription
%‘g edlipseCDT %‘g superTraceProbe ("g eI =

Figure 55: Trace Abstraction

Trace Abstraction

Overview This pattern describes the use of execution traces for the derivation/generation
ofstimulus pattern and acceptance criteria evaluator for testing purposes.

Assigned Support functional and non-functional aspects (Ticket 60)

Tickets VERDE should support both the simulation of the entire system and the simulation
of subsystems isolated from the rest of the system. (Ticket 130)
Abstraction of legacy code to components. (Ticket 404)
NFP analysis for functionality implemented in C/C++. (Ticket 440)
VERDE shall offer execution time and power properties comparison with respect to
several different Sw/Hw allocations. (Ticket 455)
Execution time and power properties validation/extraction at early stage (on host).
(Ticket 462)

Language C++, SystemC, SystemVerilog, TLM.
XML.: for the representation of the testdescription.
vcd, csv:format for the representation of traces.

Tools Any tool supporting the standard (full compliance)

Parameters e Software traces generated by tracing hardware like the SuperTrace Probe

tracing hardware from Green Hills Systems which records tracing information
from executed programs at runtime(.csv file), in

e Traces generated during SystemC simulation (.vcd file), in

e Test description file needed for further code-generation of stimulus pattern
generator module and corresponding acceptance evaluator module, out

Pre-Conditons

Post-Conditions

Steps

e Import tracesfromcsv or vcd files

e Abstraction (transformation) of tracing information.
» Derive test behaviour for stimulation unit of testbench
» Derive evaluation criteria

e Export test description in an interchange format (.xml)

Page 92 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

Example | e
Green Hills TimeMachine Trace Listing

Format:
Instruction packet:
PC, opcode, instruction length, executed, cycles, cumulative time (ps)
Data packet:
Address, Value, Read/Write, Size, Correlated
* Correlated will either be 0 or 1. If correlated is 1, then this
data access occurred on the previous instruction. Otherwise it
occurred on an undetermined instruction
PID packet (switch to a new address space)
Task ID, Address Space ID, Supervisor Mode
Event
This will be a string describing a trace event
Info
A string providing additional information

Event, Trigger

Data, 0x00200807c, 0x0200802c, R, 4, 1

Instruction, 0x002008040, 0x13a03000, 4, 0, 27, 2132122040
Instruction, 0x002008044, 0xe3a0b000, 4, 1, 27, 2132243540
Instruction, 0x002008048, 0xe59f0030, 4, 1, 150, 2132377040
Data, 0x002008080, 0x02008088, R, 4, 1

Instruction, 0x00200804c, 0xe0800005, 4, 1, 3, 2133093290
Event, Debug Maode

Instruction, 0x00200801c, 0xe3500000, 4, 1, 63, 2130790730

Figure 56: Example of trace file (.csv)

e Generated csv-file contains online traces of instructions and data operations
with needed cycles and cumulated times from which time stamps can be
derived for each tracing step.

Page 93 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

Y F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

6. Conclusion

Goal of this task in the VERDE project was to cope with the iterative, incremental and validation-driven
design of component based real-time and embedded systems. In a first step the current practices used
by the industrial partners from various domains have been described to indentify expected improvements
within the development process.

It has been pointed out, that all industrial partners have well established development processes in
place. On one hand, the used processes provide some similarities for activities like requirements
capturing and modelling of a system architecture. On the other hand, they are also specialized for a
certain domain, especially for activities like verification and testing. It was not the intention within the
VERDE project to define a unified process for all domains. Nevertheless a common VERDE spiral
process was described. The description of such a spiral process is nothing new, but within the context of
VERDE precise guidelines needed in such a process are described

Therefore modelling steps that are needed to address the requirement tickets defined by industrial
partners have been identified and described. Methodological patterns are described for each step and
provide practical and “easy to put in practice” modeling solutions for concrete modeling issues. Such
patterns can be selected by end users when needed and integrated in domain specific processes.

Page 94 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be
disclosed by the recipient to third persons without the prior written consent of proprietors"

F2.2.4 — VERDE Methodology V1.1
VERDE

(ITEA 2 - ip8020)

References

(1]
(2]
(3]
(4]
(5]

(6]

AUTOSAR 4.0 Specification on www.autosar.de

AUTOSAR 4.0 Software Component
Templatehttp://www.autosar.org/download/R4.0/AUTOSAR_TPS_SoftwareComponentTemplate.
pdf

(OSCI), Open SystemC Initiative. TLM 2.0 Language Reference Manual. [Online] http://www.
systemc.org/downloads/.

Object Management Group (OMG), Unified Modelling Language: Superstructure, Version 2.3,
OMG Document formal/2010-05-05, 2010

Object Management Group (OMG), UML Profile for MARTE: Modelling and Analysis of Real-
Time Embedded systems, Version 1.0, OMG document ptc/2009-11-02, 2010

Baker, P., Dai, Z.R., Grabowski, J., Haugen, @., Schieferdecker, I. Williams, C.:Model-driven testing
— using the UML testing profile. Springer (2007)

Page 95 of 95

“All information contained in this document remains the sole and exclusive property of VERDE Consortium and shall not be

disclosed by the recipient to third persons without the prior written consent of proprietors"

http://www.autosar.de/
http://www.autosar.org/download/R4.0/

